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Accuracy of the MLE
Example: Suppose X1, . . . , X50

iid∼ Exponential(λ0).

Recall the log likelihood for i.i.d. Exponential(λ) is

ℓ(λ) = n log(λ) − nλX

Here is a plot of the log likelihood function ℓ(λ), and the MLE,
over 10 trials:
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⇒ higher curvature of ℓ(λ) around the true value λ0 leads to a
more accurate estimate
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Curvature of a Function (Calculus Review)
For a sufficiently smooth function g(u), if u0 is a local maximum
or minimum of g(u), then g ′(u0) = 0 and its Taylor expansion
around u = u0 would be

g(u) ≈ g(u0) +
=0︷ ︸︸ ︷

g ′(u0)(u − u0) + g ′′(u0)
2 (u − u0)2,

≈ g(u0) + g ′′(u0)
2 (u − u0)2, for u ≈ u0.

The curvature of g(u) at a local maximum or or minimum u = u0
is reflected by its second derivative at u0,

g ′′(u0) = d2

du2 g(u)
∣∣∣∣
u=u0

▶ g ′′(u0) > 0 if g(u) has a upward concavity at u0
▶ g ′′(u0) < 0 if g(u) has a downward concavity at u0
▶ The greater the magnitude of g ′′(u0), the greater the

curvature
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Curvature of the Log Likelihood
For X1, . . . , Xn

iid∼ f (x | θ) for an unknown parameter θ, recall the
log likelihood for θ is

ℓ(θ) =
n∑

i=1
log f (Xi | θ).

Its second derivative is

∂2

∂θ2 ℓ(θ) =
n∑

i=1

∂2

∂θ2 log f (Xi | θ).

By LLN, as n → ∞,

1
n

∂2

∂θ2 ℓ(θ) = 1
n

n∑
i=1

∂2

∂θ2 log f (Xi | θ) −→ E
[

∂2

∂θ2 log f (X | θ)
]

.

where the expected value is taken with respect to X .

Thus the accuracy of MLE can be reflected by E
[

∂2

∂θ2 log f (Xi | θ)
]
.
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Fisher Information
(From this point on, we assume there is only a single parameter θ.)

For a PDF/PMF f (X | θ) with a single parameter θ, the Fisher
information for θ is defined as:

I(θ) = − E
[

∂2

∂θ2 log f (Xi | θ)
]

▶ Usually, ∂2

∂θ2 log f (Xi | θ) < 0 as the log likelihood generally
has a downward concavity. We add the minus sign − to get
rid of the sign and ensure that I(θ) > 0

▶ I(θ) reflects the curvature of the log likelihood. The greater
the value of I(θ), the less variability of the MLE θ̂.

▶ I(θ) measures the amount of information that an observed
random variable X ∼ f (X | θ) carries about an unknown
parameter θ.
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Examples: Fisher Information I(θ) = E
(
− ∂2

∂θ2 log f (X | θ)
)

Ex1: Exponential(λ):

▶ PDF f (x | λ) = λe−λx

▶ log f (X | λ) = log(λ) − λX
▶ ∂

∂λ log f (X | λ) = 1
λ

− X
▶ ∂2

∂λ2 log f (X | λ) = −1/λ2

▶ I(λ) = E
(
− ∂2

∂λ2 log f (X | λ)
)

= E(1/λ2) = 1/λ2

Ex2: N(µ, σ2) with σ2 known:

▶ PDF: f (x | µ) = 1√
2πσ2 e−(X−µ)2/2σ2

▶ log f (X | µ) = −1
2 log(2πσ2) − (X−µ)2

2σ2

▶ ∂
∂µ log f (X | µ) = (X − µ)/σ2

▶ ∂2

∂µ2 log f (X | µ) = −1/σ2

▶ I(µ) = − E
(

∂2

∂µ2 log f (X | µ)
)

= 1/σ2
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Examples: Fisher Information

Ex3: Bernoulli(p):

▶ PMF: f (x | p) = pX (1 − p)1−X

▶ log f (X | p) = X log(p) + (1 − X ) log(1 − p)
▶ ∂

∂p log f (X | p) = X
p − 1−X

1−p
▶ ∂2

∂p2 log f (X | p) = − X
p2 − 1−X

(1−p)2

▶ I(p) = − E
(

∂2

∂p2 log f (X | p)
)

= E(X)
p2 + 1−E(X)

(1−p)2 = 1
p(1−p)
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Asymptotic (Large Sample) Distribution of the MLE
Fisher information determines the (approx) variance of the MLE.

