STAT 24400 Lecture 18 P-values Tests & Confidence Intervals for Normal Distributions

Yibi Huang Department of Statistics University of Chicago

The *P*-value of a test is the probability of obtaining a test statistic such that the evidence for the alternative hypothesis H_1 is at least as strong as our observed data, assuming the H_0 is true.

The *P*-value of a test is the probability of obtaining a test statistic such that the evidence for the alternative hypothesis H_1 is *at least as strong* as our observed data, assuming the H_0 is true.

The definition is mouthful. Here are some key points

The P-value is a probability, and thus it's between 0 and 1

The *P*-value of a test is the probability of obtaining a test statistic such that the evidence for the alternative hypothesis H_1 is at least as strong as our observed data, assuming the H_0 is true.

The definition is mouthful. Here are some key points

- The P-value is a probability, and thus it's between 0 and 1
- This probability is calculated assuming the H₀ is true.

The *P*-value of a test is the probability of obtaining a test statistic such that the evidence for the alternative hypothesis H_1 is at least as strong as our observed data, assuming the H_0 is true.

The definition is mouthful. Here are some key points

- ▶ The *P*-value is a *probability*, and thus it's between 0 and 1
- This probability is calculated assuming the H₀ is true.
- To determine the P-value, we must first decide which values of the test statistic are the evidence for H₁ to be stronger than or as as the value obtained from our sample

 $\begin{array}{c} P\text{-Value} - \text{Dogs-Smell-Cancer Study} \\ \text{evidence for } H_0 & \text{evidence for } H_1 \end{array}$

 $\begin{array}{c} P\text{-Value} - \text{Dogs-Smell-Cancer Study} \\ \text{evidence for } H_0 & \text{evidence for } H_1 \end{array}$

• Observed X = 22

• Evidence for H₁ is stronger than or as strong as the observed X = 22 if $X \ge 22$

• Under H₀, $X \sim Bin(n = 54, p = 1/7)$

$$P\text{-value} = P(X \ge 22 \mid H_0) = \sum_{k=22}^{54} {\binom{54}{k}} \left(\frac{1}{7}\right)^k \left(\frac{6}{7}\right)^{54-k} \approx 1.86 \times 10^{-6}$$

Note *P*-value is NOT
$$P(X = 22 | H_0)$$

Test Procedure Based on the P-value

As an alternative to test procedures based on rejection regions, one can use test procedures based on P-values

- 1. Select a significance level α = the desired P(Type I error).
- 2. Then
 - ▶ reject H_0 if the *P*-value $\leq \alpha$
 - do not reject H_0 if the *P*-value > α

Test Procedure Based on the P-value

As an alternative to test procedures based on rejection regions, one can use test procedures based on P-values

- 1. Select a significance level α = the desired P(Type I error).
- 2. Then
 - ▶ reject H_0 if the *P*-value $\leq \alpha$
 - do not reject H_0 if the *P*-value > α

Remark: Hypothesis tests using a "Rejection Region" and those using the "*P*-value" are equivalent. In fact,

the test statistic is in the rejection region with significance level α if and only if the P-value < the significance level α</p>

Test Procedure Based on the P-value

As an alternative to test procedures based on rejection regions, one can use test procedures based on P-values

- 1. Select a significance level α = the desired P(Type I error).
- 2. Then
 - ▶ reject H_0 if the *P*-value $\leq \alpha$
 - ▶ do not reject H_0 if the *P*-value > α

Remark: Hypothesis tests using a "Rejection Region" and those using the "P-value" are equivalent. In fact,

the test statistic is in the rejection region with significance level α if and only if the P-value < the significance level α</p>

In the rest of L18, we will outline the test procedures for 6 major tests about the normal distribution, using both the critical-value and the P-value approach.

