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Multinomial Distributions (Generalized Binomial)
If n trials are performed:

▶ in each trial there are m > 2 possible outcomes (categories)
▶ pi = P(category i), for each trial,

∑m
i=1 pi = 1

▶ trials are independent
▶ Xi = number of trials fall in category i out of n trials

(X1, X2, . . . , Xm) is said to have the multinomial distribution,
denoted as

(X1, X2, . . . , Xm) ∼ Multinom(n, p1, p2, . . . , pm).

with the joint PMF below

P(X1 = x1, X2 = x2, . . . , Xm = xm) = n!
x1! x2! · · · xm! px1

1 px2
2 · · · p

xm
m

where 0 ≤ xi ≤ n for all i and
∑m

i=1 xi = n.
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Example
Suppose proportions of individuals with genotypes AA, Aa, and aa
in a large population are

(pAA, pAa, paa) = (0.25, 0.5, 0.25).

Randomly sample n = 5 individuals from the population.

The chance of getting 2 AA’s, 2 Aa’s, and 1 aa is

P(XAA = 2, XAa = 2, Xaa = 1) = 5!
2! 2! 1!p2

AAp2
Aap1

aa

= 5!
2! 2! 1! (0.25)2(0.5)2(0.25)1 ≈ 0.117

and the chance of getting no AA, 3 Aa’s, and 2 aa’s is

P(XAA = 0, XAa = 3, Xaa = 2) = 5!
0! 3! 2! (0.25)0(0.5)3(0.25)2 ≈ 0.078
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Properties of Multinomial Distributions

If (X1, X2, . . . , Xm) has a multinomial distribution with n trials and
the category probabilities (p1, p2, · · · , pm), then

▶ Each Xi ∼ Binomial(n, pi)
▶ E(Xi) = npi for i = 1, 2, . . . , m
▶ Var(Xi) = npi(1− pi),
▶ Xi , Xj are not independent since

∑m
i=1 Xi = n.

▶ Cov(Xi , Xj) = −npipj ← Why negative?

▶ X1, . . . , Xm are dependent since they must add up to n.
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Likelihood Ratio Tests of Multinomial Data
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MLE for Multinomial
Observe (X1, X2, . . . , Xm) ∼ Multinom(n, p1, p2, . . . , pm), where n
is known, but pi ’s are unknown. What’s the MLE for (p1, . . . , pm)?

▶ likelihood:

L(p1, . . . , pm) = n!
X1! X2! · · ·Xm! pX1

1 pX2
2 · · · p

Xm
m

▶ log-likelihood:

ℓ(p1, . . . , pm) = C +
∑m

i=1
Xi log(pi)

where C = log( n!
X1! X2! ···Xm!) includes terms not involving pi ’s.

▶ However, we CANNOT find the MLE as usual by solving

0 = ∂ℓ

∂pi
= Xi

pi
, i = 1, . . . , m,

due to the constraint
∑m

i=1 pi = 1.
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MLE for Multinomial (Lagrange Multiplier)
To maximize this likelihood subject to the constraint

∑m
i=1 pi = 1,

we introduce a Lagrange multiplier

ℓ(p1, . . . , pm; λ) = C +
∑m

i=1
Xi log(pi)− λ

(∑m
i=1

pi − 1
)

.

Then we find (p1, . . . , pm, λ) that maximize the Lagrange multiplier
by taking its partial derivative with respect to each pi and to λ{

0 = ∂ℓ
∂pi

= Xi
pi
− λ, i = 1, . . . , m

0 = ∂ℓ
∂λ = −(

∑m
i=1 pi) + 1

The first m equations give pi = Xi/λ. Plugging pi = Xi/λ into the
last equation, we get,

1 =
∑m

i=1
pi =

∑m
i=1 Xi
λ

⇒ λ =
m∑

i=1
Xi = n ⇒ pi = Xi

n .