Informally: if X1, . . . , Xn
iid∼ f (x | θ0) and θ̂ is the MLE,

the distribution of θ̂ is approx. N
(
θ0, 1

nI(θ0)

)

More formally: under some regularity conditions (f (x | θ) is a smooth
function of θ),√

nI(θ0) ·
(
θ̂ − θ0

)
converge in distribution to N(0, 1)

This means that the CDF converges — i.e., for all fixed x ,

P
(√

nI(θ0) ·
(
θ̂ − θ0

)
≤ x

)
→ Φ(x) as n → ∞.

The same holds with I(θ̂) in place of I(θ0):√
nI(θ̂) ·

(
θ̂ − θ0

)
converge in distribution to N(0, 1)
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Asymptotic Distribution of the MLE — Examples

▶ Exponential(λ): λ̂ = 1/X and I(λ) = 1/λ2, so:

λ̂ ≈ N
(
λ0,

λ2
0

n
)

or ≈ N
(
λ0, λ̂2

n
)

▶ N(µ, σ2) with σ2 known: µ̂ = X and I(µ) = 1/σ2 so:

µ̂ ≈ N
(
µ0,

σ2

n
)

(In this case we know this is the exact distribution!)

▶ Bernoulli(p): p̂ = X and I(p) = 1
p(1−p) , so:

p̂ ≈ N
(
p0, p0(1−p0)

n
)

or ≈ N
(
p0, p̂(1−p̂)

n
)
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A Counter Example: Asymptotic Distribution of the MLE
For Uniform[0, θ]:

▶ PDF f (x | θ) = 1
θ , 0 ≤ x ≤ θ

▶ In this case the regularity conditions do not hold.
log(f (X | θ)) is not a smooth function of θ,

log(f (X | θ)) =
{

− log θ if θ > X
log(0) = −∞ if θ < X

▶ Recall in L14, we showed that θ̂MLE = X(n) and calculated

Var(θ̂) = nθ2

(n + 1)2(n + 2) = O( 1
n2 )

while asymptotic normality of the MLE would yield
Var(θ̂) = O( 1

n )

In fact, no approximation is needed here, since we actually know
the exact distribution of the MLE in this case (via order statistics)
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Confidence Intervals Based on MLE
We can use asymptotic normality of the MLE to construct a
confidence interval for θ0, where θ0 is the true value of θ.
Let zα/2 be the value so that

P(|Z | ≤ zα/2) = 1 − α for Z ∼ N(0, 1).
− zα 2 zα 2

α 2α 2 1 − α

√
nI(θ̂) · (θ̂ − θ0) → N(0, 1)

⇒ P
(∣∣∣√nI(θ̂) · (θ̂ − θ0)

∣∣∣ < zα/2
)

≈ 1 − α

⇒ P
(
θ̂ − zα/2 · 1√

nI(θ̂)
< θ0 < θ̂ + zα/2 · 1√

nI(θ̂)

)
≈ 1 − α

So, after observing the data and calculating the interval
θ̂ ± zα/2 · 1√

nI(θ̂)

we have approximately (1 − α) confidence that θ0 lies in this
interval.
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Example — Confidence Interval for Normal Mean

X1, . . . , Xn
iid∼ N(µ, σ2) for unknown µ ∈ R (σ2 is known)

▶ The MLE is µ̂ = X
▶ The Fisher information is I(µ) = 1

σ2

▶ Therefore, µ̂ ≈ N
(
µ0, σ2

n
)

and an approx (1 − α) conf. int. is:

X ± zα/2 · σ√
n

▶ In fact, we know this distribution and conf. int. are exact for
this case
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Examples — Confidence Interval for Exponential

X1, . . . , Xn
iid∼ Exponential(λ) for unknown λ > 0

▶ The MLE is λ̂ = 1
X

▶ The Fisher information is I(λ) = 1
λ2

▶ Therefore, λ̂ ≈ N
(
λ0,

λ2
0

n
)

and an approx. (1 − α) conf. int. is:

λ̂ ± zα/2 · λ̂√
n =

(
λ̂ − zα/2 · λ̂√

n , λ̂ + zα/2 · λ̂√
n

)
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Example — Bernoulli p

X1, . . . , Xn
iid∼ Bernoulli(p) for unknown p ∈ (0, 1)

▶ The MLE is p̂ = X
▶ The Fisher information is I(p) = 1

p(1−p)

▶ Therefore, p̂ ≈ N
(
p0, p0(1−p0)

n
)

