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Introduction to Hypothesis Testing
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Can Dogs Smell Cancer?

Dogs Can Smell Cancer | Secret Life of Dogs | BBC

▶ https://youtu.be/e0UK6kkS0_M
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Case Study: Can Dogs Smell Bladder Cancer?

▶ A study1 by M. Willis et al. considered whether dogs could be
trained to detect if a person has bladder cancer by smelling
his/her urine.

▶ 6 dogs of varying breeds were trained to discriminate between
urine from patients with bladder cancer and urine from
control patients without it.

▶ The dogs were taught to indicate which among several
specimens was from the bladder cancer patient by lying beside
it.

▶ Once trained, the dogs’ ability to distinguish cancer patients
from controls was tested using urine samples from subjects
not previously encountered by the dogs.

1Olfactory detection of human bladder cancer by dogs: proof of principle
study, British Medical Journal, vol. 329, September 25, 2004.
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Case Study: Can Dogs Smell Bladder Cancer?

▶ The researchers blinded both dog handlers and experimental
observers to the identity of urine samples.

▶ Each of the 6 dogs was tested with 9 trials. In each trial, one
urine sample from a bladder cancer patient was randomly
placed among 6 control urine samples.

▶ Outcome: In the total of 54 trials with the 6 dogs, the dogs
made the correct selection 22 times.
▶ The dogs were correct for 22/54 ≈ 41% of the time,

▶ not fabulous
▶ If the dogs just guessed at random, they were only expected to

be correct for 1/7 ≈ 14% of the time
▶ Is this difference (41% v.s. 14%) surprising?
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Two Competing Hypotheses

Let p be the probability that a dog makes the correct selection on
a given trial.

▶ Null hypothesis (H0): p = 1/7
“There is nothing going on.”
The dogs just guessed at random.
▶ “null” means “nothing surprising is going on”.
▶ The dogs were just lucky to make more correct selections than

expected.

▶ Alternative hypothesis (HA or H1): p > 1/7
“There is something going on.”
Dogs can do better than random guessing.
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Weighing Evidence Using a Test Statistic

The next step of hypothesis testing is to weigh the evidence
— how likely the observed data could have occur if H0 was true?

▶ If the observed result was very unlikely to have occurred under
the H0, then the evidence raises more than a reasonable doubt
in our minds about the H0.

The test statistic is a summary of the data that best reflects the
evidence for or against the hypotheses.

▶ For this study, the test statistics we choose is

X = the total number of correct selections in the 54 trials

▶ A larger X value is a stronger evidence for H1 and against H0
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Distribution of the Test Statistic Under H0

For the “Dogs Smell Cancer” study, if H0 is true, then

X ∼ Bin(n = 54, p = 1/7) (Why?)

which implies

P(X = k) =
(

54
k

)(1
7

)k (6
7

)54−k
, k = 0, 1, 2, . . . , 54.

evidence for H0 evidence for H1

X = Number of Correct Selections in 54 Trials
0 10 20 30 40 50

Observed
X = 22

8 / 46



Test Procedure & Rejection Region
A test procedure is specified by the following:

1. a test statistic
2. a rejection region

The null hypothesis H0 will be rejected if and only if the test
statistic falls in the rejection region.

E.g., for the “Dogs Smell Cancer” study, as the strength of
evidence for the two hypotheses are reflected by the test statistic

X = # of correct guesses in the 54 trials.

A sensible rejection region is of the form

X ≥ k for some cutoff k.

and the test procedure is reject H0 if X ≥ k .

How to choose the cutoff value k for the rejection region?
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Type I and Type II Errors

In a hypothesis test, we make a decision about which of H0 or H1
might be true, but our decision might be incorrect.

Decision
fail to reject H0 reject H0

H0 true

✓ Type I Error

Truth H1 true

Type II Error ✓

▶ A Type I Error is rejecting the H0 when it is true.
▶ A Type II Error is failing to reject the H0 when it is false.
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Significance Level α = P(Type I error)

The significance level α of a test procedure is its probability to
reject the null hypothesis H0 when H0 is true.

