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Example — Coin Tossing

Suppose there is a jar of hundreds of coins with various
probabilities to land heads.

We randomly choose a coin from the jar, flip it n times and
observe X heads.

Can you infer about the probability θ to land heads for the chosen
coin?

Model:

X | Θ ∼ Bin(n, Θ)
Θ ∼ some distribution of coin probabilities
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Example — Coin Tossing (Discrete Prior)
Suppose the jar only contains 2 types of coins.
▶ 75% of the coins are fair with a prob. of Θ = 0.5 to land

heads;
▶ 25% of the coins are biased with a prob. of Θ = 0.8 to land

heads.

In other words, the distribution of Θ is

P(Θ = 0.5) = 0.75, P(Θ = 0.8) = 0.25.

The joint PMF of X and Θ is

f (x , θ) = fX |Θ(x | θ)fΘ(θ) =
{(n

x
)
(0.5)n × 0.75 if θ = 0.5(n

x
)
(0.8)x (0.2)n−x × 0.25 if θ = 0.8

The marginal PMF of X is

fX (x) =
∑

θ={0.5,0.75}
f (x , θ) = 0.75

(
n
x

)
(0.5)n+0.25

(
n
x

)
(0.8)x (0.2)n−x .
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Given X = x , the conditional distribution of Θ would be

fΘ|X (θ | x) = f (x , θ)
fX (x) =


0.75(0.5)n

0.75(0.5)n + 0.25(0.8)x (0.2)n−x if θ = 0.5

0.25(0.8)x (0.2)n−x

0.75(0.5)n + 0.25(0.8)x (0.2)n−x if θ = 0.8

For n = 10 tosses,

P(Θ = 0.5 | x) = fΘ|X (0.5 | x) =



0.991 if x = 4
0.965 if x = 5
0.875 if x = 6
0.636 if x = 7
0.304 if x = 8
0.0984 if x = 9
0.0266 if x = 10
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Example — Coin Tossing (Continuous Prior)
Suppose the coins in the jar have probabilities Θ ∼ Uniform(0,1)
to land heads with the PDF

fΘ(θ) = 1, for 0 ≤ θ ≤ 1.

The joint distribution of X and Θ is

f (x , θ) = fX |Θ(x | θ)fΘ(θ) =
(

n
x

)
θx (1− θ)n−x · 1.

The marginal PMF of X is

fX (x) =
∫ 1

0
f (x , θ)dθ =

(
n
x

) =Beta(x+1,n−x+1)︷ ︸︸ ︷∫ 1

0
θx (1− θ)n−xdθ

=∗
(

n
x

)
Γ(x + 1)Γ(n − x + 1)

Γ(n + 2)

=∗∗ n!
x !(n − x)!

x !(n − x)!
(n + 1)! = 1

n + 1
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where the step (∗) is from the definition of the Beta function
Beta(u, v):

Beta(u, v) =
∫ 1

0
xu−1(1− x)v−1dx , and it’s equal to Γ(u)Γ(v)

Γ(u + v) .

and the step (∗∗) comes from that Γ(x + 1) = x ! if x ≥ 0 is an
integer.

The conditional PDF of Θ given X = x would be

fΘ|X (θ | x) = f (x , θ)
fX (x) = (n + 1) n!

x !(n − x)!θx (1− θ)n−x

= Γ(n + 2)
Γ(x + 1)Γ(n − x + 1)θx (1− θ)n−x , 0 ≤ θ ≤ 1.

Thus
(Θ | X = x) ∼ Beta(x + 1, n − x + 1).

This is called the posterior distribution of Θ.
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Prior v.s. Posterior Distribution
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Bayesian Statistics

So far, we have been trying to infer about the unknown
parameter(s) Θ of a known distribution f (x | Θ) from i.i.d.
observations X1, X2, . . . , Xn ∼ f (x | Θ).

▶ In frequentiest statistics, the parameter(s) Θ are regarded as
fixed number(s), not random.

▶ In Bayesian statistics, the underlying parameter(s) Θ are
treated as a random variable, distributed according to a prior
distribution Θ ∼ g(θ)

The prior distribution may be interpreted as reflecting our
subjective beliefs or our level of uncertainty about the parameter,
or may reflect information gathered from past experience.
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Bayesian Statistics — Posterior Distribution

Upon observing X1, X2, . . . , Xn ∼ f (x | Θ), we calculate the
conditional distribution of Θ given X1, X2, . . . , Xn, called the
posterior distribution.

