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Example — Coin Tossing

Suppose there is a jar of hundreds of coins with various
probabilities to land heads.

We randomly choose a coin from the jar, flip it n times and
observe X heads.

Can you infer about the probability 6 to land heads for the chosen
coin?

Model:

X | © ~ Bin(n, ©)

© ~ some distribution of coin probabilities
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Example — Coin Tossing (Discrete Prior)
Suppose the jar only contains 2 types of coins.

» 75% of the coins are fair with a prob. of © = 0.5 to land
heads;

» 25% of the coins are biased with a prob. of © = 0.8 to land
heads.

In other words, the distribution of © is
P(© =0.5)=0.75, P(©=0.8) =0.25.
The joint PMF of X and © is

- ~J(0)(0.5)" x 0.75 if 6 =0.5
Fx,0) = fxjox [ 0)fe (0) = {(;)(0.8)X(o.2)” x0.25 if § =08
The marginal PMF of X is
()= S f(x,0)=0.75 C) (0.5)"-+0.25 (g) (0.8)%(0.2)"~.

6={0.5,0.75}
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Given X = x, the conditional distribution of © would be

0.75(0.5)" 005
fa1 ) = [x:0) _ ] 0.75(0.5)" +0.25(0.8)%(0.2)"—* '
oix (¥ x) = f(x) 0.25(0.8)(0.2)"~~ o os

0.75(0.5)" + 0.25(0.8)%(0.2)"—*

For n = 10 tosses,

0991 ifx=4
0965 ifx=5
0875 ifx=6
P(© =05|x) = fox(0.5|x)=1{0636 ifx=7
0304 ifx=8
0.0984 if x =9
0.0266 if x =10
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Example — Coin Tossing (Continuous Prior)

Suppose the coins in the jar have probabilities © ~ Uniform(0,1)
to land heads with the PDF

fo(f) =1, for0<6<1.
The joint distribution of X and © is
n —X
f(x,0) = fxjo(x | 0)fo(0) = <X> (1 -9)"

The marginal PMF of X is
=Beta(x+1,n—x+1)

0= [ e ()/ex _gyrdo

. (n) M(x+1)F(n—x+1)

M(n+2)
s n! xi(n—x)! 1

xI(n—=x)! (n+1)!  n+1
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where the step (x) is from the definition of the Beta function
Beta(u, v):

M(u)r(v)

1
Beta(u, v) = / x“71(1 = x)""tdx, and it's equal to fotv)
0 u-+v

and the step (x*) comes from that '(x + 1) = x! if x > 0 is an
integer.

The conditional PDF of © given X = x would be

forx (0| x) = fg(f)) = (n+ 1)X!(n”ix)!m(1 —g)nx

_ r(n+ 2) X n—x

B F(X+1)F(n—x+1)9 (1-6)"" 0<0=<1
Thus

(©] X =x) ~Beta(x +1,n—x+1).
This is called the posterior distribution of ©.
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Prior v.s. Posterior Distribution

Posterior

Prior ~ Uniform(0,1)
Posterior, n=10, x=7
Posterior, n=100, x=70

1.0
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Bayesian Statistics

So far, we have been trying to infer about the unknown
parameter(s) © of a known distribution f(x | ©) from i.i.d.
observations Xi, Xa,..., X, ~ f(x | ©).

» In frequentiest statistics, the parameter(s) © are regarded as
fixed number(s), not random.

» In Bayesian statistics, the underlying parameter(s) © are
treated as a random variable, distributed according to a prior
distribution © ~ g(0)

The prior distribution may be interpreted as reflecting our
subjective beliefs or our level of uncertainty about the parameter,
or may reflect information gathered from past experience.
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Bayesian Statistics — Posterior Distribution

Upon observing X1, Xa,..., X, ~ f(x | ©), we calculate the
conditional distribution of © given Xi, X3, ..., X, called the
posterior distribution.