α = P(Type I error) = P(reject H0 | H0 is true)

For the “Dog Smell Cancer” Study, if the test procedure is
rejecting H0 if X ≥ 15 , the significance level would be

α = P(Type I error) = P(H0 is rejected when H0 (p = 1/7) is true)
= P(X ≥ 15 when X ∼ Bin(n = 54, p = 1/7))

=
54∑

k=15

(
54
k

)(1
7

)k (6
7

)54−k
≈ 0.0073

If we reject H0 when X ≥ 15, there is a chance of 0.0073 to falsely
reject a correct H0 (Type I error).
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P(Type I Error) — Dogs-Smell-Cancer Study
For the test procedure: rejecting H0 when X ≥ k ,

P(Type I error) = P(H0 is rejected when H0 (p = 1/7) is true)
= P(X ≥ k when X ∼ Bin(n = 54, p = 1/7))

=
54∑

x=k

(
54
k

)(1
7

)x (6
7

)54−x
≈


0.076 if k = 12
0.038 if k = 13
0.017 if k = 14
0.007 if k = 15

X = Number of Correct Selections in 54 Trials
0 10 20 30 40 50 5412

critical
value = 12

Not Reject H0: p = 1 7Reject H0: p = 1 7

Bin(n=54, p=1/7)

P(Type I error) = 0.0761
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Setting Rejection Region Based on the Significance Level

For the dogs study,

P(Type I error) =


0.076 if rejecting H0 when X ≥ 12
0.038 if rejecting H0 when X ≥ 13
0.017 if rejecting H0 when X ≥ 14
0.007 if rejecting H0 when X ≥ 15

To determine the cutoff value k for the rejection region {X ≥ k},
we can first choose a significance level α , which is the maximal
P(Type I error) we can tolerate, and then choose the cutoff value
so that P(Type I error) does not exceeds the significance level α.

▶ If we can tolerate a α = 5% chance of Type I error, the test
procedure can be “rejecting H0 if X ≥ 13”

▶ If we can tolerate a α = 1% chance of Type I error, the test
procedure can be “rejecting H0 if X ≥ 15”
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Reducing Significance Level Would Increase P(Type II Error)

One might want to avoid a Type I error as much as possible by
setting a tiny significance level. However,

smaller significance level⇒ smaller P(Type I error)

⇒ less likely to reject H0

⇒ more likely to make Type II error
⇒ higher P(Type II error)

Suppose the sample size is fixed and a test statistic is chosen,
choosing a rejection region with a smaller P(Type I error) would
lead to a larger P(Type II error).
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P(Type II Error) & Power — Dogs-Smell-Cancer Study
Using the rejection region X ≥ 13, then

P(Type II error) = P(not Reject H0 | H0 is FALSE)

= P(X < 13 | p ̸= 1/7) =
12∑

x=0

(
54
x

)
px (1− p)54−x

Power = 1− P(Type II error).

Both P(Type II Error) and power are functions of p.

X = Number of Correct Selections in 54 Trials
0 10 20 30 40 5013

critical
value = 13

Not Reject H0: p = 1 7Reject H0: p = 1 7

Bin(n=54, p=1/7)

Bin(n=54, p=0.2)

Power = 0.274

P(Type II error)
= 0.726
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P(Type II Error) & Power — Dogs-Smell-Cancer Study
Using the rejection region X ≥ 13, then
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Power = 0.9954

P(Type II error)
= 0.0046

15 / 46



Failing to Reject H0 ̸= Accepting H0

In the conclusion of a hypothesis test,

▶ we only say “we reject the H0” or “we fail to reject the H0”
▶ we do NOT say “we accept the H1” or “we accept the H0”

