STAT 24400 Lecture 14
Section 8.3 Parameter Estimation
Section 8.4 The Method of Moments
Section 8.5 The Method of Maximum Likelihood

Yibi Huang
Department of Statistics
University of Chicago

1/53



Section 8.3 Parameter Estimation
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Parameter Estimation

Suppose that we observe data X1, X, ..., X, generated from a
known distribution with unknown parameter(s), e.g., the data is
from

» N(p,02), with g unknown (& o2 known)

» N(u,0?), with i & o2 unknown

» Exponential(\), with A\ unknown

» Binomial(n, p), with n known and p unknown

How can we estimate the unknown parameter(s)?
How can we perform inference on the unknown parameter(s)?
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General Notation

» Xi,...,X, = data drawn i.i.d. from the distribution
» 6 = the unknown parameter(s)
> 0 lies in © = subspace of R (or R? if two parameters, etc)

4/53



General Notation

» Xi,...,X, = data drawn i.i.d. from the distribution
» 6 = the unknown parameter(s)
> 0 lies in © = subspace of R (or R? if two parameters, etc)

» We will write f(x | 6) for the PDF or PMF of the distribution,
eg.,
> Exponential(\) ~ PDF f(x | A\) = Ae™

. N¥e=*
> Poisson(A) ~ PMF f(x | A\) = |
x!
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Parameter Estimation (Point Estimate)

Given data Xi,..., X, i.i.d. ~ f(x | @), would like to estimate the
unknown 6

The point estimate or estimator of a parameter 6, is a function
0 = g(Xl,.. . ,Xn)

computed from the observed data {Xi,..., X,} that is a sensible
guess for the unknown 6.

Note: any estimator 6 must be a function of X1,..., X, only
it cannot involve any unknown parameter, e.g.,

it (X — p)?
n

is not a estimator since it involves the unknown .
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Examples of Point Estimates

Example 1: If Xq,..., X, are i.i.d. N(u,0o?), the point estimate
for the population mean 1 can be

> the sample mean X =137 | X;

» the median of Xi,..., X,

> the average of Xi,..., X, after excluding the minimum &
maximum

2

The point estimate for the population variance o< can be

i—1 (X,- - 7)2

» the sample variance S% =

P an alternative estimator would result from using divisor n
instead of n —1

) 2i= (X’ — Y)z

o~

n

6/53



Examples of Point Estimates

Example 2: If X ~ Bin(n, p) is Binomial, the point estimate for
the success probability p can be
o X
» the sample proportion p = —
X+2

n+4
» adding successes and two failures to the sample and then
calculate the sample proportion of successes

» Wilson's plus-four estimate p =
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Mean Squared Error

With many possible point estimates f's for a parameter 6, how to
choose a good one among them?

A population criterion is to compare their Mean Squared Error
(MSE), defined as

Mean Squared Error (MSE) = E[( — 6)?]
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MSE = (Bias)?+ Variance
Recall the shortcut formula for the variance of any variable Y
Var(Y) = E(Y?) - (E(Y))%,
Rearranging the terms, we get
E(Y?) = (E(Y))? + Var(Y).
Plugging in Y = 6 — 0, then E(6 — 6) = E(6) — 6, we get

E[(6—06)2] = [E()—0]2 + Var(d—06)
| | |

~

MSE = (Bias)2 +  Var(d)

where the bias of an point estimate 0 for 0 is defined to be the
difference between the expected value of the estimate and the true
value of the parameter

Bias = E(6) — 0
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Unbiased Estimators

A point estimator 0 is said to be an unbiased estimator of 6 if

-~

E(0) =0

for every possible value of 6.
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Unbiased Estimators

A point estimator 0 is said to be an unbiased estimator of 6 if

-~

E(0) =0

for every possible value of 6.

For unbiased estimators, ‘ MSE = Variance ‘

10/53



Examples of MSE

If X1,...,X, are i.i.d. with population mean p and population
variance o2, using the sample mean X = %Zf’zl X; the point
estimate for the population mean p

» the biasis E(X) —pu=p—p=0
» the variance is Var(X) = 02/n

The MSE for X is hence

2 0.2

MSE = (Bias)? + Variance = 0 + % =
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MSE of Sample Variance 52

In L13, we have shown that if X1, X, ..., X, are i.i.d. ~ N(u,0o?),

then S2 is an unbiased estimate for 2.