Six Tests for Normal Distributions

One sample: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$

- 1. One sample test for mean, with known σ^2 H₀: $\mu = \mu_0$ v.s. H₁: $\mu \neq \mu_0$ (or $\mu > \mu_0$, $\mu < \mu_0$)
- 2. One sample test for mean, with unknown σ^2

$$\mathsf{H}_0:\ \mu=\mu_0$$
 v.s. $\mathsf{H}_1:\ \mu
eq\mu_0$ (or $\mu>\mu_0$, $\mu<\mu_0$)

3. One sample test for variance, with unknown μ H₀: $\sigma^2 = \sigma_0^2$ v.s. H₁: $\sigma^2 \neq \sigma_0^2 \sigma^2 > \sigma_0^2$, $\sigma^2 < \sigma_0^2$)

Two indep samples:

 $X_{11},\ldots,X_{1n_1} \stackrel{\text{iid}}{\sim} N(\mu_1,\sigma_1^2)$, and $X_{21},\ldots,X_{2n_2} \stackrel{\text{iid}}{\sim} N(\mu_2,\sigma_2^2)$

 4. Two sample tests for mean, assuming σ₁² = σ₂² H₀: μ₁ = μ₂ v.s. H₁: μ₁ ≠ μ₂ (or μ₁ > μ₂, μ₁ < μ₂)
 5. Two sample tests for mean, NOT assuming σ₁² = σ₂² H₀: μ₁ = μ₂ v.s. H₁: μ₁ ≠ μ₂ (or μ₁ > μ₂, μ₁ < μ₂)
 6. Two sample tests for variance, μ₁ and μ₂ unknown H₀: σ₁² = σ₂² v.s. H₁: σ₁² ≠ σ₂² (or σ₁² > σ₂², σ₁² < σ₂²)

One Sample Tests for Mean, Known σ^2

Upper One-Sided One Sample Tests for Mean, Known σ^2

The test statistic for testing H₀: $\mu = \mu_0$ against H₁: $\mu > \mu_0$ is

$$Z = rac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \sim {\it N}(0,1), \quad {
m under} \; {\sf H}_0: \; \mu = \mu_0.$$

To control P(Type I error) = P(rejecting $H_0 | H_0$ is true) at the significance level α , we reject H₀ when

$$z$$
-statistic = $rac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} > z_{lpha}$, where $\Phi(z_{lpha}) = 1 - lpha$.

39

P-value for Upper One-Sided Test

Let \overline{x} be the observed value of \overline{X} . The *P*-value for testing H₀: $\mu = \mu_0$ against H₁: $\mu > \mu_0$ is

$$P(Z > z) = 1 - \Phi(z)$$
, where $z = obs'd z-stat = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}$

or the blue shaded region below.

P-value for Upper One-Sided Test

Let \overline{x} be the observed value of \overline{X} . The *P*-value for testing H₀: $\mu = \mu_0$ against H₁: $\mu > \mu_0$ is

$$P(Z > z) = 1 - \Phi(z)$$
, where $z = obs'd z-stat = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}$

or the blue shaded region below.

- *Critical value approach*: compute the *z*-stat = $\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}$ and the critical value z_{α} , and reject H₀ if the *z*-stat > z_{α} .
- P-value approach: compute the P-value from the z-stat and reject H₀ when P-value < α</p>

- Critical value approach: compute the z-stat = x̄-μ₀/σ/√n and the critical value z_α, and reject H₀ if the z-stat > z_α.
- P-value approach: compute the P-value from the z-stat and reject H₀ when P-value < α</p>

- Critical value approach: compute the z-stat = x̄-μ₀/σ/√n and the critical value z_α, and reject H₀ if the z-stat > z_α.
- P-value approach: compute the P-value from the z-stat and reject H₀ when P-value < α</p>

- Critical value approach: compute the z-stat = x̄-μ₀/σ/√n and the critical value z_α, and reject H₀ if the z-stat > z_α.
- P-value approach: compute the P-value from the z-stat and reject H₀ when P-value < α</p>

P-value is the Smallest Significance Level to Reject H₀

The *P*-value is the smallest significance level α at which the H_0 can be rejected.

• e.g., the *P*-value for the dog study is 1.86×10^{-6} . The H₀ won't be rejected unless the significance level is as small as 1.86×10^{-6}

Because of this, the *P*-value is alternatively referred to as the *observed significance level* for the data.