▶ When we fail to reject the H0, we might have made a Type II
error

▶ P(Type II error) can be large as it’s not controlled.
▶ Recall so far we’ve only controlled P(Type I error) by the

significance level but haven’t taken any measure to control
P(Type II error)
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Conclusion of the Dogs Smell Bladder Cancer Study

▶ There is strong evidence that dogs have some ability to smell
bladder cancer,

▶ However, the dogs were only correct 40% of the time, too low
for practical application

▶ Another study (M. McCulloch et al., Integrative Cancer
Therapies, vol 5, p. 30, 2006.) considered whether dogs could
be trained to detect whether a person has lung cancer by
smelling the subjects’ breath. In one test with 83 Stage I lung
cancer samples, the dogs correctly identified the cancer
sample 81 times.
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Summary: Hypothesis Testing
1. We start with a null hypothesis (H0) that represents the

status quo.
2. We also have an alternative hypothesis (H1) that represents

our research question, i.e. what we’re testing for.
3. We then collect data and often summarize the data as a test

statistic, which is usually a measure gauging whether H0 or
HA are more plausible

4. We then determine the sampleing distribution of the test
statistic assuming H0 is true.
▶ If the test statistic is too far away from what the H0 predicts,

we then reject the H0 in favor of the H1.
5. We choose a significance level α = maximal P(Type I error)

that we can tolerate
6. we set the rejection region based on the significance level
7. we reject H0 if the test statistic falls in the rejection region,

and do not reject otherwise
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Likelihood Ratio Tests
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Simple & Composite Hypotheses

For X ∼ f (x | θ), a hypothesis is called a simple hypothesis if it
completely specifies the distribution f (x | θ) of X ; otherwise it is
called a composite hypothesis.

Ex. for X1, . . . , Xn
iid∼ f (x | θ)

▶ H0: θ = 1 v.s. H1: θ = 2 ⇒ H0 & H1 are both simple
▶ H0: θ = 1 v.s. H1: θ ̸= 1 ⇒ H0 is simple; H1 is composite
▶ H0: θ ≤ 1 v.s. H1: θ ≥ 1 ⇒ H0 & H1 are both composite

In some cases, hypotheses might not be about parameters.
e.g., observing i.i.d. pairs (Xi , Yi) from some joint distribution

▶ H0: X & Y are independent
▶ H1: X & Y are NOT independent

In this case, both H0 & H1 are composite
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Likelihood Ratio Tests (LRT)

If H0: θ = θ0 & H1: θ = θ1 are both simple, one can test H0 v.s.
H1 by comparing their likelihood.

▶ Higher values of likelihood of θ0 ↔ H0 seems more plausible
▶ Higher values of likelihood of θ1 ↔ H1 seems more plausible

A reasonable test statistic is the ratio of their likelihood

LR = Likelihood of θ0
Likelihood of θ1

.

We will need to set some threshold c:

▶ If LR < c then reject H0
▶ If LR > c then not to reject H1

(Or use ≤ c and > c, for discrete cases.)
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Example — Normal Likelihood Ratio Tests
Given X1, . . . , Xn are i.i.d. N(µ, σ2) with known σ2, recall the
likelihood of µ for normal is

L(µ) = (2πσ2)− n
2 exp

( −1
2σ2

∑n
i=1

(Xi − µ)2
)

= (2πσ2)− n
2 exp

( −1
2σ2

[∑n
i=1

(Xi − X )2 + n(X − µ)2
])

The LR statistic for testing
H0 : µ = µ0 v.s. H1 : µ = µ1 where µ0 < µ1.

is

LR = L(µ0)
L(µ1) =

exp( −n
2σ2 (X − µ0)2)

exp( −n
2σ2 (X − µ1)2)

= e
n

2σ2 [(X−µ1)2−(X−µ0)2]

= e
n

2σ2 (2X(µ0−µ1)+µ2
1−µ2

0)

As µ0 < µ1, LR < c if and only if X > some constant.
Using LR is equivalent to using X as the test statistic.
We would reject H0 if X > some critical value x0.
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As X ∼ N(µ0, σ2/n),