E[52] =02

To obtain the MSE, we need to calculate Var(S?). From that

_ (n—1)S? 5

T 2 ~ Xn—la

g

and the variance for T ~ x2_; is 2(n — 1), it follows that

2 2 \?2 4
0 o‘T\ [ o 20
Var(S)-Var(n_1>—<n_1> Var(T)—n_l.

=2(n—1)

The MSE of S2 is hence

204 204
MSE = (Bias)? + Variance = 0 + 7 -
n—1 n-1
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A Biased Estimator for 0 w/ a Smaller MSE

Consider an alternative estimator for o2 that using divisor n + 1
instead of n —1

o TG =XP _ (n-1)$?

n+1 n+1

The expected value and variance of 52 are respectively

(n—1)E(5?) (n—1)o?
n+1  n+1

)= (53) i = (55) 20 - e

E(6°) =

)

Hence, 67 is a biased estimator for o2 with
—1)0? —20°
las = E(@7) = nt1 0 " n+l
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The MSE of 52 is

MSE = (Bias)? + Variance

[=20? 2+2(n—1)a4_ 2no*
S \n+1 (n+1)2  (n+1)2

4
which is lower than the MSE of

n —

for the sample variance S2.
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The MSE of 52 is

MSE = (Bias)? + Variance

[=20? 2+2(n—1)a4_ 2no*
\n+1 (n+1)2  (n+1)2

4

which is lower than the MSE of P

A biased estimator might have a smaller MSE if it has a smaller
variance.

for the sample variance S2.
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X
MSE of the Sample Proportion p = —
n

If X ~ Bin(n, p) is Binomial, a point estimate for the success

. X
probability p is the sample proportion p = —. As X is Binomial,
n

E(X)=np = E(ﬁ):E(;():n::p
Var(X)=np(l —p) = Var(p)= Va;(ZX) _ ”P(iz— p) _ P(ln— p)

Thus the sample proportion p is unbiased with the MSE

MSE = (Bias)? + Variance = 0° + p(1—p) _ p(l— P).
n n
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MSE for Wilson's “Plus-Four” Estimate for Proportions

Recall Wilson's plus-four estimate is

X+2
n+4’

p=
It's expected value and variance are respectively,

E(B) = BX) 2 np—|—2’ and Var(p) = Var(X) _ np(1 - p)

n+4 n+4 (n+4)2  (n+4)2°

Its bias and MSE are respectively

np+ 2 _2—4p

nta PTnta

. : 2—4p\?  np(1-p)
— 2 —
MSE = (Bias)“ + Variance = ( a ) + (n 1 472

Bias=E(p) — p =
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1

MSE's for Sample Proportion & Wilson's “Plus-Four’

~ . X+2
Below are the graphs of the MSE for p = X/n and p = nij—_ﬂf
_p(l—p) . (24p>2 np(1 - p)
(P) n B =\T5a) Tt
n= 20
0.012 PR 0.0025
0.010 , R 0.0020 —|
w 0008 7 /’\\‘\ w 0.0015
= 00%7 | = 00010
0.004- , X+2 \
0.002 ,/ T h+a \‘ 0.0005
0.000 7 \’ T _\ - X/‘n T ‘\ 0.0000 T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10
p p
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MSE's for Sample Proportion & Wilson's “Plus-Four”
X+2
Below are the graphs of the MSE for p = X/n and p = nij-_df

MSE(p) — p(lnp)7 MSE(p) — (24p>2+ np(1 — p)

n+4 (n+ 4)?
n= 20
_ PR 0.0025
0.012 . .
AY
0.010 , . 0.0020 —|
/ \

L, 0-008 /\\\ 1 0.0015 |
1) 2]

0.006 |
= ) Y = 0.0010 |

0.004 X+2 \

0.0024 ¢ T h+a \ 0.0005

: 1 \
0.000 = \’ T _\ - X/‘n T ‘\ 0.0000 T T T T T T
00 02 04 06 08 10 00 02 04 06 08 1.0
P p

X/n has a smaller MSE only when p is close to 0 or 1

)rfjj has a smaller MSE when p is NOT close to 0 or 1

he two MSE's are close when n is large

> P
> 5
> T
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Sampling Distributions

The sampling distribution of a point estimate 0 is simply its
probability distribution, e.g.,

Ex1. If X1,...,X, areiid. ~ N(u,c?), the sampling distribution
for i = X is

and the sampling distribution for S? is that

o?T
S2 = Pt where T ~ x2_;.