Two-Sided One Sample Tests for Mean, Known σ^2 ,

For a two-sided test of H₀: $\mu = \mu_0$ against H₁: $\mu \neq \mu_0$, the test statistic remains to be

$$Z = rac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \sim {\it N}(0,1), \quad {
m under} \; {\sf H}_0: \; \mu = \mu_0.$$

To control P(Type I error) at the significance level α , reject H₀ when $|z\text{-stat}| = \left|\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}\right| > z_{\alpha/2}$, where $\Phi(z_{\alpha/2}) = 1 - \frac{\alpha}{2}$.

P-values for Two-Sided Hypothesis Tests

To test H₀: $\mu = \mu_0$ against **two-sided alternative** H_1 : $\mu \neq \mu_0$, the *P*-value is the two-tail probability

 $\mathrm{P}(|Z| > |z|) = 2(1 - \Phi(|z|)), \quad \text{where } z = \mathrm{obs'd} \ \mathrm{z\text{-stat}} = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}$

(the blue shaded region below).

P-values for Two-Sided Hypothesis Tests

To test H₀: $\mu = \mu_0$ against **two-sided alternative** H_1 : $\mu \neq \mu_0$, the *P*-value is the two-tail probability

 $\mathrm{P}(|Z| > |z|) = 2(1 - \Phi(|z|)), \quad \text{where } z = \mathrm{obs'd} \ \mathrm{z\text{-stat}} = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}$

(the blue shaded region below).

Observed if $|z\text{-stat}| < z_{\alpha/2}$ then 2-sided *P*-value > α

- Critical value approach: reject H_0 if |z-stat $| = \left| \frac{\bar{x} \mu_0}{\sigma / \sqrt{n}} \right| > z_{\alpha/2}$
- P-value approach: compute the 2-sided P-value from the z-statistic and reject H₀ when the P-value < α</p>

Observed if $|z\text{-stat}| < z_{\alpha/2}$ then 2-sided *P*-value > α

- Critical value approach: reject H_0 if |z-stat $| = \left| \frac{\bar{x} \mu_0}{\sigma / \sqrt{n}} \right| > z_{\alpha/2}$
- P-value approach: compute the 2-sided P-value from the z-statistic and reject H₀ when the P-value < α</p>

Observed

 $\begin{array}{ll} \text{if } |z\text{-stat}| < z_{\alpha/2} & \text{then} & 2\text{-sided } P\text{-value} > \alpha \\ \text{if } |z\text{-stat}| > z_{\alpha/2} & \text{then} & 2\text{-sided } P\text{-value} < \alpha \end{array}$

- Critical value approach: reject H₀ if |z-stat $| = \left| \frac{\bar{x} \mu_0}{\sigma / \sqrt{n}} \right| > z_{\alpha/2}$
- P-value approach: compute the 2-sided P-value from the z-statistic and reject H₀ when the P-value < α</p>

Observed

 $\begin{array}{ll} \text{if } |z\text{-stat}| < z_{\alpha/2} & \text{then} & 2\text{-sided } P\text{-value} > \alpha \\ \text{if } |z\text{-stat}| > z_{\alpha/2} & \text{then} & 2\text{-sided } P\text{-value} < \alpha \end{array}$

- Critical value approach: reject H₀ if |z-stat $| = \left| \frac{\bar{x} \mu_0}{\sigma / \sqrt{n}} \right| > z_{\alpha/2}$
- P-value approach: compute the 2-sided P-value from the z-statistic and reject H₀ when the P-value < α</p>

Three Types of Alternative Hypotheses:

- Upper one-sided: $H_1: \mu > \mu_0$
- ► Lower one-sided: H_1 : $\mu < \mu_0$
- Two-sided: H_1 : $\mu \neq \mu_0$

Lower One-Sided Tests

To test H₀: $\mu = \mu_0$ against the **lower one-sided** alternative H_1 : $\mu < \mu_0$, the test statistic remains to be

$$Z = rac{\overline{X}-\mu_0}{\sigma/\sqrt{n}} \sim N(0,1), \quad ext{under } \mathsf{H}_0: \ \mu = \mu_0.$$

To control P(Type I error) at the significance level α , we reject H₀ when *z*-statistic = $\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}} < -z_{\alpha}$.