P(Type I error) = P(X > x0 | H0 : µ = µ0) = 1− Φ
(x0 − µ0

σ/
√

n

)
P(Type II error) = P(X < x0 | H1 : µ = µ1) = Φ

(x0 − µ1
σ/
√

n

)

Sample Mean X

µ0 µ1x0

critical
value x0

Not Reject H0: µ = µ0 Reject H0: µ = µ0

N(µ0, 
σ2

n
) N(µ1, 

σ2

n
)

P(Type II error) P(Type I error)
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Generalized Likelihood Ratio Tests
How to perform likelihood ratio test if H0 or H1 or both are
composite?

General framework: for Data ∼ f (· | θ), we test

H0: θ ∈ Ω0, H1: θ ∈ Ω1

where Ω0, Ω1 are sets of possible parameter values.

▶ Ex1: for N(µ, 1), testing H0: µ = 0 vs H1: µ ̸= 0
▶ θ = µ, Ω0 = {0}, Ω1 = (−∞, 0) ∪ (0,∞)

▶ Ex2: for N(µ, σ2), testing H0: µ = 0 vs H1: µ ̸= 0, σ2 is
unknown
▶ θ = (µ, σ2), Ω0 = {0} × (0,∞),

Ω1 =
(
(−∞, 0) ∪ (0,∞)

)
× (0,∞)

▶ Ex3: for Exponential(λ), testing H0: λ = 1 vs H1: λ ̸= 1
▶ θ = λ, Ω0 = {1}, Ω1 = (0, 1) ∪ (1,∞)
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Generalized Likelihood Ratio (GLR) Tests

One might intend to define the generalized likelihood ratio test
statistic to be

Λ∗ = maxθ∈Ω0 Lik(θ)
maxθ∈Ω1 Lik(θ)

← max likelihood under H0

← max likelihood under H1

However, it’s mathematically easier to calculate

Λ = maxθ∈Ω0 Lik(θ)
maxθ∈(Ω0∪Ω1) Lik(θ)

← max likelihood under H0

← max likelihood under H0 or H1

Using Λ∗ or Λ makes no difference:

▶ Usually we reject H0 only if Λ∗ is small
▶ Note Λ = min(Λ∗, 1). Λ ̸= Λ∗ only when Λ∗ > 1, and we

won’t reject H0 when Λ∗ > 1
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Example — Normal LRT (Two-Sided, σ2 Known)
For X1, . . . , Xn

iid∼ N(µ, σ2) with known σ2, we want to test

H0: µ = µ0, against H1: µ ̸= µ0.

Recall the likelihood of µ for normal is

L(µ) = (2πσ2)− n
2 exp(− 1

2σ2

∑n
i=1

(Xi − µ)2)

Under H0, the max L(µ) is simply L(µ0).
Under H0 or H1, the max L(µ) is L(X ). The GLR is thus

Λ = L(µ0)
L(X )

=
exp( −1

2σ2
∑n

i=1(Xi − µ0)2)
exp( −1

2σ2
∑n

i=1(Xi − X )2)
= exp

(
−n(X − µ0)2

2σ2

)

Rejecting H0 if Λ < k is equivalent to rejecting H0 if

|Z | =
∣∣∣∣∣X − µ0

σ/
√

n

∣∣∣∣∣ > some constant.

This is the usual two-sided z-test.
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Example — Normal LRT (Upper One-Sided, σ2 Known)
For X1, . . . , Xn

iid∼ N(µ, σ2) with known σ2, we want to test

H0: µ = µ0, against H1: µ > µ0.

Under H0, the max L(µ) is again L(µ0).
Under H0 or H1,

max
µ≥µ0

L(µ) =
{

L(X ) if X ≥ µ0

L(µ0) if X < µ0.

The GLR is thus

Λ =
{

exp(−n(X − µ0)2/2σ2) if X ≥ µ0

1 if X < µ0.

