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Accuracy of the MLE
Example: Suppose Xi, ..., Xso g Exponential(Ao).

Recall the log likelihood for i.i.d. Exponential(\) is
¢(\) = nlog(\) — nAX

Here is a plot of the log likelihood function ¢()), and the MLE,
over 10 trials:
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= higher curvature of £(\) around the true value Ag leads to a
more accurate estimate
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Curvature of a Function (Calculus Review)
For a sufficiently smooth function g(u), if ug is a local maximum
or minimum of g(u), then g’(ug) = 0 and its Taylor expansion
around u = ug would be
=0

g(u) ~ g(uo) + g'(uo)(u — uo) +

g//(2U0) (u— u0)27

g//(2U0)(u B Uo)z,

~ g(uo) + for u ~ ug.
The curvature of g(u) at a local maximum or or minimum u = ug
is reflected by its second derivative at up,
d2
!
g"(w) = ——g(u)
du? u=up
» g"(up) > 0 if g(u) has a upward concavity at ug
» g"(up) < 0 if g(u) has a downward concavity at ug
» The greater the magnitude of g”(up), the greater the

curvature
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Curvature of the Log Likelihood
For X1, ..., Xy S f(x | 0) for an unknown parameter 6, recall the

log Iikellhood for 0 is

- Z log £(X; | 0).

i=1
Its second derivative is

92 92
@z(e) = ; g2 08 f(Xi|0).

By LLN, as n — oo,

1 82 5,
nae2 Zae2long]9)—>E[802Iogf(X0)1

where the expected value is taken with respect to X.

Thus the accuracy of MLE can be reflected by E [ log f(X; | 9)}

202
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Fisher Information

(From this point on, we assume there is only a single parameter 6.)

For a PDF/PMF f(X | #) with a single parameter 6, the Fisher
information for € is defined as:

7(6) = [ 88; log F(X | 9)]

> Usually, 2 802 log f(X; | #) < 0 as the log likelihood generally
has a downward concavity. We add the minus sign — to get
rid of the sign and ensure that Z(6) > 0

» 7(0) reflects the curvature of the log likelihood. The greater
the value of Z(6), the less variability of the MLE 6.

» 7(0) measures the amount of information that an observed
random variable X ~ f(X | #) carries about an unknown
parameter 6.
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Examples: Fisher Information Z(0) = E (— 2, log (X | 0))
Ex1: Exponential(\):
> PDF f(x | A) = Ae ™
» log f(X | A) =log(A) — AX
= ilogf(x | A)—%—X
> 2 log F(X | )\) —1/)2
> T(\) = E (— 4 log (X | 1)) = E(1/32) = 1/X2

Ex2: N(u,0?) with o known:

> PDF: f(x | p) = e (X-n/2"
> log f(X | p) = —3 log(2mo?) — 7()(2;‘;)2
> Zlog f(X | p) = (X — p)/o?

2
> 8%ﬂog f(X | M) =-1/02
> I(n) = ~E (i log (X | w) = 1/0?
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Examples: Fisher Information

Ex3: Bernoulli(p):

> PMF: f(x | p) = pX(1 — p)*—%

> log f(X | p) = Xlog(p) + (1 — X)log(1 — p)

> Zlog (X | p) = X 1X

> Sslog f(X | p) = —2% — 4=

> Tp) =~ (flos (X1 2)) = 52+ 57 =

7/21



Asymptotic (Large Sample) Distribution of the MLE

Fisher information determines the (approx) variance of the MLE.
Informally: if Xi,..., X, i f(x | 6o) and @ is the MLE,

the distribution of 8 is approx. N (00, %)
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Asymptotic (Large Sample) Distribution of the MLE

Fisher information determines the (approx) variance of the MLE.
Informally: if Xi,..., X, i f(x | 6o) and @ is the MLE,
the distribution of 8 is approx. N (00, %)

More formally: under some regularity conditions (f(x | 6) is a smooth

function of 6),
nZ(6o)- (6 — 6p) converge in distribution to  N(0, 1)
This means that the CDF converges — i.e., for all fixed x,

p (\/nI(GO) (6 —6) < x) — ®(x) as n— oo.

-~

The same holds with Z(#) in place of Z(6o):

\/nZ(6)- (6 —6p) converge in distribution to  N(0, 1)
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Asymptotic Distribution of the MLE — Examples

> Exponential(\): A =1/X and Z()\) = 1/)2, so:
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Asymptotic Distribution of the MLE — Examples

> Exponential(\): A =1/X and Z()\) = 1/)2, so:

» N(u,0?) with 02 known: fi = X and Z(u) = 1/0? so:

R o
= N(NO’ 7)

(In this case we know this is the exact distribution!)
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Asymptotic Distribution of the MLE — Examples

> Exponential(\): A =1/X and Z()\) = 1/)2, so:

» N(u,0?) with 02 known: fi = X and Z(u) = 1/0? so:

R o
= N(M07 7)

(In this case we know this is the exact distribution!)