⇒ The MLE is (p̂1, . . . , p̂m) =
(X1

n , . . . ,
Xm
n

)
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Likelihood Ratio Tests of Multinomial Data

Suppose we observe (X1, . . . , Xm) ∼ Multinom(n, p1, . . . , pm) and
wish to test

▶ H0: (p1, . . . , pm) = (p10, . . . , pm0) against
▶ H1: (p1, . . . , pm) ̸= (p10, . . . , pm0)

We can conduct a generalized likelihood ratio test.

▶ Likelihood: L(p1, . . . , pm) = C
∏m

i=1 pXi
i

where C = n!
X1! X2! ···Xm! includes terms not involving pi ’s.

▶ Under H0: max L(p1, . . . , pm) is simply L(p10, . . . , pm0)
▶ Under H0 or H1, max L(p1, . . . , pm) is L(X1

n , . . . , Xm
n ).

▶ The GLR is thus

Λ = L(p10, . . . , pm0)
L(X1

n , . . . , Xm
n )

= C
∏m

i=1 pXi
i0

C
∏m

i=1(Xi/n)Xi
=

m∏
i=1

(npi0
Xi

)Xi
.

9 / 35



Likelihood Ratio Tests of Multinomial (2)
According to the large-sample theory of GLR, when n is large,

−2 log Λ = −2
m∑

i=1
Xi log

(npi0
Xi

)
= 2

m∑
i=1

Xi log
( Xi

npi0

)

= 2
m∑

i=1
Oi × log

(Oi
Ei

)
is approx. ∼ χ2

m−1 under H0,

where Oi = Xi = observed count in the ith category
Ei = npi0 = expected count in the ith category under H0

There are m − 1 degrees of freedom since

▶ under H1, there are m − 1 free parameters (p1, . . . , pm),
subject to the constraint

∑
i pi = 1;

▶ under H0, there is no free parameters as all parameters are
specified.
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Pearson’s Chi-Squared Statistic for Multinomial
For multinomial data, the likelihood ratio test statistic is usually
refer to as G2

G2 = 2
m∑

i=1
Oi log

(Oi
Ei

)
Another (more) commonly used test statistic for multinomial data
is Pearson’s Chi-Squared statistic,

Pearson’s X 2 =
m∑

i=1

(Oi − Ei)2

Ei
∼ approx. χ2

m−1.

▶ When Oi −Ei
Ei
≈ 0, Pearson’s X 2 and G2 are usually close.

▶ The sampling distribution of Pearson’s X 2 converges to
chi-square faster than that of G2. Hence, Pearson’s X 2 is
more commonly used than G2.

▶ The larger the value of Pearson’s X 2 or G2, the stronger the
evidence against H0

▶ If Oi = Ei for all i , then Pearson’s X 2 = 0, G2 = 0.
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Proof of G2 ≈ X 2

By Taylor expansion, log(1 + x) ≈ x − x2

2 when x ≈ 0, we have

log
(

Oi
Ei

)
= log

(
1 + Oi − Ei

Ei

)
≈ Oi − Ei

Ei
−1

2
(Oi − Ei)2

E 2
i

when Oi − Ei
Ei

≈ 0.

and thus

Oi log
(

Oi
Ei

)
≈ [Ei + (Oi − Ei)]

(
Oi − Ei

Ei
− 1

2
(Oi − Ei)2

E 2
i

)
= (Oi − Ei)−

1
2

(Oi − Ei)2

Ei
+ (Oi − Ei)2

Ei
− 1

2
(Oi − Ei)3

E 2
i

= (Oi − Ei) + 1
2

(Oi − Ei)2

Ei

(
1− (Oi − Ei)

Ei

)
Summing over i , we get

G2 = 2
∑

i
Oi log

(
Oi
Ei

)
≈ 2

∑
i

(Oi − Ei)︸ ︷︷ ︸
=0

+
∑

i

(Oi − Ei)2

Ei

(
1− (Oi − Ei)

Ei︸ ︷︷ ︸
≈0

)

≈
∑

i

(Oi − Ei)2

Ei
= X 2
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Example: Seasonal Variation of Suicide Rates
US Monthly Suicide Counts (1970)

Num. of Days/ Expected
Month Suicides Month count

Jan 1867 31

1994.192

Feb 1789 28 1801.205
Mar 1944 31 1994.192
Apr 2094 30 1929.863
May 2097 31 1994.192
Jun 1981 30 1929.863
July 1887 31 1994.192
Aug 2024 31 1994.192
Sept 1928 30 1929.863
Oct 2032 31 1994.192
Nov 1978 30 1929.863
Dec 1859 31 1994.192

Total 23480 365 23480

Does the suicide rate vary sea-
sonally, or is it uniform from day
to day?
If uniform from day to day, we
expect 31/365 of the suicides to
occur in January.

