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Section 8.3 Parameter Estimation
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Parameter Estimation

Suppose that we observe data X1, X2, . . . , Xn generated from a
known distribution with unknown parameter(s), e.g., the data is
from

▶ N(µ, σ2), with µ unknown (& σ2 known)
▶ N(µ, σ2), with µ & σ2 unknown
▶ Exponential(λ), with λ unknown
▶ Binomial(n, p), with n known and p unknown

How can we estimate the unknown parameter(s)?
How can we perform inference on the unknown parameter(s)?
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General Notation

▶ X1, . . . , Xn = data drawn i.i.d. from the distribution
▶ θ = the unknown parameter(s)
▶ θ lies in Θ = subspace of R (or R2 if two parameters, etc)

▶ We will write f (x | θ) for the PDF or PMF of the distribution,
e.g.,
▶ Exponential(λ) ⇝ PDF f (x | λ) = λe−λx

▶ Poisson(λ) ⇝ PMF f (x | λ) = λx e−λ

x !
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Parameter Estimation (Point Estimate)
Given data X1, . . . , Xn i.i.d. ∼ f (x | θ), would like to estimate the
unknown θ

The point estimate or estimator of a parameter θ, is a function

θ̂ = g(X1, . . . , Xn)

computed from the observed data {X1, . . . , Xn} that is a sensible
guess for the unknown θ.

Note: any estimator θ̂ must be a function of X1, . . . , Xn only
it cannot involve any unknown parameter, e.g.,∑n

i=1(Xi − µ)2

n

is not a estimator since it involves the unknown µ.
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Examples of Point Estimates
Example 1: If X1, . . . , Xn are i.i.d. N(µ, σ2), the point estimate
for the population mean µ can be

▶ the sample mean X = 1
n
∑n

i=1 Xi
▶ the median of X1, . . . , Xn
▶ the average of X1, . . . , Xn after excluding the minimum &

maximum

The point estimate for the population variance σ2 can be

▶ the sample variance S2 =
∑n

i=1

(
Xi − X

)2

n − 1
▶ an alternative estimator would result from using divisor n

instead of n − 1

σ̂2 =
∑n

i=1

(
Xi − X

)2

n
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Examples of Point Estimates

Example 2: If X ∼ Bin(n, p) is Binomial, the point estimate for
the success probability p can be

▶ the sample proportion p̂ = X
n

▶ Wilson’s plus-four estimate p̃ = X + 2
n + 4

▶ adding successes and two failures to the sample and then
calculate the sample proportion of successes
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Mean Squared Error

With many possible point estimates θ̂’s for a parameter θ, how to
choose a good one among them?

A population criterion is to compare their Mean Squared Error
(MSE), defined as

Mean Squared Error (MSE) = E[(θ̂ − θ)2]
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MSE = (Bias)2+ Variance
Recall the shortcut formula for the variance of any variable Y

Var(Y ) = E(Y 2) − (E(Y ))2,

Rearranging the terms, we get

E(Y 2) = (E(Y ))2 + Var(Y ).

Plugging in Y = θ̂ − θ, then E(θ̂ − θ) = E(θ̂) − θ, we get

E[(θ̂ − θ)2] = [E(θ̂) − θ]2 + Var(θ̂ − θ)
∥ ∥ ∥

MSE = (Bias)2 + Var(θ̂)

where the bias of an point estimate θ̂ for θ is defined to be the
difference between the expected value of the estimate and the true
value of the parameter

Bias = E(θ̂) − θ
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Unbiased Estimators

A point estimator θ̂ is said to be an unbiased estimator of θ if

E(θ̂) = θ

for every possible value of θ.