Note: The sampling distribution generally depends on some
unknown parameter 6.
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Ex2: If Xq,...,X, are i.i.d. from some distribution with mean p
and variance o (not necessarily normal),

P the exact sampling distribution would depend on the
distribution of X;
» CLT asserts that

— 0’2
= Xisapprox. ~ N |[pu —|.
n
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Standard Error

The standard error (SE) of a point estimate 0 refers to any
estimate of the standard deviation of 6.

Ex1. If Xi,...,X, areiid. ~ N(u,0o?),

» the standard deviation for i = X is

SD(X) = y/Var(X) = Un2

which involves the unknown o2

» the standard error for X is

which replaces the unknown o by its estimate S2.
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Ex2. If X ~ Bin(n, p),

» the standard deviation for p = X/n is

which involves the unknown p
» the standard error for p is

p(1—-p)

SE(p) = || 2

which replaces the unknown p by its estimate p.

Note: The true SD may depend on 6, while SE depends on the

data but not on 6
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Section 8.4 The Method of Moments
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Sample Moments

Recall the kth moment of a random variable X is E[X*].

If X1,...,X, are i.i.d. from some distribution f(x | 8) , the kth
sample moment is defined to be

[y

:s
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The Method of Moments (MME)

The method of moments is a strategy for finding an estimator 9.
If there is only one parameter 6,

1. Compute E(X) as a function of ¢

2. Compute the sample mean X = = Y"1, X;

3. Choose 8 as the value of 6 so that E(X) = X

If there are k parameters 01,...,0,

1. Compute E(X), E(X?), ..., E(X¥) as functions of 6;'s
2. Compute the sample moments

1 n 1

~ ~ ny2 ~ n ek
M1=; ilei, NZZZizlxir--ka:EZi:lXi'
3. Choose (61, ...,0m) as the value of 6; so that
E(X/) = Z,_ X! for1<j<k

(solving a system of k equations, for k unknowns)
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Examples (1 Parameter)
Ex1: Xi,..., X, g Poisson(A) for unknown A > 0

> PMF: f(x | \) = e *\/x!, x=0,1,2,...
> E(X)=A R
» The method of moment estimate (MME) for X is A = X

Ex2: Xi,..., X, S Geometric(p) for unknown p

> PMF: f(x | p) = (1 — p)*"1p, x=1,2,3,...
> E(X)=1/p
» MME for pis p=1/X

Ex3: Xi,..., X, S Exponential(\) for unknown A > 0
» PDF: f(x | A\)=Xe™, x>0

> E(X)=1/A
» MME for X is A = 1/X.
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Example 4 — Uniform[0, 6]

X1,y Xn g Uniform[0, 6] for unknown 6 > 0

> PDF: f(x|0) =3 0<x<90
> E(X)=6/2
» MME for 0 is § = 2X.
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Example 5 — MME for Gamma
X1,y Xn g Gamma(a, A) for unknown a, A > 0

[0}

> PDF: f(x | a,)) = r?a)xa—le—xx >0
> E(X)=a/\

ala+1
> Var(X) = /3% = E[X2] = Var(X) + (EX))2 = 0 Y
» The MMEs for a and A must satisfy

— a a(a+1) N 1N oo
S e % (Recall fi n; 7)
From the second equation
-2 X ~ X
=X+ = A=—0
p2 — X

and from the first equation,

=X =

fio — X
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Section 8.5 Likelihood &
Maximum Likelihood Estimation
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A Probability Question

Let p be the proportion of US adults that are willing to get the
latest flu shot.

A sample of 20 subjects are randomly selected. Let X be the
number of them that are willing to get the latest flu shot. What is
P(X =8)?