Rejecting H0 if Λ < k is equivalent to rejecting H0 if

Z = X − µ0
σ/
√

n > some constant.

This is the usual upper one-sided z-test.
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Example — Normal LRT (Lower One-Sided, σ2 Known)

Similarly, one can show that the GLR test for

H0: µ = µ0, against H1: µ < µ0.

is the usually lower one sided z-test that rejects H0 if

Z = X − µ0
σ/
√

n < some constant.
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Example — Normal LRT (Two-Sided, σ2 Unknown)
For X1, . . . , Xn

iid∼ N(µ, σ2) with unknown σ2, we want to test

H0: µ = µ0, against H1: µ ̸= µ0.

Recall the likelihood of (µ, σ2) for normal is

L(µ, σ2) = (2πσ2)− n
2 exp(− 1

2σ2

∑n
i=1

(Xi − µ)2)

Under H0, the likelihood L(µ, σ2) is maximized when

µ = µ0, σ2 = σ̂2
0 = 1

n
∑n

i=1
(Xi − µ0)2.

and thus

L(µ0, σ̂2
0) = (2πσ̂2

0)− n
2 exp(− 1

2σ̂2
0

nσ̂2
0︷ ︸︸ ︷∑n

i=1
(Xi − µ0)2)

= (2πσ̂2
0)− n

2 e−n/2.
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Under H0 or H1, the likelihood L(µ, σ2) is maximized when

µ = X , σ2 = σ̂2 = 1
n
∑n

i=1
(Xi − X )2.

and thus

L(X , σ̂2) = (2πσ̂2)− n
2 exp(− 1

2σ̂2

nσ̂2︷ ︸︸ ︷∑n
i=1

(Xi − X )2)

= (2πσ̂2)− n
2 e−n/2.

The GLR is thus

Λ = L(µ0, σ̂2
0)

L(X , σ̂2)
= (2πσ̂2

0)− n
2 e−n/2

(2πσ̂2)− n
2 e−n/2

= (σ̂2
0)− n

2

(σ̂2)− n
2

=
(∑n

i=1(Xi − µ0)2∑n
i=1(Xi − X )2

)−n/2

and consequently

Λ−2/n =
∑n

i=1(Xi − µ0)2∑n
i=1(Xi − X )2 =

∑n
i=1(Xi − X )2 + n(X − µ0)2∑n

i=1(Xi − X )2

= 1 + n(X − µ0)2∑n
i=1(Xi − X )2 .
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Λ−2/n = 1 + n(X − µ0)2∑n
i=1(Xi − X )2 = 1 + n(X − µ0)2

(n − 1)S2 = 1 + T 2

n − 1

where

S2 =
∑n

i=1(Xi − X )2

n − 1 is the sample variance, and

T = X − µ0√
S2/n

is the usual t-statistic

Rejecting H0 if Λ < k is equivalent to rejecting H0 if

|T | =

∣∣∣∣∣∣X − µ0√
S2/n

∣∣∣∣∣∣ > some constant.

The GLR test is equivalent to the usual two-sided t-test.
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Example — Binomial LRT
For X ∼ Bin(n, p), we want to test

H0: p = p0, against H1: p ̸= p0.

Recall the likelihood of p for Binomial is

L(p) =
(

n
x

)
px (1− p)n−x .

Under H0, the max L(p) is simply L(p0).
Under H0 or H1, L(p) is maximized when p is the MLE p̂ = X/n.
The GLR is thus

Λ = L(p0)
L(p̂) = pX

0 (1− p0)n−X

p̂X (1− p̂)n−X =
(np0

X

)X (n(1− p0)
n − X

)n−X

The GLR statistic is different from the typical one-sample z-stat
for proportions:

Z = p̂ − p0√
p0(1− p0)/n

.
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Example — Two Sample Problems
Consider two normal random samples of size n1 and n2 respectively

X11, X12, . . . , X1n1
iid∼ N(µ1, σ2)

X21, X22, . . . . . . , X2n2
iid∼ N(µ2, σ2)

}
→ indep., same σ2.