(total number of suicides)

× 31
365 = 1994.192.
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Example: Seasonal Variation of Suicide Rates
Likelihood Ratio test statistic is

2
[
1867 log

( 1867
1994.192

)
+ 1789 log

( 1789
1801.205

)
+ . . . + 1859 log

( 1859
1994.192

)]
≈ 47.378

Pearson’s X 2-statistic is

X 2 = (1867− 1994.192)2

1994.192 + (1789− 1801.205)2

1801.205

+ . . . + (1859− 1994.192)2

1994.192 ≈ 47.365

Both have 12− 1 = 11 degrees of freedom. Both P-values are
≈ 0.00000185, meaning the suicide rate is not uniform from day to
day.
pchisq(47.378, df=11, lower.tail=FALSE)
[1] 0.000001842
pchisq(47.365, df=11, lower.tail=FALSE)
[1] 0.000001852
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Example: Hardy-Weinberg Equilibrium
In fact, we don’t have to fully specify pi in the H0. We can specify
pi ’s with a few parameter(s) θ like

▶ H0: (p1, . . . , pm) = (p1(θ), . . . , pm(θ))

For example, Hardy-Weinberg Equilibrium assumes proportions of
individuals with genotypes AA, Aa, and aa in a large population are

(pAA, pAa, paa) = ((1− θ)2, 2θ(1− θ), θ2),

where θ is an unknown constant.

Let (X1, X2, X3) be the counts of the genotypes AA, Aa, and aa in
a random sample of n individuals. Then

(X1, X2, X3) ∼ Multinom((1− θ)2, 2θ(1− θ), θ2)

What’s the MLE for θ?
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Example: Hardy-Weinberg Equilibrium
Likelihood:

L(θ) = C [(1−θ)2]X1 [2θ(1−θ)]X2 [θ2]X3 = C2X2(1−θ)2X1+X2 ·θX2+2X3 .

Log-likelihood:

ℓ(θ) = const + (2X1 + X2) log(1− θ) + (X2 + 2X3) log θ

Solve for MLE

0 = ∂ℓ

∂θ
= −2X1 + X2

1− θ
+ X2 + 2X3

θ
.

We can obtain the MLE

θ̂ = 2X3 + X2
2X1 + 2X2 + 2X3

= X2 + 2X3
2n .
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Chi-Square Test of Multinomial
To test

▶ H0: (p1, . . . , pm) = (p1(θ), . . . , pm(θ)), against
▶ H1: (p1, . . . , pm) is not as specified in H0,

we can also test using

−2 log Λ = 2
m∑

i=1
Oi × log

(Oi
Ei

)
or Pearson’s X 2 =

m∑
i=1

(Oi − Ei)2

Ei

where

Oi = Xi = observed count in the ith category
Ei = npi(θ̂) = expected count in the ith category under H0

and θ̂ is the MLE of θ.
Under H0, both −2 log Λ and X 2 are approx. ∼ χ2

k where

k = (# of free parameters in H1)− (# of free parameters in H0).
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Example: Hardy-Weinberg Equilibrium
In a sample from the Chinese population of Hong Kong in 1937,
blood types occurred with the following frequencies, where M and
N are erythrocyte antigens:

Blood Type
M MN N Total

Count 342 500 187 1029

The MLE for θ is thus

θ̂ = X2 + 2X3
2n = 500 + 2 · 187

2 · 1029 = 874
2058 ≈ 0.4247.