Answer: X is Binomial (n = 20, p) (Why?)
20 X n—x
P(X =x|p)= <X>p (I-p)"™.
If pis known to be 0.3, then

P(X=8|p) = (28()) (0.3)8(0.7)12 ~ 0.1144.
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A Statistics Question

Suppose 8 of 20 randomly selected U.S. adults said they are willing
to get the latest flu shot.

What can we infer about the value of

p = proportion of U.S. adults that are
willing to get a flu shot?

The chance to observe X = 8 in a random sample of size n = 20 is

20
8
20
8

(0.3)3(0.7)? ~ 0.1144 if p=023
P(X=8|p) =
(0.6)8(0.4)12 ~ 0.0355 if p=0.6

It appears that p = 0.3 is more likely to be true value p than
p = 0.6, since the former gives a higher prob. to observe the
outcome X = 8.

We say the /ikelihood of p = 0.3 is higher than that of p = 0.6.
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Maximum Likelihood Estimate (MLE)

The maximum likelihood estimate (MLE) of a parameter 6 is the
value at which the likelihood function is maximized.

Example. If 8 of 20 randomly selected U.S. adults are comfortable
getting the flu shot, the likelihood function

L(p|x=8)= (28()) p’(1—p)*?

reaches its max at p = 0.4,
the MLE for p is p = 0.4 given the data X = 8.

0.15
0.10
0.05
0.00—
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Maximum Likelihood Estimate (MLE)
The probability

P(X=x|p)= (Z) p(1—=p)"*=Lp|x)

viewed as a function of p, is called the /ikelihood function,
(or just the likelihood) of p, denoted as L(p | x).

It measure the “plausibility” of a value being the true value of p.

1.0

5 0.8 x=0

20.6

£04- =2 x=8 x=14

YDA
0.0

| | | | | |
0.0 0.2 0.4 0.6 0.8 1.0
p

Likelihood functions L(p | x) at different values of x for n = 20.
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1.0

'§0.8— x=0

2 0.6-

2049 X2 x=8 x=14

IR VANES
0.0

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

p
Likelihood functions L(p | x) for various values of x when n = 20.

1.0
183 0.8 | x=0
206
0.4
J0.24 | X720 x=80 x=140

0.0

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0
p

Likelihood functions L(p | x) at various values of x when n = 200.
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Likelihood in General
In general, suppose the observed data (X1, X2, ..., X,) have a joint
PDF or PMF with some parameter(s) called
f(x1,x2,...,xn | 60)

The likelihood function for the parameter 6 is

L(O) = L(O | X1, Xz,...,X,) = (X1, Xa,...,X,|0).

» Note the likelihood function regards the probability as a
function of the parameter 6 rather than as a function of the
data X1, Xo, ..., X,.

> If

L(61 | x1,...,xn) > L(O2 | x1, ..., Xn),

then 61 appears more plausible to be the true value of 8 than
0> does, given the observed data xg, ..., Xp.
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Maximizing the Log-likelihood

Rather than maximizing the likelihood, it is often computationally
easier to maximize its natural logarithm, called the /og-/ikelihood,
denoted as

£(0) = log L(6)

which results in the same answer since logarithm is strictly
increasing,
x1>x2 <= log(x1) > log(x2).

So
L(@l) > L(92) < Iog L(@l) > Iog L(ez)

Here, log() is always the natural log.

Notation:

» upper case L(0) = likelihood
» lower case /(0) = log L(0) = log-likelihood
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Example (MLE for Binomial)

If the observed data X ~ Binomial (n, p) but p is unknown, the
likelihood of p is

Lip|x)=p(X=x|p)= (Z) p*(1 - p)"~

and the log-likelihood is
n
{(p) =log L(p | x) = log <X> + x log(p) + (n — x) log(1 — p).

From Calculus, we know a function g(u) reaches its max at u = up
if
d2

d
ag(u) =0atu=u and Wg(u) <0 at u=up.
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Example — MLE for Binomial

dﬁ(p| ) X n—x X —np
— X)=—— =
dp p l1-p p(l-p).

equals 0 when
X — np

p(l—p)

That is, when x — np = 0.