The parameters µ1, µ2, and σ2 are unknown.
We want to test whether the two means are equal

H0: µ1 = µ2 against H1: µ1 ̸= µ2.

using GLR as follows.

1. Find the MLE’s for µ1, µ2, and σ2 and the max likelihood
under H0∪ H1

2. Find the MLE’s for µ1, µ2, and σ2 and the max likelihood
under H0

3. Take the ratio of the two max likelihood
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The likelihood and log-likelihood of (µ1, µ2, σ2) based on the two
samples are

L(µ1, µ2, σ2) = (2πσ2)− n1+n2
2 e− 1

2σ2 [
∑n1

i=1(X1i −µ1)2+
∑n2

j=1(X2j −µ2)2]

ℓ(µ1, µ2, σ2) = −n1 + n2
2 log(2πσ2)

− 1
2σ2

(∑n1

i=1
(X1i − µ1)2 +

∑n2

j=1
(X2j − µ2)2

)
To solve for the MLE

0 = ∂ℓ
∂µ1

= 1
σ2
∑n1

i=1(X1i − µ1)
0 = ∂ℓ

∂µ2
= 1

σ2
∑n2

j=1(X2i − µ2)
0 = ∂ℓ

∂σ2 = −(n1+n2)
2σ2 + 1

2(σ2)2 [
∑n1

i=1(X1i − µ1)2 +
∑n2

j=1(X2j − µ2)2]

The first two equations immediately gives

µ̂1 = 1
n1

∑n1

i=1
X1i

def= X 1 and µ̂2 = 1
n2

∑n2

j=1
X2j

def= X 2.
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Plugging µ1 = X 1 and µ2 = X 2 into the 3rd equation, we get the
MLE for σ2

σ̂2 =
∑n1

i=1(X1i − X 1)2 +
∑n2

j=1(X2j − X 2)2

n1 + n2
.

Plugging the MLEs back to the Likelihood, we get

L(X 1, X 2, σ̂2) = (2πσ̂2)− n1+n2
2 exp

(
−1
2σ̂2 [

=(n1+n2)σ̂2︷ ︸︸ ︷
n1∑

i=1
(X1i−X 1)2+

n2∑
j=1

(X2j−X 2)2]
)

= (2πσ̂2)− n1+n2
2 e− n1+n2

2
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Under H0: µ1 = µ2, the problem reduces to the MLE and max
likelihood with n1 + n2 observations

X11, . . . , X1n1 , X21, . . . , X2n2 .

The MLE’s for µ and σ2 are respectively

µ̂ =
∑n1

i=1 X1i +
∑n2

j=1 X2j

n1 + n2
= n1X 1 + n2X 2

n1 + n2

def= X ,

σ̂2
0 =

∑n1
i=1(X1i−X )2+

∑n2
j=1(X2j−X )2

n1 + n2
.

and the max likelihood under H0 is

L(X , X , σ̂2) = (2πσ̂2)− n1+n2
2 exp

(
−1
2σ̂2

0

[ =(n1+n2)σ̂2
0︷ ︸︸ ︷

n1∑
i=1

(X1i−X )2+
n2∑

j=1
(X2j−X )2

])
= (2πσ̂2

0)− n1+n2
2 e− n1+n2

2

36 / 46



The GLR is thus

Λ = L(X , X , σ̂2
0)