P-values for Lower One-Sided Hypothesis Tests

To test H₀: $\mu = \mu_0$ v.s. **lower one-sided alternative** H_1 : $\mu < \mu_0$, the *P*-value is the lower tail probability

$$P(Z < z) = \Phi(z)$$
, where $z = obs'd z$ -stat $= \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}$

(blue shaded region below).

P-values for Lower One-Sided Hypothesis Tests

To test H₀: $\mu = \mu_0$ v.s. **lower one-sided alternative** H_1 : $\mu < \mu_0$, the *P*-value is the lower tail probability

$$P(Z < z) = \Phi(z)$$
, where $z = obs'd z$ -stat $= \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}$

(blue shaded region below).

Observed that

if z-statistic $> -z_{\alpha}$ then P-value $> \alpha$

- Critical value approach: reject H₀ if z-stat = $\frac{\bar{x} \mu_0}{\sigma/\sqrt{n}} < -z_{\alpha}$
- P-value approach: compute the lower one-sided P-value from the z-stat and reject H₀ when the P-value < α</p>

- Critical value approach: reject H₀ if z-stat = $\frac{\bar{x} \mu_0}{\sigma / \sqrt{n}} < -z_{\alpha}$
- P-value approach: compute the lower one-sided P-value from the z-stat and reject H₀ when the P-value < α</p>

Observed that

 $\begin{array}{ll} \text{if z-statistic} > -z_{\alpha} \quad \text{then} \quad P\text{-value} > \alpha \\ \text{if z-statistic} < -z_{\alpha} \quad \text{then} \quad P\text{-value} < \alpha \end{array}$

- Critical value approach: reject H₀ if z-stat = $\frac{\bar{x} \mu_0}{\sigma/\sqrt{n}} < -z_{\alpha}$
- P-value approach: compute the lower one-sided P-value from the z-stat and reject H₀ when the P-value < α</p>

Observed that

 $\begin{array}{ll} \text{if z-statistic} > -z_{\alpha} & \text{then} & P\text{-value} > \alpha \\ \text{if z-statistic} < -z_{\alpha} & \text{then} & P\text{-value} < \alpha \end{array}$

- Critical value approach: reject H₀ if z-stat = $\frac{\bar{x} \mu_0}{\sigma / \sqrt{n}} < -z_{\alpha}$
- P-value approach: compute the lower one-sided P-value from the z-stat and reject H₀ when the P-value < α</p>

We introduced both the critical value approach and the *P*-value approach for hypothesis testing. They are equivalent but we generally *recommend the P-value approach*, for two reasons.

- \blacktriangleright The rejection rule is simpler, just compare the P-value with the significance level α
- More importantly, we can simply report the *P*-value and let people choose their own significance level α = P(Type I error) and decide whether to reject or not to reject the H₀

Recap: 1- & 2-Sided Rejection Regions & *P*-values For H₀: $\mu = \mu_0$, *z*-stat = $\frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1)$, reject H₀ at level α if

$$\begin{array}{l} \blacktriangleright z\text{-stat} > z_{\alpha} \text{ for } \mathsf{H}_{1} \text{: } \mu > \mu_{0} \\ \blacktriangleright z\text{-stat} < -z_{\alpha} \text{ for } \mathsf{H}_{1} \text{: } \mu < \mu_{0} \\ \blacktriangleright |z\text{-stat}| > z_{\alpha/2} \text{ for } \mathsf{H}_{1} \text{: } \mu \neq \mu_{0} \end{array}$$

The *P*-values are as follows.

The bell-shape curve above is the standard normal curve.

Example w/ Data

Data: $X_1, \ldots, X_{100} \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2 = 6^2)$, w/ sample mean $\overline{x} = 9.5$. For H₀: $\mu = 8$,

$$\begin{aligned} z\text{-stat} &= \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} = \frac{9.5 - 8}{6/\sqrt{100}} = \frac{1.5}{0.6} = 2.5, \\ P\text{-value} &= \begin{cases} 1 - \Phi(2.5) \approx 0.0062 & \text{if } \mathsf{H}_1\text{: } \mu > 8\\ 2(1 - \Phi(2.5)) \approx 0.0124 & \text{if } \mathsf{H}_1\text{: } \mu \neq 8\\ \Phi(2.5) \approx 1 - 0.0062 = 0.9938 & \text{if } \mathsf{H}_1\text{: } \mu < 8 \end{cases} \end{aligned}$$

For H₁: $\mu > 8$ or $\mu \neq 8$, we reject H₀ since *P*-value < 5%. For H₁: $\mu < 8$, no reason to reject H₀: $\mu = 8$ since H₁: $\mu < 8$ is less plausible than H₀: $\mu = 8$ as $\overline{x} = 9.5 > \mu = 8$.