≈ N
(
p0, p̂(1−p̂)

n
)

and an
approx. (1 − α) conf. int. is:

p̂±zα/2

√
p̂(1 − p̂)

n =

p̂ − zα/2

√
p̂(1 − p̂)

n , p̂ + zα/2

√
p̂(1 − p̂)

n


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Cramer-Rao Lower Bound (CRLB)
There are many possible estimators for parameters (MME, MLE,
etc). Is there a best one?
Theorem: Let X1, . . . , Xn be i.i.d. with PDF/PMF f (x | θ). Let
T = t(X1, . . . , Xn) be an unbiased estimate for θ. Then, under
smoothness assumptions on f (x | θ),

Var(T ) ≥ 1
nI(θ) .

For the MLE θ̂ of θ, recall θ̂ is approx. N
(
θ, 1

nI(θ)

)
.

▶ The MLE is (asymptotically) unbiased
▶ The MLE’s variance is (asymptotically) 1

nI(θ)
▶ The MLE thus (asymptotically) achieves the CRLB

Is the MLE optimal?
▶ Not necessarily. . .

there might be biased estimators with a smaller MSE
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Lemma for the Proof of CRLB

If log f (X | θ) is a smooth function of θ, it can be shown that

1. E
(

∂
∂θ log f (X | θ)

)
= 0

2. the Fisher information I(θ) can also be calculated as

I(θ) = E
((

∂

∂θ
log f (X | θ)

)2)

The two points above combined also implies that

Var
(

∂

∂θ
log f (X | θ)

)
= E

((
∂

∂θ
log f (X | θ)

)2)
= I(θ).

since E
(

∂
∂θ log f (X | θ)

)
= 0
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Proof of E
(

∂
∂θ log f (X | θ)

)
= 0

The proof will be done for case that X is continuous. The discrete
case can be done similarly,

E
(

∂

∂θ
log f (X | θ)

)
=
∫

∂

∂θ
log f (x | θ)f (x | θ)dx

=
∫ ∂

∂θ f (x | θ)
f (x | θ) f (x | θ)dx

=
∫

∂

∂θ
f (x | θ)dx

= ∂

∂θ

∫
f (x | θ)dx︸ ︷︷ ︸

=1

(
assume it’s okay to swap the order

of integration & differentiation

)

= ∂

∂θ
1 = 0
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Proof that I(θ) = E
((

∂
∂θ log f (X | θ)

)2)

From the proof in the previous page, we’ve obtained that

0 =
∫

∂

∂θ
log f (x | θ)f (x | θ)dx .

Taking another derivative of the preceding expressions, and
swapping the order of differentiation and integration, we have

0 =
∫

∂2

∂θ2 log f (x | θ)f (x | θ)dx︸ ︷︷ ︸
=I

+
∫

∂

∂θ
log f (x | θ) · ∂

∂θ
f (x | θ)dx︸ ︷︷ ︸

=II

where
I = E

[
∂2

∂θ2 log f (Xi | θ)
]

= −I(θ).
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II =
∫

∂

∂θ
log f (x | θ) · ∂

∂θ
f (x | θ)dx

=
∫

∂

∂θ
log f (x | θ) ·

∂
∂θ f (x | θ)
f (x | θ)︸ ︷︷ ︸

= ∂
∂θ

log f (x |θ)

f (x | θ)dx

=
∫ [

∂

∂θ
log f (x | θ)

]2
f (x | θ)dx

= E
((

∂

∂θ
log f (X | θ)

)2)

As I + II = 0, and I = −I(θ), we have

I(θ) = −I = II = E
((

∂

∂θ
log f (X | θ)

)2)
.
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Proof of CRLB

Let
Z =

n∑
i=1

∂

∂θ
log f (Xi | θ) =

n∑
i=1

∂
∂θ f (Xi | θ)
f (Xi | θ) .

As shown in the Lemma that Var
(

∂
∂θ log f (X | θ)

)
= I(θ), we

have
Var(Z ) = nI(θ).

The lemma also asserts E(Z ) = 0 since E
(

∂
∂θ log f (X | θ)

)
= 0
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Recall that T = t(X1, . . . , Xn) is an unbiased estimate for θ. We
have

[Cov(Z , T )]2 ≤ Var(Z ) Var(T ).

It remains to show that Cov(Z , T ) = 1, then CRLB would follows
since

Var(T ) ≥ [Cov(Z , T )]2
Var(Z ) = 1

nI(θ) .

See p.301 of the textbook for the rest of the proof.
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