L(X 1, X 2, σ̂2)
= (2πσ̂2

0)− n1+n2
2 e− n1+n2

2

(2πσ̂2)− n1+n2
2 e− n1+n2

2
=
(

σ̂2
0

σ̂2

)− n1+n2
2

and consequently

Λ− 2
n1+n2 = σ̂2

0
σ̂2 =

∑n1
i=1(X1i−X )2+

∑n2
j=1(X2j−X )2∑n1

i=1(X1i−X 1)2+
∑n2

j=1(X2j−X 2)2

Using the useful identity∑n1
i=1(X1i−X )2 =

∑n1
i=1(X1i−X 1)2 + n1(X 1 − X )2∑n2

j=1(X2j−X )2 =
∑n2

j=1(X2j−X 2)2 + n2(X 2 − X )2

we get

Λ− 2
n1+n2 = 1 + n1(X 1 − X )2 + n2(X 2 − X )2∑n1

i=1(X1i−X 1)2+
∑n2

j=1(X2j−X 2)2
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As

X 1 − X = X 1 −
n1X 1 + n2X 2

n1 + n2
= n2(X 1 − X 2)

n1 + n2
,

X 2 − X = n1(X 2 − X 1)
n1 + n2

.

we get

n1(X 1 − X )2 + n2(X 2 − X )2 = n1n2
n1 + n2

(X 1 − X 2)2

and thus
Λ− 2

n1+n2 = 1 + n1n2
n1 + n2

(X 1 − X 2)2

σ̂2

Rejecting H0 when GLR= Λ is small is equivalent to rejecting H0
when (X 1 − X 2)2/σ̂2 is large.
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Distribution of the Two-Sample T-Statistic (Equal σ2)
The two-sample T -statistic is defined to be

T = X 1 − X 2√
( 1

n1
+ 1

n2
)S2

,

where

S2 =
∑n1

i=1(X1i − X 1)2 +
∑n2

j=1(X2j − X 2)2

n1 + n2−2 = n1 + n2
n1 + n2 − 2 σ̂2,

which is proportional to (X 1 − X 2)2/σ̂2.

1
σ2

∑n1
i=1(X1i − X 1)2 ∼ χ2

n1−1
1

σ2

∑n2
j=1(X2j − X 2)2 ∼ χ2

n2−1

}
indep. ⇒ V = (n1+n2−2)S2

σ2 ∼ χ2
n1+n2−2.

Moreover, under H0: µ1 = µ2,

X 1 − X 2 ∼ N
(

0,
σ2

n1
+ σ2

n2

)
⇒ Z = X 1 − X 2√

( 1
n1

+ 1
n2

)σ2
∼ N(0, 1).

Putting everything together, we have

T = Z√
V /(n1 + n2 − 2)

∼ tn1+n2−2.
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Example — Exponential

Data: X1, . . . , Xn
iid∼ Exponential(λ).

Testing H0 : λ = λ0 vs H1 : λ ̸= λ0.

▶ likelihood:

L(λ) =
n∏

i=1
λe−Xi λ = λn exp(−λ

n∑
i=1

Xi) = λne−nλX

▶ Under H0, max L(λ) = L(λ0)
▶ Under H0 or H1, L(λ) is maximized when λ is the MLE

λ̂ = 1/X .
▶ The GLR is thus

Λ = L(λ0)
L(1/X )

= λn
0e−nλ0X

X−ne−n
= en(λ0X )ne−nλ0X .
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Null Distribution of GLR

To use the GLR as a test statistic for testing H0 vs H1. . .

▶ Λ ≤ 1 always
▶ If Λ ≈ 1, data are consistent with H0

▶ no reason to reject H0

▶ Λ≪ 1 is evidence for H1

How small does Λ need to be to reject H0? Our goal:

P(Λ < (the threshold we choose) | H0 is true) ≈ α

We need to know the (approximate) null distribution of Λ
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Null Distribution of GLR
Under some regularity conditions, the large sample distribution of
GLR is

−2 log(Λ) ≈ χ2
d − d0 , where

{
d = dimension of Ω0 ∪ Ω1

d0 = dimension of Ω0

Part of the conditions:
Ω0 is interior to Ω0 ∪ Ω1, not at the boundary

▶ Data: X1, . . . , Xn
iid∼ N(µ, 1)

testing H0 : µ = 0 vs H1 : µ ̸= 0 . . . . . . . . . . . . . . . . . . . . . . . valid
▶ Data: X1, . . . , Xn

iid∼ N(µ, σ2) where σ2 is unknown
testing H0 : µ = 0 vs H1 : µ ̸= 0 . . . . . . . . . . . . . . . . . . . . . . . valid