For unbiased estimators, MSE = Variance .
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Examples of MSE

If X1, . . . , Xn are i.i.d. with population mean µ and population
variance σ2, using the sample mean X = 1

n
∑n

i=1 Xi the point
estimate for the population mean µ

▶ the bias is E(X ) − µ = µ − µ = 0
▶ the variance is Var(X ) = σ2/n

The MSE for X is hence

MSE = (Bias)2 + Variance = 02 + σ2

n = σ2

n
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MSE of Sample Variance S2

In L13, we have shown that if X1, X2, . . . , Xn are i.i.d. ∼ N(µ, σ2),
then S2 is an unbiased estimate for σ2.

E[S2] = σ2

To obtain the MSE, we need to calculate Var(S2). From that

T = (n − 1)S2

σ2 ∼ χ2
n−1,

and the variance for T ∼ χ2
n−1 is 2(n − 1), it follows that

Var(S2) = Var
(

σ2T
n − 1

)
=
(

σ2

n − 1

)2

Var(T )︸ ︷︷ ︸
=2(n−1)

= 2σ4

n − 1 .

The MSE of S2 is hence

MSE = (Bias)2 + Variance = 02 + 2σ4

n − 1 = 2σ4

n − 1
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A Biased Estimator for σ2 w/ a Smaller MSE
Consider an alternative estimator for σ2 that using divisor n + 1
instead of n − 1

σ̂2 =
∑n

i=1(Xi − X )2

n + 1 = (n − 1)S2

n + 1

The expected value and variance of σ̂2 are respectively

E(σ̂2) = (n − 1) E(S2)
n + 1 = (n − 1)σ2

n + 1 ,

Var(σ̂2) =
(n − 1

n + 1

)2
Var(S2) =

(n − 1
n + 1

)2 2σ4

(n − 1) = 2(n − 1)σ4

(n + 1)2

Hence, σ̂2 is a biased estimator for σ2 with

Bias = E(σ̂2) − σ2 = (n − 1)σ2

n + 1 − σ2 = −2σ2

n + 1 .
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The MSE of σ̂2 is

MSE = (Bias)2 + Variance

=
(

−2σ2

n + 1

)2

+ 2(n − 1)σ4

(n + 1)2 = 2nσ4

(n + 1)2

which is lower than the MSE of 2σ4

n − 1 for the sample variance S2.

A biased estimator might have a smaller MSE if it has a smaller
variance.
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MSE of the Sample Proportion p̂ = X
n

If X ∼ Bin(n, p) is Binomial, a point estimate for the success
probability p is the sample proportion p̂ = X

n . As X is Binomial,

E(X ) = np ⇒ E(p̂) = E(X )
n = np

n = p

Var(X ) = np(1 − p) ⇒ Var(p̂) = Var(X )
n2 = np(1 − p)

n2 = p(1 − p)
n

Thus the sample proportion p̂ is unbiased with the MSE

MSE = (Bias)2 + Variance = 02 + p(1 − p)
n = p(1 − p)

n .
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MSE for Wilson’s “Plus-Four” Estimate for Proportions

Recall Wilson’s plus-four estimate is

p̃ = X + 2
n + 4 .

It’s expected value and variance are respectively,

E(p̃) = E(X ) + 2
n + 4 = np + 2

n + 4 , and Var(p̃) = Var(X )
(n + 4)2 = np(1 − p)

(n + 4)2 .

Its bias and MSE are respectively

Bias = E(p̃) − p = np + 2
n + 4 − p = 2 − 4p

n + 4

MSE = (Bias)2 + Variance =
(2 − 4p

n + 4

)2
+ np(1 − p)

(n + 4)2
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MSE’s for Sample Proportion & Wilson’s “Plus-Four”
Below are the graphs of the MSE for p̂ = X/n and p̃ = X + 2

n + 4

MSE(p̂) = p(1 − p)
n , MSE(p̃) =

(2 − 4p
n + 4

)2
+ np(1 − p)

(n + 4)2
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▶ p̂ = X/n has a smaller MSE only when p is close to 0 or 1
▶ p̃ = X+2

n+4 has a smaller MSE when p is NOT close to 0 or 1
▶ The two MSE’s are close when n is large
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Sampling Distributions

The sampling distribution of a point estimate θ̂ is simply its
probability distribution, e.g.,

Ex1. If X1, . . . , Xn are i.i.d. ∼ N(µ, σ2), the sampling distribution
for µ̂ = X is

µ̂ = X ∼ N
(

µ,
σ2

n

)
and the sampling distribution for S2 is that

S2 = σ2T
n − 1 , where T ∼ χ2

n−1.