=0

Solving for p gives the ML estimator (MLE) | p = X
n

n_

d? X X
and —/ X)=——

ap? 5 <0Oforany0<p<1

Thus, we know ¢(p | x) reaches its max when p = x/n.

. X .
So MLE of p is p = — = sample proportion of successes.
n
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Likelihood Based on i.i.d. Observations

Suppose Xi,..., X, g f(x | 8) for an unknown parameter 6

The joint PDF or PMF of (Xi,...,X,) is the product of the
marginal PDF/PMF since they are i.i.d.

ﬁf(x,- |0) = f(x1 | O)f(x2|0) x -+ X f(xn|0)
i=1
The likelihood is then
L(O)=L(O| X1,...,Xn) = ﬁ f(Xi|0).
i=1
The log likelihood then has the summation form

00) =logL(0| X1,...,X,) =log (ﬁ (X | 9)) Zlog (Xi | 9))
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Example — MLE for Exponential
X1,y Xn g Exponential(A) for unknown A > 0
> PDF: f(x | \) = Ae™™

» likelihood: L(A) =17 F(Xi | A) = A"exp(A D71 X;)
» log likelihood:

(X)) = log L(N\) = nlog(\) — )\zn:X; = nlog(\) — nAX
i=1

» Solve for MLE:

d n

— ~ 1
O—EK(A)—X—HX = )\—7 (Same as MME)

The likelihood indeed reaches its max at A = 1/X since

d? n
Wﬁ()\) =~ < 0.
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Example — MLE for Poisson
X1y, Xn g Poisson(A) for unknown A > 0

> PMF: f(x | \) = e A\ /x!

> likelihood: L(\) = [Ty F(X; | ) = e ™A= X /I, X

» log likelihood:

(N) =log L(N\) = —nA\ + zn:X,- log(A) — Xn: log(Xi!)
i=1

i=1
» Solve for MLE:
—U(\) = — == =
0= i (N\) n+ +
= X=X (same as MME)

A A

The likelihood indeed reaches its max at A = X since

d? nX
- =—<
d\2 ‘) A2 0-
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Example — Negative Binomial
X1,y Xn g NegBin(r, p), r is known, but p is unknown

The PMF is f(x | p) = (*Z1)p"(1 — p)*".

likelihood L(p) = H f(Xi | p) l < )] (1 — p)( o Xi)—nr

[l

{p) = ZIOg( i_ )—i—nrlog( )+ n(X —r)log(1l — p)

The log likelihood is

Solve for MLE:
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To see if log likelihood indeed reaches its max at p = r/X, we

check .
d? _nr n(X—r)

= Yp)= —— )
dp? (p) P> (1-p)?
As X; > r and hence X > r, the second derivative above is indeed
<0.
p

— is indeed the MLE.
X

This shows p =
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MLE for Two Parameters

From Calculus, we know a function g(u, v) reaches its maximum
at (u, v) = (uo, vo) if the following 3 conditions are met

0 0
1. ag(u, v) = Eg(u, v) =0 at (u,v) = (uo, vo);

82
2. ﬁg(u, v) <0 at (u,v) = (uo, vo);

3. the Hessian matrix

9?2 9?2
ﬁg(u, v) %g(uv v)
H? H?

mg(% v) Wg(ua v)

has a positive determinant at (u, v) = (uo, vo)-
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Example — MLE for Normal

Xi, oo, Xn N N(u,0?) for unknown p, o2

» PDF: f(x | p,0?) = %2202 e~ (x—n)?/20?
» likelihood:

n s —-1 n
o) =[] F(X | 10?) = (2r0?) S exp (20 S(X - m2>
i=1 '
> log likelihood:
2y__" oy 1 )2
Up,0%) = =5 log(2m0") — o5 > ., (Xi = 1)

» Solve for MLE:

0= auf(u, 0%) = 2 Ua(Xi —p) = H(X — p)
0= 501, 0%) = 55 + ﬁ S (Xi — p)?
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0= il o?) = A<~
0 == aazg(:uao- ) 20.2 + 2(0.2)2 Z, 1(X 'LL)

The first equation immediately gives ji = X.
Plugging = X into the second equation, we get

—n

B 1 n ) Y
O—@—FWZI_:I(X;—X) = - =

Note the MLE for 2 is not S% = M

n—1
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To check the log likelihood indeed reach its max when p = X and