▶ Data: X1, . . . , Xn
iid∼ Exponential(λ)

testing H0 : λ = 1 vs H1 : λ ̸= 1 . . . . . . . . . . . . . . . . . . . . . . . valid
▶ Data: X1, . . . , Xn

iid∼ N(µ, σ2) where σ2 is known
testing H0 : µ = 0 vs H1 : µ > 0 . . . . . . . . . . . . . . . . . NOT valid

42 / 46



How to Determine d & d0?

▶ Data: X1, . . . , Xn
iid∼ N(µ, σ2), with unknown µ & known σ2

test H0 : µ = 0 vs H1 : µ ̸= 0
⇒ d0 = 0, d = 1

▶ Data: X1, . . . , Xn
iid∼ N(µ, σ2)with µ & σ2 unknown,

test H0 : µ = 0 vs H1 : µ ̸= 0
⇒ d0 = 1, d = 2

▶ Data: X1, . . . , Xn
iid∼ N(µ, σ2) with µ & σ2 unknown,

test H0 : (µ, σ2) = (0, 1) vs H1 : (µ, σ2) ̸= (0, 1)
⇒ d0 = 0, d = 2

▶ Data: X1, . . . , Xn
iid∼ Exponential(λ),

test H0 : λ = 1 vs H1 : λ ̸= 1
⇒ d0 = 0, d = 1
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Back to the GLR for Exponential

Data: X1, . . . , Xn
iid∼ Exponential(λ),

testing H0 : λ = λ0 vs H1 : λ ̸= λ0.

Recall the GLR is
Λ = en(λ0X )ne−nλ0X

Then
−2 log(Λ) = 2n log(λ0X )− 2n(λ0X − 1) ∼ χ2

1.

At the α = 0.05 significance level, we reject H0: λ = λ0 if

−2 log(Λ) > 3.84.
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Back to Normal LRT w/ Known σ2

For X1, . . . , Xn
iid∼ N(µ, σ2) with known σ2, we want to test

H0: µ = µ0, against H1: µ ̸= µ0.

Recall the GLR is

Λ = L(µ0)
L(X )

=
exp( −1

2σ2
∑n

i=1(Xi − µ0)2)
exp( −1

2σ2
∑n

i=1(Xi − X )2)
= exp

(
−n(X − µ0)2

2σ2

)

Observe
−2 log(Λ) = n(X − µ0)2

σ2

Under H0,

X ∼ N(µ0, σ2/n) ⇒
√

n(X − µ0)
σ

∼ N(0, 1) ⇒ n(X − µ0)2

σ2 ∼ χ2
1

In this special case, the asymptotic approximation is the exact
distrib.
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Back to Normal LRT w/ Unknown σ2

For X1, . . . , Xn
iid∼ N(µ, σ2) w/ unknown σ2,

testing H0: µ = µ0, against H1: µ ̸= µ0. Recall the GLR is

Λ =
(

1 + n(X − µ0)2∑n
i=1(Xi − X )2

)−n/2

and consequently

−2 log Λ = n log
(

1 + n(X − µ0)2∑n
i=1(Xi − X )2

)
= n log

(
1 + (X − µ0)2∑n

i=1(Xi − X )2/n

)
.

Under H0, X → µ0 and
∑n

i=1(Xi − X )2/n→ σ2 as n→∞, we
know

(X − µ0)2∑n
i=1(Xi − X )2/n

→ 0 in prob. as n→∞.

and log(1 + x) ≈ x when x ≈ 0, we have

−2 log Λ ≈ n · (X − µ0)2∑n
i=1(Xi − X )2/n

→ n(X − µ0)2

σ2 ∼ χ2
1.
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