The posterior distribution is our updated belief on the possible
value of ©, after observing X1, Xa,..., X, ~ f(x | ©).
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Beta-Binomial Bayes Estimation

For Binomial observation X ~ Bin(n,®), a commonly used prior
for © is the Beta(a, () distribution with the PDF

_a+8) pa1p7 g1
f@(e)_r(a)r(ﬁ)g (1-6)°"1 for0<h<1.
with mean and variance
__a o B 1
E[e]_omLB’ Var(e)_aJrﬁ a+pf a+p+1

The Beta family include a great variety of distributions on [0, 1]
that can reflect our belief on the possible range of ©.
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How to Choose a Beta Prior (1)
If you believe that © = 6y, choose « and [ that

= 0p.
a—+p 0

» choose large values of o and 5 with %,8 = 0 if you believe
O is close to 6

«@
» choose small values of « and 5 with —— = 6 if you are
a+p

not sure whether © is close to fg

8- 20
— Beta(60,40) — Beta(1,20)
—— Beta(6,4) 15 — Beta(1,5)
w 87 — Beta32) w — Beta(1,2)
[a) [a)
o o
o] oo}
5] @
[22] m
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How to Choose a Beta Prior (2)

If you have no clue what © is, you can choose

» Beta(aw = 1,3 = 1) = Uniform[0,1], an uninformative prior
» Beta(aw = 0.5,6 = 0.5)

3.0 — Beta(1,1)
—— Beta(0.5,0.5)
W 2.5
a)
o204
S
& 1.5
1.0

0.0 0.2 0.4 0.6 0.8 1.0
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Beta-Binomial Posterior (1)

If © has the prior Beta(a, f3)
_Ma+8) ja—1/q _ gya-1
fo(0) = r(a)r(5)9 (1-6)°"1, foro<h<1.

The joint distribution of X and © is

f(x,0) = fxje(x | 0)fo(0)
e
_ h(X)9x+a—1(1 - e)n—x—l-ﬁ—l

where h(x) = () l_r((aa;rré)) only depends on x (and «, 3) but not 6.

The marginal PMF of X is

=Beta(x+a,n—x+4)

px(x) = /01 f(x,0)dd = h(x) /01 9X+0‘—1(1 _ g)n—x—i—ﬁ—ldg

B M(x+a)l(n—x+pB)
= h(x) Mn+a+p5)
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Beta-Binomial Posterior (2)

The conditional PDF of © given X = x would be

fox(01x) = ffix(f)) - Tx i(g)?(i 2 A (i

Thus the posterior distribution of © given X = x is

(© | X =x) ~Beta(x +a,n—x+ ).
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Posterior Mean & Posterior Mode

The posterior gives a distribution of ©.
What if we want a “point estimate”,
i.e. a single value that is a good estimate for 67

Two Common Options:

» Posterior mean:
9 = E(9 ‘ )(]_7 e ,Xn) <— E(-) with respect to posterior of (& | X1, ..., Xn)
» Posterior mode:

6 = argmax forx (0 | X1,..., Xn)
0
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Posterior Mean & Mode for Beta-Binomial Bayes
For the Beta(a, ) distribution,

o a—1
Mean = ——, Mode = ——,
a+f a+p—-2

As the posterior distribution of © given X is
(© ] X) ~Beta(X + o, n — X + ).

: X+a : X+a—-1
posterior mean = ————,  posterior mode =

n+a+p’ n+a+p3-2

» The posterior mean is like with MLE for © but addinga: more
heads and 8 more tails to the outcome.
» The posterior mode is like with MLE for © but adding oo — 1
more heads and 5 — 1 more tails to the outcome.
» For Uniform[0,1] prior (o = 5 = 1),
+1

posterior mean = ———,  posterior mode =

n+2

n
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Note the posterior mean is a weighted average of the MLE and the
prior mean.

. X+a
posterior mean = ——
n+a+f
n X a+p o}
T htath . Thra+B a+p
~~ ——
=MLE =prior mean

Likewise, the posterior mode is a weighted average of the MLE and
the prior mode.