The posterior distribution is our updated belief on the possible
value of Θ, after observing X1, X2, . . . , Xn ∼ f (x | Θ).
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Beta-Binomial Bayes Estimation

For Binomial observation X ∼ Bin(n, Θ), a commonly used prior
for Θ is the Beta(α, β) distribution with the PDF

fΘ(θ) = Γ(α + β)
Γ(α)Γ(β)θα−1(1− θ)β−1, for 0 ≤ θ ≤ 1.

with mean and variance

E[Θ] = α

α + β
, Var(Θ) = α

α + β
· β

α + β
· 1

α + β + 1

The Beta family include a great variety of distributions on [0, 1]
that can reflect our belief on the possible range of Θ.
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How to Choose a Beta Prior (1)
If you believe that Θ ≈ θ0, choose α and β that α

α + β
= θ0.

▶ choose large values of α and β with α

α + β
= θ0 if you believe

Θ is close to θ0
▶ choose small values of α and β with α

α + β
= θ0 if you are

not sure whether Θ is close to θ0
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How to Choose a Beta Prior (2)

If you have no clue what Θ is, you can choose

▶ Beta(α = 1, β = 1) = Uniform[0,1], an uninformative prior
▶ Beta(α = 0.5, β = 0.5)
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Beta-Binomial Posterior (1)
If Θ has the prior Beta(α, β)

fΘ(θ) = Γ(α + β)
Γ(α)Γ(β)θα−1(1− θ)β−1, for 0 ≤ θ ≤ 1.

The joint distribution of X and Θ is
f (x , θ) = fX |Θ(x | θ)fΘ(θ)

=
(

n
x

)
θx (1− θ)n−x · Γ(α + β)

Γ(α)Γ(β)θα−1(1− θ)β−1

= h(x)θx+α−1(1− θ)n−x+β−1

where h(x) =
(n

x
) Γ(α+β)

Γ(α)Γ(β) only depends on x (and α, β) but not θ.
The marginal PMF of X is

pX (x) =
∫ 1

0
f (x , θ)dθ = h(x)

=Beta(x+α,n−x+β)︷ ︸︸ ︷∫ 1

0
θx+α−1(1− θ)n−x+β−1dθ

= h(x)Γ(x + α)Γ(n − x + β)
Γ(n + α + β)
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Beta-Binomial Posterior (2)

The conditional PDF of Θ given X = x would be

fΘ|X (θ | x) = f (x , θ)
fX (x) = Γ(n + α + β)

Γ(x + α)Γ(n − x + β)θx+α−1(1− θ)n−x+β−1

Thus the posterior distribution of Θ given X = x is

(Θ | X = x) ∼ Beta(x + α, n − x + β).
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Posterior Mean & Posterior Mode

The posterior gives a distribution of Θ.
What if we want a “point estimate”,
i.e. a single value that is a good estimate for θ?

Two Common Options:

▶ Posterior mean:

θ̂ = E(θ | X1, . . . , Xn) ← E(·) with respect to posterior of (Θ | X1, . . . , Xn)

▶ Posterior mode:

θ̂ = argmax
θ

fΘ|X (θ | X1, . . . , Xn)
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Posterior Mean & Mode for Beta-Binomial Bayes
For the Beta(α, β) distribution,

Mean = α

α + β
, Mode = α− 1

α + β − 2 ,

As the posterior distribution of Θ given X is

(Θ | X ) ∼ Beta(X + α, n − X + β).

posterior mean = X + α

n + α + β
, posterior mode = X + α− 1

n + α + β − 2 .

▶ The posterior mean is like with MLE for Θ but addingα more
heads and β more tails to the outcome.

▶ The posterior mode is like with MLE for Θ but adding α− 1
more heads and β − 1 more tails to the outcome.