~ T (Xi—X)? R
G2 = 2,:1(% we calculate the second derivative of the log

likelihood:
02 5 n
87/1/26(/.1,,0' ) = _ﬁ < 0
9?2 n —
—— 2y _ (X —
90%n (n,0%) = = (X —n)
82 n 1 n
_— 2 -0 = Xi . 2
8(0'2)2 (Na g ) 2(0_2)2 (0_2)3 Zi:l( N)
_ nxe )2
When = X and 02 = 5% = Z'=1(+X) the Hessian matrix is
0 _2(32)2

which has a positive determinant. This shows the MLE for p and

O'2 are

(X — X)?
’ .

p=X and &%=
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Example — MLE for Gamma
X1,y Xn g Gamma(a, A) for unknown «, A

(e}

A

» PDF: f(x | a,\) = T )xa_le_)‘x, x>0
a

> likelihood:

no n a—1 .,

i=1
> log Ilkellhood:

(v, A) = naclog A — nlog () + (o — 1) ZlogX—)\ZX-

» Solve for MLE:

d Ma) <
O:%E(a,)\):nlog)\—nr +;IogX,-
0= 2 a, —B—ZX———nX

oA
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The second equation gives

A=

)

><\\ =)

plugging it into the first equation we get

IM(a) 1
— + log X; =0
Ma) ;

This equation cannot be solved in closed form.

nlog(@) — nlog(X) — n

Numerical tools are required to compute the value of the MLE.
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Example — Uniform|0, 6]

X1, .

>
| 4

X S Uniform[0, 6] for unknown 6 > 0

PDF: f(x |0) =% 0<x <6
Joint PDF:

[1f(xi10)=

o1 0 otherwise

n {0" if0< X <0

This means the joint PDF is non-zero only if

0 > X(n) = MaXi<i<n X,'.

Likelihood: L(0) =60—"

Solve for MLE: Note the smaller the value of 8, the greater the
likelihood, but 8 cannot fall below X(,,). Thus the MLE for 6 is

6 = X, (Different from MME.)
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Comparison of MME and MLE for Uniform[0, 6]

MME Oume = 2X:

v

vVVvyy

v

For each X;, E(X;) = g, Var(X;) =
(HMME) =2E(X)=2-5=0
BIaS(QMME) E(GMME) —0=0-—

Variance:

Var(Bume) = Var(2X) = 22 Var(X) =

MSE = bias? + Var(@MME) =

92
3n

n

92

3n
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Comparison of MME & MLE for Uniform|0, 6]:
MLE §MLE :X(n)i

> Using tools in LO7, one can obtain the PDF of X(,):

» Bias:
0 nxn—1 né 0

E(Ouie) = : dx = bias = ———
(OmLE) /X:OX o X o = bias o

» Variance:

N 0 an—l n92

~ n6>? nd \?2 n6?
= Var(QMLE) - n+2 - (n+1) - (n+1)2(n+2)

262

> MSE(fuie) = bias? + Var(Guie) = CES CE)
R 2
» far smaller than MSE(Ovme) = %
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Propertles of I\/ILE for Exponential
For X1, ..., Xy S Exponential(\) with the PDF

f(x | A)=Xe ™, x>0,

><\\~ -

The MLE (and MME) for X is A =

Since Y = nX =7 1 X; ~ Gamma(n, \) has the PDF

)\n
fi — n—1_-—M\y
we can find the expected value and variance for A = 1/X = n/Y
as follows,
Soe(2) = [0 A gy, - M
EN_E(Y) /Oy r(n)” =13
2 oo 2 n 212
N2 — — IL,.AEL, n=1,=Ayq, — n°A
=€ (52 Loy Y = =i
242 2 242
2 n°A (A B n°\
Var(}) = E[V'] - (E[N))” = (n—1)(n—2) <n_1> T (- 12(n—2)
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The bias is

ni A
— A= .
n—1 n—1

Bias = E[\] — A =

The MSE of \ is

MSE = Bias? + Var(}\)

_( A )2 >\  (n42)N2
S \n-—1 (n—1)2(n—-2) (n—1)(n—-2)
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