The expected counts for the 3 blood types are thus npi(θ̂)

E1 = n(1− θ̂)2 ≈ 1029(1− 0.4247)2 ≈ 340.6
E2 = n2θ̂(1− θ̂) ≈ 1029(2)(0.4247)(1− 0.4247) ≈ 502.8
E3 = nθ̂2 ≈ 1029(0.4247)2 ≈ 185.6

18 / 35



Example: Hardy-Weinberg Equilibrium
Blood Type

M MN N Total
Observed Count 342 500 187 1029
Expected Count 340.6 502.8 185.6

Likelihood Ratio and Pearson’s X 2-statistic are respectively

−2 log Λ = 2
[
342 log

( 342
340.6

)
+ 500 log

( 500
502.8

)
+ 187 log

( 187
185.6

)]
≈ 0.0319,

X 2 = (342− 340.6)2

340.6 + (500− 502.8)2

502.8 + (187− 185.6)2

185.6 ≈ 0.0319.

They have 2− 1 = 1 degree of freedom since

▶ under H1, there are 3− 1 = 2 free parameters
▶ under H0, there is 1 free parameter θ
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Example — Fatalities From Horse Kicks (p.45, Textbook)

The # of deaths in a year resulted from being kicked by a horse or
mule was recorded for each of 10 corps of Prussian cavalry over a
period of 20 years, giving 200 corps-years worth of data.

# of Deaths (in a corp in a year) 0 1 2 3 4 Total
Frequency 109 65 22 3 1 200

The count of deaths due to horse kicks in a corp in a given year
may have a Poisson distribution because

▶ p = P(a soldier died from horsekicks in a given year) ≈ 0;
▶ n = # of soldiers in a corp was large (100’s or 1000’s);
▶ whether a soldier was kicked was (at least nearly) independent

of whether others were kicked
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Example (Fatalities From Horse Kicks — Cont’d)
The fitted Poisson probability to have k deaths from horsekicks for
λ̂ = 0.61 is

P(Y = k) = e−λ λk

k! = e−0.61 (0.61)k

k! , k = 0, 1, 2, . . . .

Observed Relative Poisson
k Frequency Frequency Probability
0 109 0.545 0.543
1 65 0.325 0.331
2 22 0.110 0.101
3 3 0.015 0.021
4 1 0.005 0.003

Total 200 1 0.999

Recall the MLE λ̂ = 0.61 is the sample mean, i.e., the average of
the 200 counts

0× 109 + 1× 65 + 2× 22 + 3× 3 + 4× 1
200 = 0.61.
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Example (Fatalities From Horse Kicks — Cont’d)
Can check accuracy of Poisson fit by LRT or Pearson’s X 2.

▶ H0: pk = e−λ λk

k! for k = 0, 1, 2, 3 and p4 =
∑∞

i=4 e−λ λi

i!
▶ H1: pk is not as specified above.

Observed Expected
k Count Count
0 109 108.67
1 65 66.29
2 22 20.22
3 3 4.11
4 1 0.71

Total 200 200

⇒ Pearson’s X 2 ≈ 0.60,
−2 log Λ ≈ 0.61.

They have 4− 1 = 3 degrees of freedom since

▶ under H1, there are 5− 1 = 4 free parameters
▶ under H0, there is 1 free parameter λ

The P-values are both ≈ 0.89, meaning the Poisson fit is good.
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Test For Independence
for Two-Way Contigency Tables
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Setting
Suppose X and Y are two discrete random variables.

▶ X takes values 1, 2, . . . , r , and
▶ Y takes values 1, 2, . . . , c.

Denote the joint PMF of (X , Y ) as

pij = P(X = i , Y = j), for i = 1, . . . , r , and j = 1, . . . , c.

The marginal PMF of X and of Y are then respectively

P(X = i) =
∑

j
P(X = i , Y = j) =

∑
j

pij
define= pi+, i = 1, . . . , r

P(Y = j) =
∑

i
P(X = i , Y = j) =

∑
i

pij
define= p+j , j = 1, . . . , c.

In this notation, X and Y are independent if and only if

pij = pi+p+j for all i , j .
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Two-Way Contigency Tables
Suppose we observe n i.i.d. pairs of (X , Y ) variables from the joint
distribution on the previous slide.