Note: The sampling distribution generally depends on some
unknown parameter θ.
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Ex2: If X1, . . . , Xn are i.i.d. from some distribution with mean µ
and variance σ2 (not necessarily normal),

▶ the exact sampling distribution would depend on the
distribution of Xi

▶ CLT asserts that

µ̂ = X is approx. ∼ N
(

µ,
σ2

n

)
.
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Standard Error
The standard error (SE) of a point estimate θ̂ refers to any
estimate of the standard deviation of θ̂.

Ex1. If X1, . . . , Xn are i.i.d. ∼ N(µ, σ2),

▶ the standard deviation for µ̂ = X is

SD(X ) =
√

Var(X ) =

√
σ2

n

which involves the unknown σ2

▶ the standard error for X is

SE(X ) =

√
S2

n

which replaces the unknown σ2 by its estimate S2.

20 / 53



Ex2. If X ∼ Bin(n, p),

▶ the standard deviation for p̂ = X/n is

SD(p̂) =
√

Var(p̂) =

√
p(1 − p)

n

which involves the unknown p
▶ the standard error for p̂ is

SE(p̂) =

√
p̂(1 − p̂)

n

which replaces the unknown p by its estimate p̂.

Note: The true SD may depend on θ, while SE depends on the
data but not on θ
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Section 8.4 The Method of Moments
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Sample Moments

Recall the kth moment of a random variable X is E[X k ].

If X1, . . . , Xn are i.i.d. from some distribution f (x | θ) , the kth
sample moment is defined to be

µ̂k = 1
n

n∑
i=1

X k
i
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The Method of Moments (MME)
The method of moments is a strategy for finding an estimator θ̂.
If there is only one parameter θ,

1. Compute E(X ) as a function of θ
2. Compute the sample mean X = 1

n
∑n

i=1 Xi
3. Choose θ̂ as the value of θ so that E(X ) = X

If there are k parameters θ1, . . . , θk

1. Compute E(X ), E(X 2), . . . , E(X k) as functions of θi ’s
2. Compute the sample moments

µ̂1 = 1
n
∑n

i=1
Xi , µ̂2 =

∑n
i=1

X 2
i , . . . , µ̂k = 1

n
∑n

i=1
X k

i .

3. Choose (θ̂1, . . . , θ̂m) as the value of θi so that

E(X j) = 1
n
∑n

i=1
X j

i for 1 ≤ j ≤ k.

(solving a system of k equations, for k unknowns)
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Examples (1 Parameter)
Ex1: X1, . . . , Xn

iid∼ Poisson(λ) for unknown λ > 0

▶ PMF: f (x | λ) = e−λλx/x !, x = 0, 1, 2, . . .
▶ E(X ) = λ
▶ The method of moment estimate (MME) for λ is λ̂ = X

Ex2: X1, . . . , Xn
iid∼ Geometric(p) for unknown p

▶ PMF: f (x | p) = (1 − p)x−1p, x = 1, 2, 3, . . .
▶ E(X ) = 1/p
▶ MME for p is p̂ = 1/X

Ex3: X1, . . . , Xn
iid∼ Exponential(λ) for unknown λ > 0

▶ PDF: f (x | λ) = λe−λx , x > 0
▶ E(X ) = 1/λ
▶ MME for λ is λ̂ = 1/X .
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Example 4 — Uniform[0, θ]