▶ For Uniform[0,1] prior (α = β = 1),

posterior mean = X + 1
n + 2 , posterior mode = X

n = MLE.
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Note the posterior mean is a weighted average of the MLE and the
prior mean.

posterior mean = X + α

n + α + β

= n
n + α + β

· X
n︸︷︷︸

=MLE

+ α + β

n + α + β
· α

α + β︸ ︷︷ ︸
=prior mean

Likewise, the posterior mode is a weighted average of the MLE and
the prior mode.
posterior mode = X + α− 1

n + α + β − 2

= n
n + α + β − 2 ·

X
n︸︷︷︸

=MLE

+ α + β − 2
n + α + β − 2 ·

α− 1
α + β − 2︸ ︷︷ ︸
=prior mode

For both of them, the greater the sample size n, the more weights
go to the MLE.
Both are ≈ X/n = MLE for θ when n is large ⇒ prior has little
effect on Bayesian estimate when the sample size n is large
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Gamma-Exponential Bayes
Data: i.i.d. X1, . . . , Xn | λ

iid∼ Exponential(Λ) with joint PDF

fX |Λ(x1, . . . , xn | Λ = λ) = λne−λ
∑n

i=1 Xi = λne−nλX

Prior for Λ is Λ ∼ Gamma(a, b) with PDF

fΛ(λ) = ba

Γ(a)λa−1e−bλ, λ ≥ 0

The joint distribution of X1, . . . , Xn and Λ is

f (x1, . . . , xn, λ) = fX |Λ(x1, . . . , xn | λ)fΛ(λ)

= λne−nλX · ba

Γ(a)λa−1e−bλ

= h(a, b)λn+a−1e−(b+nX)λ

where h(a, b) = ba

Γ(a) .
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As the joint PDF is proportional to

f (x1, . . . , xn, λ) ∝ λn+a−1e−(b+nX)λ,

and the marginal PDF of (X1, . . . , Xn)

fX (x1, . . . , xn) =
∫

f (x1, . . . , xn, λ)dλ

does not depend on λ, the posterior must be proportional to

fΛ|X (λ | x) = f (x , λ)
fX (x) ∝ λn+a−1e−(b+nX)λ,

⇒ the posterior distribution is Gamma(a + n, b + nX )
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Posterior Mean & Mode for Gamma-Exponential Bayes

For the Gamma(a, b) distribution

Mean = a
b , Mode = b − 1

b ,

As the posterior distribution of Λ given (X1, . . . , Xn) is
Gamma(a + n, b + nX )

posterior mean = a + n
b + nX

, posterior mode = a + n − 1
b + nX

.

Note both of them are ≈ 1/X = MLE for Λ when n is large.
⇒ the prior has little influence on the point estimate when the
sample size n is large.
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Credible Intervals

A (1− α) credible interval (L, U) (calculated as a function of
X1, . . . , Xn) contains (1− α) posterior probability:

P(L ≤ Θ ≤ U | X1, . . . , Xn) = 1− α

There are various ways to construct a credible interval.

Two common options:

▶ Equal tailed interval
▶ High posterior density (HPD) interval

If the posterior distribution is symmetric & unimodal, the two
options are equivalent
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Equal-Tailed Credible Intervals
The 1− α equal-tailed credible interval (L, U) for Θ is

P(Θ < L) = Fposterior(L) = α

2 ,

P(Θ > U) = 1− Fposterior(U) = α

2 .

where Fposterior is the CDF for the posterior distribution of Θ.
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High Posterior Density (HPD) Interval
The our interval is given by

I = {t : fθ|X1,...,Xn(t | x1, . . . , xn) ≥ c}

where the density cutoff c is chosen so that prob. = 1− α
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Note that an HPD interval I might not be a single interval!
(In the example above, if α is large, then I splits into two intervals)
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Equal-Tailed Credible Interval for Gamma-Exponential
Model: Λ ∼ Gamma(a, b)

X1, . . . , Xn | Λ
iid∼ Exponential(λ)

Posterior:

Λ | X1, . . . , Xn ∼ Gamma(a + n, b + nX )

Equal-tailed credible interval: (L, U)

P(Θ < L) = FGamma(a+n,b+nX)(L) = α

2 ,

P(Θ > U) = 1− FGamma(a+n,b+nX)(U) = α

2 .

where FGamma(a+n,b+nX) is the CDF of the posterior.
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A fact about Gamma distributions:
Gamma(a, b) ≈ N

(a
b ,

a
b2
)

for large a.

Thus,

Gamma(a + n, b + nX ) ≈ N
(

a + n
b + nX

,
a + n

(b + nX )2

)
Therefore, the (1− α) credible interval is approximately equal to:

≈ a + n
b + nX

± zα/2 ·
√

a + n
b + nX

If n is large while a & b are constant. . .

≈ 1
X
± zα/2 ·

1
√

n · X
which is the confidence interval based on the asymp. normality of
the MLE.
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