(X1, Y1), (X2, Y2), . . . , (Xn, Yn).

Let Nij = the number of XY -pairs such that (X = i , Y = j).
The data are usually summarized as a 2-way contingency table.

count Y = 1 Y = 2 · · · Y = c row total
X = 1 N11 N12 · · · N1c N1+
X = 2 N21 N22 · · · N2c N2+

...
...

...
. . .

...
...

X = r Nr1 Nr2 · · · Nrc Nr+
column total N+1 N+2 · · · N+c N++ = n

Here Nij ’s are refer to as the cell counts, while Ni+ =
∑

j Nij and
N+j =

∑
i Nij are respectively the row total and the column total.
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Distribution of Counts in a Two-Way Contigency Table

Observe that the cell counts have the multinomial distribution.
N11 N12 · · · N1c
N21 N22 · · · N2c

...
... . . . ...

Nr1 Nr2 · · · Nrc

 ∼ Multinom

n,


p11 p12 · · · p1c
p21 p22 · · · p2c
...

... . . . ...
pr1 pr2 · · · prc




The row totals and the column totals also have multinomial
distributions.

(N1+, N2+, . . . , Nr+) ∼ Multinom(n, p1+, p2+, . . . , pr+),
(N+1, N+2, . . . , N+c) ∼ Multinom(n, p+1, p+2, . . . , p+c).
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Likelihood Ratio Test Statistic of Independence

Our goal is to find the likelihood ratio test statistic for testing

H0: X and Y are independent vs H1: X and Y are dependent

As shown earlier, the MLE for pij in general is p̂ij = Nij/n. The
likelihood for (p11, . . . , prc) is

L(p11, . . . , prc) = C
r∏

i=1

c∏
j=1

pNij
ij .

The maximized likelihood in general is thus

L(N11
n , . . . ,

Nrc
n ) = C

r∏
i=1

c∏
j=1

(Nij
n

)Nij

.
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It remains to find the max likelihood under the H0 of independence.
Under H0, we know pij = pi+p+j for all i , j .
There are only r + c parameters. Their likelihood is

L(pi+, . . . , p+j , . . .) = C
∏r

i=1

∏c

j=1
(pi+p+j)Nij

= C
(∏r

i=1

∏c

j=1
pNij

i+

)(∏c

j=1

∏r

i=1
pNij

+j

)
= C

(∏r

i=1
p
∑c

j=1
Nij

i+

)(∏c

j=1
p
∑r

i=1
Nij

+j

)
= C

(∏r

i=1
pNi+

i+

)(∏c

j=1
pN+j

+j

)
,

which is the product of a function of (p1+, . . . , pr+) and a function
of (p+1, . . . , p+r ). We can maximize them separately with the
MLE’s

p̂i+ = Ni+/n, p̂+j = N+j/n.

The max likelihood under H0 is thus

L(p̂i+, . . . , p̂+j , . . .) = C
r∏

i=1

c∏
j=1

(p̂i+p̂+j)Nij = C
r∏

i=1

c∏
j=1

(
N+jN+j

n2

)Nij

.
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The generalized likelihood ratio is thus

Λ =
C
∏r

i=1
∏c

j=1

(
N+j N+j

n2

)Nij

C
∏r

i=1
∏c

j=1

(
Nij
n

)Nij
=

r∏
i=1

c∏
j=1

(
N+jN+j

nNij

)Nij

,

and the generalized likelihood ratio test statistic of independence if

G2 = −2 log Λ = 2
r∑

i=1

c∑
j=1

Nij log
(

nNij
N+jN+j

)

= 2
r∑

i=1

c∑
j=1

Oij log
(

Oij
Eij

)

where Oij = Nij = observed count in the (i , j) cell, and

Eij = N+jN+j
n = (row total)(column total)

overall total
= expected count in the (i , j) cell under H0
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Degrees of Freedom for LR Test Statistic of Independence
According to the large-sample theory of GLR, when n is large,

G2 = 2
r∑

i=1

c∑
j=1

Oij log
(

Oij
Eij

)
is approx. ∼ χ2

(r−1)(c−1) under H0.