X1, . . . , Xn
iid∼ Uniform[0, θ] for unknown θ > 0

▶ PDF: f (x | θ) = 1
θ , 0 ≤ x ≤ θ

▶ E(X ) = θ/2
▶ MME for θ is θ̂ = 2X .
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Example 5 — MME for Gamma
X1, . . . , Xn

iid∼ Gamma(α, λ) for unknown α, λ > 0

▶ PDF: f (x | α, λ) = λα

Γ(α)xα−1e−λx x > 0
▶ E(X ) = α/λ

▶ Var(X ) = α/λ2 ⇒ E[X 2] = Var(X ) + (E(X ))2 = α(α + 1)
λ2

▶ The MMEs for α and λ must satisfy

X = α̂

λ̂
, µ̂2 = α̂(α̂ + 1)

λ̂2
(Recall µ̂2 = 1

n

n∑
i=1

X 2
i )

From the second equation

µ̂2 = X 2 + X
λ

⇒ λ̂ = X
µ̂2 − X 2

and from the first equation,

α̂ = λ̂X = X 2

µ̂2 − X 2 .
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Section 8.5 Likelihood &
Maximum Likelihood Estimation
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A Probability Question
Let p be the proportion of US adults that are willing to get the
latest flu shot.

A sample of 20 subjects are randomly selected. Let X be the
number of them that are willing to get the latest flu shot. What is
P(X = 8)?

Answer: X is Binomial (n = 20, p) (Why?)

P(X = x | p) =
(

20
x

)
px (1 − p)n−x .

If p is known to be 0.3, then

P(X = 8 | p) =
(

20
8

)
(0.3)8(0.7)12 ≈ 0.1144.
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A Statistics Question
Suppose 8 of 20 randomly selected U.S. adults said they are willing
to get the latest flu shot.
What can we infer about the value of

p = proportion of U.S. adults that are
willing to get a flu shot?

The chance to observe X = 8 in a random sample of size n = 20 is

P(X = 8 | p) =



(
20
8

)
(0.3)8(0.7)12 ≈ 0.1144 if p = 0.3(

20
8

)
(0.6)8(0.4)12 ≈ 0.0355 if p = 0.6

It appears that p = 0.3 is more likely to be true value p than
p = 0.6, since the former gives a higher prob. to observe the
outcome X = 8.
We say the likelihood of p = 0.3 is higher than that of p = 0.6.
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Maximum Likelihood Estimate (MLE)
The maximum likelihood estimate (MLE) of a parameter θ is the
value at which the likelihood function is maximized.

Example. If 8 of 20 randomly selected U.S. adults are comfortable
getting the flu shot, the likelihood function

L(p | x = 8) =
(

20
8

)
p8(1 − p)12

reaches its max at p = 0.4,
the MLE for p is p̂ = 0.4 given the data X = 8.
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Maximum Likelihood Estimate (MLE)
The probability

P(X = x | p) =
(

n
x

)
px (1 − p)n−x = L(p | x)

viewed as a function of p, is called the likelihood function,
(or just the likelihood) of p, denoted as L(p | x).

It measure the “plausibility” of a value being the true value of p.
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Likelihood in General
In general, suppose the observed data (X1, X2, . . . , Xn) have a joint
PDF or PMF with some parameter(s) called θ

f (x1, x2, . . . , xn | θ)

The likelihood function for the parameter θ is

L(θ) = L(θ | X1, X2, . . . , Xn) = f (X1, X2, . . . , Xn | θ).

▶ Note the likelihood function regards the probability as a
function of the parameter θ rather than as a function of the
data X1, X2, . . . , Xn.

▶ If
L(θ1 | x1, . . . , xn) > L(θ2 | x1, . . . , xn),

then θ1 appears more plausible to be the true value of θ than
θ2 does, given the observed data x1, . . . , xn.
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Maximizing the Log-likelihood
Rather than maximizing the likelihood, it is often computationally
easier to maximize its natural logarithm, called the log-likelihood,
denoted as

ℓ(θ) = log L(θ)

which results in the same answer since logarithm is strictly
increasing,

x1 > x2 ⇐⇒ log(x1) > log(x2).