One Sample Tests for Mean, Unknown σ^2

One Sample Tests for Mean (Unknown σ^2) — Rejection Regions Data: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$

The test statistic for testing H₀: $\mu = \mu_0$ with unknown σ^2 is

$$T=rac{\overline{X}-\mu_0}{\sqrt{S^2/n}}, \hspace{1em} ext{where} \hspace{1em} S^2=rac{\sum_{i=1}^n(X_i-\overline{X})^2}{n-1}.$$

Under H₀: $\mu = \mu_0$, $T \sim t_{n-1}$, we reject H₀ at level α if

► t-stat >
$$t_{n-1,\alpha}$$
 for H₁: $\mu > \mu_0$
► t-stat < $-t_{n-1,\alpha}$ for H₁: $\mu < \mu_0$
► $|t\text{-stat}| > t_{n-1,\alpha/2}$ for H₁: $\mu \neq \mu_0$

where *t*-stat is the observed value of T

$$t$$
-stat $= rac{\overline{x} - \mu_0}{\sqrt{s^2/n}}$, in which $s^2 = rac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}$.

and $t_{n-1,\alpha}$ satisfies

$$P(T > t_{n-1,\alpha}) = \alpha$$
 for $T \sim t_{n-1}$.

One Sample Tests for Mean (Unknown σ^2) — *P*-values The *P*-values for testing H₀: $\mu = \mu_0$ with unknown σ^2 is

$$P\text{-value} = \begin{cases} P(T > t\text{-stat}) & \text{if } \mathsf{H}_1: \ \mu > \mu_0\\ P(|T| > |t\text{-stat}|) = 2P(T > |t\text{-stat}|) & \text{if } \mathsf{H}_1: \ \mu \neq \mu_0\\ P(T < t\text{-stat}) & \text{if } \mathsf{H}_1: \ \mu < \mu_0 \end{cases}$$

The bell-shape curve above is the *t*-curve with df = n - 1, not the normal curve. We reject H₀ when *P*-value $< \alpha$.

One Sample Test for Variance

One Sample Test for Variance — Test Statistic

Data: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ The test statistic for testing H₀: $\sigma^2 = \sigma_0^2$ with unknown μ is

$$V = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sigma_0^2} = \frac{(n-1)S^2}{\sigma_0^2}.$$

• What's the distribution of V under H₀: $\sigma^2 = \sigma_0^2$?

V ≥ 0
Large V far above 1 is evidence for H₁: σ² > σ₀²
V far below 1 is evidence for H₁: σ² < σ₀²
V being far from 1 is evidence for H₁: σ² ≠ σ₀²

One Sample Test for Variance — Test Statistic

Data: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ The test statistic for testing H₀: $\sigma^2 = \sigma_0^2$ with unknown μ is

$$V = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sigma_0^2} = \frac{(n-1)S^2}{\sigma_0^2}$$

- What's the distribution of V under H₀: σ² = σ₀²? V ~ χ²_{n-1}, a chi-squared distribution w/ n − 1 degrees of freedom
 V > 0
- Large V far above 1 is evidence for H₁: $\sigma^2 > \sigma_0^2$
- V far below 1 is evidence for H₁: $\sigma^2 < \sigma_0^2$
- V being far from 1 is evidence for H₁: $\sigma^2 \neq \sigma_0^2$