» Bernoulli(p): p= X and Z(p) = p(ll—p)’ so:

B~ N(po, 2P)) o~ N(pg, PL-E))
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A Counter Example: Asymptotic Distribution of the MLE
For Uniform|0, 6]:

> PDF f(x |0)=3,0<x<0
» In this case the regularity conditions do not hold.
log(f(X | )) is not a smooth function of 0,

—log 6 if 6 > X

log(f(X | 0)) = {Iog(O) =—00 if< X

» Recall in L14, we showed that §M|_E = X(,,) and calculated

— ng? 1
Var(9) = (o = O

)

n?
while asymptotic normality of the MLE would yield
Var() = O(%)

n
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A Counter Example: Asymptotic Distribution of the MLE
For Uniform|0, 6]:

> PDF f(x |0)=3,0<x<0
» In this case the regularity conditions do not hold.
log(f(X | )) is not a smooth function of 0,

—log 6 if 6 > X

log(f(X | 0)) = {Iog(O) =—00 if< X

» Recall in L14, we showed that §M|_E = X(,,) and calculated

— ng? 1
Var(9) = (o = O

)
while asymptotic normality of the MLE would yield
Var() = O(%)

n

In fact, no approximation is needed here, since we actually know

the exact distribution of the MLE in this case (via order statistics)
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Confidence Intervals Based on MLE

We can use asymptotic normality of the MLE to construct a
confidence interval for 0y, where 6 is the true value of 6.

Let Zo)2 be the value so that
P(|Z| £ zy2) =1—afor Z~ N(0,1). a/2 a/2
~Zq/2 Zy/2

nZ() - (6 — 6o) — N(0,1)

= P(‘\/nl(g) : (é—eo)\ <zyp)*1-a

= P(g—za/2-¥<90<§+za/2-#)zl—a

\/nZ(0) \/nZ(0)

So, after observing the data and calculating the interval

n 1
Qﬂ:Za/z‘ nz(é\)

we have approximately (1 — «) confidence that 6y lies in this

interval.
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Example — Confidence Interval for Normal Mean

Xi, . X S N(1, 02) for unknown i € R (02 is known)
» The MLE is i = X
» The Fisher information is Z(p) = =

o2

» Therefore, fi ~ N(uo, "—,12) and an approx (1 — ) conf. int. is:
- o
X + Za/z . %

» In fact, we know this distribution and conf. int. are exact for

this case
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Examples — Confidence Interval for Exponential

X1,y Xn g Exponential(A) for unknown A > 0

> The MLE is A = -
» The Fisher information is Z(\) = %
> Therefore, A ~ N (Ao, )‘—g) and an approx. (1 — «) conf. int. is:

n

~

< A PR A
)‘:tza/Z'%: <>\Za/2'ﬁa +Za/2'ﬁ>
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Example — Bernoulli p

X1, .

v

.., X, "$ Bernoulli(p) for unknown p € (0,1)

The MLE is p = X

The Fisher information is Z(p) = p(ll_p)

» Therefore, p =~ N(po, M) ~ N(po,m) and an

n
approx. (1 — «) conf. int. is:

_ p(l—p _ p(l—p) . p(l—p
ez PP (,,_Zm = /M)
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Cramer-Rao Lower Bound (CRLB)

There are many possible estimators for parameters (MME, MLE,
etc). Is there a best one?

Theorem: Let Xi,..., X, be i.i.d. with PDF/PMF f(x | 0). Let
T = t(X1,...,X,) be an unbiased estimate for . Then, under
smoothness assumptions on f(x | 0),

Var(T) > T0)

For the MLE 6 of 0, recall 8 is approx. N (9, nzl(e))'

» The MLE is (asymptotically) unbiased
» The MLE's variance is (asymptotically) %w)
» The MLE thus (asymptotically) achieves the CRLB

Is the MLE optimal?

» Not necessarily. ..
there might be biased estimators with a smaller MSE
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Lemma for the Proof of CRLB

If log f(X | 6) is a smooth function of 6, it can be shown that

1 E (4 log f(X |0)) =0
2. the Fisher information Z(6) can also be calculated as

7(0) = E ((889 log F(X | 9))2>

The two points above combined also implies that

Var (8‘99 log £(X | 9)> —E <(§9 log £(X | 9))2> — 7(0).

since E (% log f(X | 9)) =0
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0 _
Proof of E (;log f(X | ) =
The proof will be done for case that X is continuous. The discrete
case can be done similarly,

(59 log F(X | 9))
/ log f(x | 0)f(x | §)dx

af(<19)
f(XIG)

/ f(x|@)dx

_ 9 / F(x | 6)dx assume it's okay to swap the order
-0 of integration & differentiation

f(x | 0)dx

0
%1—0
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‘ 2
Proof that Z(0) = E ( (4 log f(X | 0))°)
From the proof in the previous page, we've obtained that

0 _/gemg F(x | 0)F(x | 0)dx

Taking another derivative of the preceding expressions, and
swapping the order of differentiation and integration, we have

o2 0 0
0= /Wlogf(x | 0)f(x | Q)dX-i-/%'Og f(x|0)- %f(x | 0)dx

=l =1l

where

I=E l§92 log £(X; \0)1 = —1(0).
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0 s,
II—/%Iogf(XW) 50 f(x | 0)dx

- / aaelog F(x | 0)- 8?(2 Lf) F(x | 0)dx
—_————

=2 log f(x|0)

/[Iogf x| 0) ]Zf(x | 6)dx
:E<<§9 Iogf(X|9)>2>

As |+ 11 =0, and | = —Z(0), we have

I(0)= 1=l =E <<§9 log F(X | 9))2>
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Proof of CRLB

Let o
0 TS F(Xi | 0)
Z= Z — log f(X; | 0) 2
=0 = f(Xi10)
As shown in the Lemma that Var (% log F(X | 9)) =7(0), we
have

Var(Z) = nZ(9).

The lemma also asserts E(Z) = 0 since E (% log f(X | 9)) =
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Recall that T = t(Xy,..., X,) is an unbiased estimate for . We
have

[Cov(Z, T)]? < Var(Z) Var(T).
It remains to show that Cov(Z, T) = 1, then CRLB would follows
since Cov(Z. T)?

ov(Z, T 1
Var(T) > - = .
(T) 2 a2 nZ(0)

See p.301 of the textbook for the rest of the proof.

21/21