) X+a-1
posterior mode = ————
n+a+p-—2
B n X n a+pB—-2 a—1
S n+a+pB-2 _n n+a+p8—-2 a+p5-2
~~ —_——
=MLE =prior mode

For both of them, the greater the sample size n, the more weights
go to the MLE.

Both are = X/n = MLE for 6 when n is large = prior has little

effect on Bayesian estimate when the sample size n is large
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Gamma-Exponential Bayes

Data: i.i.d. Xi,..., X, | A Exponential(A) with joint PDF

FA (XL oy xn | A= A) = Me AL X = \rg=mX

Prior for A'is A ~ Gamma(a, b) with PDF

ba
(X)) = @Aafle*“, A>0

The joint distribution of Xi,..., X, and A is

f(le <5 Xy >‘) = fX|/\(X17 <oy Xn ’ )\)f/\(A)

-~ b2
— )\ne—n)\X . )\a—le—bA

r(a)

_ h(a, b))\n-l—a—le—(b—i-nY))\

where h(a, b) = %.
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As the joint PDF is proportional to
F(X1y ey Xny A) X /\”Jra*le*(b*"x)’\,

and the marginal PDF of (Xi,...,X,)
fX(xl,...,x,,):/f(xl,...,x,,,)\)d)\

does not depend on A, the posterior must be proportional to

f(x, A a1l —(btnX
fux(r | x) = o) At et

= the posterior distribution is Gamma(a + n, b + nX)
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Posterior Mean & Mode for Gamma-Exponential Bayes

For the Gamma(a, b) distribution

-1
Mean = %, Mode = bT,
As the posterior distribution of A given (Xi,...,X,) is
Gamma(a + n, b + nX)

+n _ a+n—1
—, posterior mode = ————.
b+nX b+nX

posterior mean =

Note both of them are ~ 1/X = MLE for A when n is large.
= the prior has little influence on the point estimate when the
sample size n is large.
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Credible Intervals

A (1 — «) credible interval (L, U) (calculated as a function of
Xi,...,Xp) contains (1 — «) posterior probability:

PL<O<U|Xy,.... X)) =1—«a

There are various ways to construct a credible interval.

Two common options:

» Equal tailed interval
» High posterior density (HPD) interval

If the posterior distribution is symmetric & unimodal, the two
options are equivalent
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Equal-Tailed Credible Intervals

The 1 — « equal-tailed credible interval (L,

where Fposterior is the CDF for the posterior distribution of ©.

posterior density

o
T

o
w
|

o
(N

©
=
|

o
o

U) for © is
(0%

P(@ < L) = Fposterior(L) = 57

P(@ > U) =1- Fposterior(U) = %

| area=a/2

(1-a) credible interval
|

area=a/2
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High Posterior Density (HPD) Interval

The our interval is given by

I={t: fox,.x,(t| x1,...,xn) > c}

where the density cutoff ¢ is chosen so that prob. =1 — «

0.4+ (1-a) credible interval
Py I |
£ 0.3+
©
S 0.2-{find all t with L
E density > c area=1-a
8 0.1- v

0.0 , :

Note that an HPD interval / might not be a single interval!

(In the example above, if « is large, then [ splits into two intervals)
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Equal-Tailed Credible Interval for Gamma-Exponential

Model:
{/\ ~ Gamma(a, b)

Xi,...,Xn | NS Exponential(\)
Posterior:

AN Xi,..., X, ~ Gamma(a+ n, b+ nX)

Equal-tailed credible interval: (L, U)

«
PO <) = FGamma(a—i—n,b—&-nY)(L) = 2

a

P(@>U)=1- FGamma(a+n,b+nY)(U) - 2"

where F ) is the CDF of the posterior.

amma(a+n,b+ny
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A fact about Gamma distributions:

Gamma(a, b) ~ N(%, iz) for large a.

Thus,

Gamma(a+n,b+nX)zN<a+n atn )

b+ nX’ (b+ nX)2
Therefore, the (1 — «) credible interval is approximately equal to:

a-+n va+n

Nb—i—ny Za/2

b +nX
If nis large while a & b are constant. ..

which is the confidence interval based on the asymp. normality of
the MLE.
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