One Sample Test of Equal Variance — Rejection Region

We reject H_0 at level α if

$$\begin{array}{l} \bullet \quad v\text{-stat} > \chi^2_{n-1,\alpha} \ \text{for} \ \text{H}_1: \ \sigma^2 > \sigma^2_0 \\ \bullet \quad v\text{-stat} < \chi^2_{n-1,1-\alpha} \ \text{for} \ \text{H}_1: \ \sigma^2 < \sigma^2_0 \\ \bullet \quad v\text{-stat} > \chi^2_{n-1,\alpha/2} \ \text{or} \ v\text{-stat} < \chi^2_{n-1,1-\alpha/2} \ \text{or} \ \text{for} \ \text{H}_1: \ \sigma^2 \neq \sigma^2_0 \end{array}$$

where v-stat is the observed value of V

$$v\text{-stat} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{\sigma_0^2}.$$

and
$$\chi^2_{n-1,\alpha}$$
 satisfies

$$P(V > \chi^2_{n-1,\alpha}) = \alpha \quad \text{for } V \sim \chi^2_{n-1}.$$

$$H_1: \sigma^2 > \sigma_0^2 \qquad \qquad H_1: \sigma^2 < \sigma_0^2 \qquad \qquad H_1: \sigma^2 \neq \sigma_0^2 \qquad H_1$$

One Sample Test for Variance — *P*-value

The *P*-values for testing H₀: $\sigma^2 = \sigma_0^2$ with unknown μ is

$$P\text{-value} = \begin{cases} P(V > v\text{-stat}) & \text{if } \mathsf{H}_1: \ \sigma^2 > \sigma_0^2 \\ P(V < v\text{-stat}) & \text{if } \mathsf{H}_1: \ \sigma^2 < \sigma_0^2 \end{cases}$$

What's the two-sided *P*-value?

Two Sample Tests for Mean (Equal Variance)

Two Sample Test for Mean (Equal Variance) — Test Statistic

Consider two normal random samples of size n_1 and n_2 respectively

$$\begin{array}{ccc} X_{11}, X_{12}, \dots, X_{1n_1} & \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu_1, \sigma^2) \\ X_{21}, X_{22}, \dots, X_{2n_2} & \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu_2, \sigma^2) \end{array} \right\} \rightarrow \text{indep., same } \sigma^2.$$

For testing H₀: $\mu_1 = \mu_2$, the two-sample T-statistic is

$$T = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{(\frac{1}{n_1} + \frac{1}{n_2})S^2}}, \text{ where } S^2 = \frac{\sum_{i=1}^{n_1} (X_{1i} - \overline{X}_1)^2 + \sum_{j=1}^{n_2} (X_{2j} - \overline{X}_2)^2}{n_1 + n_2 - 2}$$

Under H₀: $\mu_1 = \mu_2$, $T \sim t_{n_1+n_2-2}$.

Two Sample Test for Mean (Equal Variance) — Rejection Region

We reject H₀: $\mu_1 = \mu_2$ at level α if

▶ *t*-stat >
$$t_{n_1+n_2-2,\alpha}$$
 for H₁: $\mu_1 > \mu_2$
▶ *t*-stat < $-t_{n_1+n_2-2,\alpha}$ for H₁: $\mu_1 < \mu_2$
▶ |*t*-stat| > $t_{n_1+n_2-2,\alpha/2}$ for H₁: $\mu_1 \neq \mu_2$

where t-stat is the observed value of T

$$t\text{-stat} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)s^2}}, \text{ in which } s^2 = \frac{\sum_{i=1}^{n_1} (x_{1i} - \overline{x}_1)^2 + \sum_{j=1}^{n_2} (x_{2j} - \overline{x}_2)}{n_1 + n_2 - 2}$$

and $t_{n_1+n_2-2,\alpha}$ satisfies

$$P(T > t_{n_1+n_2-2,\alpha}) = \alpha$$
 for $T \sim t_{n_1+n_2-2}$.

In L17, we show that a two-sided two-sample test for mean is equivalent to the GLR test.

Two Sample Test for Mean (Equal Variance) — *P*-Value

The bell curve above is the *t*-curve with $n_1 + n_2 - 2$ degrees of freedom.