It has (r − 1)(c − 1) degrees of freedom since

▶ under H1, there are rc − 1 free parameters (pij), subject to the
constraint

∑
ij pij = 1;

▶ under H0, the joint PMF {pij} are completely determined by
the marginal PMF {pi+} and {p+j} since pij = pi+p+j .
▶ there are (r − 1) free parameters for {pi+} subject to the

constraint
∑

i pi+ = 1;
▶ there are (c − 1) free parameters for {p+j} subject to the

constraint
∑

j p+i = 1;

Thus df = (rc − 1)− [(r − 1) + (c − 1)] = (r − 1)(c − 1).
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Pearson’s X 2-Statistic

Similarly, we can also test the H0 of independence using

Pearson’s X 2 =
∑

ij

(Oij − Eij)2

Eij
=

∑
all cells

(observed− expected)2

expected

where Oij and Eij are as defined for G2.

▶ When Oij −Eij
Eij

≈ 0 for all cell, X 2 and G2 are usually close.
▶ The sampling distribution of Pearson’s X 2 converges to

chi-square faster than that of G2. Hence, Pearson’s X 2 is
more commonly used than G2.

▶ The larger the value of Pearson’s X 2 or G2, the stronger the
evidence against H0

▶ If Oi = Ei for all i , then Pearson’s X 2 = 0, G2 = 0.
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Example: Age & Source of News

A question asked in the 2008 General Social Survey is “Where do
you get most of your information about current news events?”
Possible answers included TV, Internet, and newspapers, as well as
other possibilities such as radio, family, and friends. The table
below summarizes the results by age group.

Source (Y )
Age (X ) TV Internet Newspapers Other Total
18-29 109 92 25 36 262
30-49 272 157 88 63 580
50+ 345 59 165 63 632
Total 726 308 278 162 1474

Question: Did the way people get news change with age?

32 / 35



Expected Counts

The expected counts for the Age and News data are

Age Source (Y )
(X ) TV Internet Newspapers Other Total

18-29 262×726
1474 =129.04 262×308

1474 =54.75 262×278
1474 =49.41 262×162

1474 =28.8 262
30-49 580×726

1474 =285.67 580×308
1474 =121.19 580×278

1474 =109.39 580×162
1474 =63.74 580

50+ 632×726
1474 =311.28 632×308

1474 =132.06 632×278
1474 =119.2 632×162

1474 =69.46 632
Total 726 308 278 162 1474

Note the expected cell counts need NOT be whole numbers.
Do NOT round the expected counts to integers.
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G2- and X 2-Statistic — Age News Example
The observed counts and the expected counts (in parentheses)

Age Source (Y )
(X ) TV Internet Newspapers Other Total

18-29 109 92 25 36 262
(129.04) (54.75) (49.41) (28.8)

30-49 272 157 88 63 580
(285.67) (121.19) (109.39) (63.74)

50+ 345 59 165 63 632
(311.28) (132.06) (119.2) (69.46)

Total 726 308 278 162 1474

The likelihood ratio G2 and Pearson’s X 2 are respectively

G2 = 2
[
109 log

( 109
129.04

)
+ 92 log

( 92
54.75

)
+ · · ·+ 63 log

( 63
69.46

)]
≈ 126.4471

X 2 = (109− 129.04)2

129.04 + (92− 54.75)2

54.75 + · · ·+ (63− 69.46)2

69.46
≈ 120.0253
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P-value of Pearson’s X 2-Test — Age News Example
The table is 3× 4, so

df = (r − 1)(c − 1) = (3− 1)(4− 1) = 6

The P-value is

▶ P(G2 > 126.4471) ≈ 7.192× 10−25 for G2 = 126.4471
▶ P(X 2 > 120.0253) ≈ 1.62× 10−23 for X 2 = 120.0253.

pchisq(126.4471, df=6, lower.tail=FALSE)
[1] 7.192e-25
pchisq(120.0253, df=6, lower.tail=FALSE)
[1] 1.61e-23

There is strong evidence against H0:

people in different age groups had significantly different preference
in ways of getting news.
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