Two Sample Tests for Mean (Unequal Variance)

Two Sample Test for Mean (Unequal Variance)

Without the equal variance assumption, by the indep of the two samples, we know

$$\mathsf{Var}(\overline{X}_1 - \overline{X}_2) = \mathsf{Var}(\overline{X}_1) + \mathsf{Var}(\overline{X}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

The two-sample *T*-statistic without the equal variance assumption is

$$T = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \quad \text{where} \quad \begin{array}{c} S_1^2 &= \frac{\sum_{i=1}^{n_1} (X_{1i} - X_1)^2}{n_1 - 1} \\ S_2^2 &= \frac{\sum_{j=1}^{n_2} (X_{2j} - \overline{X}_2)^2}{n_2 - 1} \end{array}$$

- Unfortunately, the *T*-statistic above does NOT have a *t*-distribution, even under H₀: μ₁ - μ₂
- Fortunately, it can be approximated by a *t*-distribution with a certain degrees of freedom.

See the next slide for the approximation

Approximate Distribution of the Two-Sample t-Statistic

Under H₀: $\mu_1 - \mu_2$, the two-sample *t*-statistic has an **approximate** t_k **distribution**, with the degrees of freedom *k* as follows

$$k = rac{(w_1 + w_2)^2}{w_1^2/(n_1 - 1) + w_2^2/(n_2 - 1)}, \quad ext{where} \quad egin{array}{c} w_1 = s_1^2/n_1, \ w_2 = s_2^2/n_2. \end{array}$$

The rejection regions and the calculation of the *P*-value are similar to the equal variance case, except for the degrees of freedom and thus is not repeated here.

Two Sample Tests of Equal Variance

Two Sample Tests of Equal Variance

Consider two normal random samples of size n_1 and n_2 respectively

$$\begin{array}{ccc} X_{11}, X_{12}, \dots, X_{1n_1} & \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu_1, \sigma_1^2) \\ X_{21}, X_{22}, \dots, X_{2n_2} & \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu_2, \sigma_2^2) \end{array} \right\} \rightarrow \text{indep}$$

For testing H₀: $\sigma_1^2 = \sigma_2^2$, the test-statistic is

$$F = \frac{S_1^2}{S_2^2} \quad \text{where} \quad \begin{cases} S_1^2 = \frac{\sum_{i=1}^{n_1} (X_{1i} - \overline{X}_1)^2}{n_1 - 1} \\ S_2^2 = \frac{\sum_{j=1}^{n_2} (X_{2j} - \overline{X}_2)^2}{n_2 - 1} \end{cases}$$

- What's the distribution of F under H₀: σ₁² = σ₂²?
 (n₁-1)S₁²/σ₁² ~ χ_{n₁-1}² and (n₂-1)S₂²/σ₂² ~ χ_{n₂-1}² are indep
 So F ~ F_{n₁-1,n₂-1} has an F-distribution w/ n₁ 1 and n₂ 1 degrees of freedom under H₀: σ₁² = σ₂²
 F ≥ 0
 F far above 1 is evidence for H₁: σ₁² > σ₂²
- *F* far below is evidence for H₁: $\sigma_1^2 < \sigma_2^2$
- F being far away from 1 is evidence for H₁: $\sigma^2 \neq \sigma_0^2$

37 / 39

Two-Sample Test for Variance — Rejection Region

We reject H_0 at level α if

where f-stat is the observed value of V

$$f$$
-stat = $rac{s_1^2}{s_2^2}$.

and $F_{n_1-1,n_2-1,\alpha}$ satisfies

$$\mathrm{P}(\mathsf{F} > \mathsf{F}_{\mathsf{n}_1-1,\mathsf{n}_2-1,lpha}) = lpha \quad ext{for } \mathsf{F} \sim \mathsf{F}_{\mathsf{n}_1-1,\mathsf{n}_2-1}.$$

Two-Sample Test for Equal Variance — *P*-value

The P-values for testing H_0: $\sigma_1^2 = \sigma_2^2$ with unknown μ is

$$P\text{-value} = \begin{cases} P(F > f\text{-stat}) & \text{if } H_1: \ \sigma_1^2 > \sigma_2^2 \\ P(F < f\text{-stat}) & \text{if } H_1: \ \sigma_1^2 < \sigma_2^2 \end{cases}$$

What's the two-sided *P*-value?