So
L(θ1) > L(θ2) ⇐⇒ log L(θ1) > log L(θ2).

Here, log() is always the natural log.

Notation:

▶ upper case L(θ) = likelihood
▶ lower case ℓ(θ) = log L(θ) = log-likelihood
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Example (MLE for Binomial)

If the observed data X ∼ Binomial (n, p) but p is unknown, the
likelihood of p is

L(p | x) = p(X = x | p) =
(

n
x

)
px (1 − p)n−x

and the log-likelihood is

ℓ(p) = log L(p | x) = log
(

n
x

)
+ x log(p) + (n − x) log(1 − p).

From Calculus, we know a function g(u) reaches its max at u = u0
if

d
du g(u) = 0 at u = u0 and d2

du2 g(u) < 0 at u = u0.
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Example — MLE for Binomial
d
dp ℓ(p | x) = x

p − n − x
1 − p = x − np

p(1 − p).
equals 0 when

x − np
p(1 − p) = 0

That is, when x − np = 0.

Solving for p gives the ML estimator (MLE) p̂ = x
n .

and d2

dp2 ℓ(p | x) = − x
p2 − n − x

(1 − p)2 < 0 for any 0 < p < 1

Thus, we know ℓ(p | x) reaches its max when p = x/n.

So MLE of p is p̂ = X
n = sample proportion of successes.
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Likelihood Based on i.i.d. Observations
Suppose X1, . . . , Xn

iid∼ f (x | θ) for an unknown parameter θ

The joint PDF or PMF of (X1, . . . , Xn) is the product of the
marginal PDF/PMF since they are i.i.d.

n∏
i=1

f (xi | θ) = f (x1 | θ)f (x2 | θ) × · · · × f (xn | θ)

The likelihood is then

L(θ) = L(θ | X1, . . . , Xn) =
n∏

i=1
f (Xi | θ).

The log likelihood then has the summation form

ℓ(θ) = log L(θ | X1, . . . , Xn) = log
( n∏

i=1
f (Xi | θ)

)
=

n∑
i=1

log
(
f (Xi | θ)

)
.
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Example — MLE for Exponential
X1, . . . , Xn

iid∼ Exponential(λ) for unknown λ > 0

▶ PDF: f (x | λ) = λe−λx

▶ likelihood: L(λ) =
∏n

i=1 f (Xi | λ) = λn exp(λ
∑n

i=1 Xi)
▶ log likelihood:

ℓ(λ) = log L(λ) = n log(λ) − λ
n∑

i=1
Xi = n log(λ) − nλX

▶ Solve for MLE:

0 = d
dλ

ℓ(λ) = n
λ

− nX ⇒ λ̂ = 1
X

(same as MME)

The likelihood indeed reaches its max at λ = 1/X since

d2

dλ2 ℓ(λ) = − n
λ2 < 0.

39 / 53



Example — MLE for Poisson
X1, . . . , Xn

iid∼ Poisson(λ) for unknown λ > 0

▶ PMF: f (x | λ) = e−λλx/x !
▶ likelihood: L(λ) =

∏n
i=1 f (Xi | λ) = e−nλλ

∑n
i=1 Xi

/∏n
i=1 Xi !

▶ log likelihood:

ℓ(λ) = log L(λ) = −nλ +
n∑

i=1
Xi log(λ) −

n∑
i=1

log(Xi !)

▶ Solve for MLE:

0 = d
dλ

ℓ(λ) = −n +
∑n

i=1 Xi
λ

= −n + nX
λ

⇒ λ̂ = X (same as MME)

The likelihood indeed reaches its max at λ = X since

d2

dλ2 ℓ(λ) = −nX
λ2 ≤ 0.

40 / 53



Example — Negative Binomial
X1, . . . , Xn

iid∼ NegBin(r , p), r is known, but p is unknown

The PMF is f (x | p) =
(x−1

r−1
)
pr (1 − p)x−r .

likelihood L(p) =
n∏

i=1
f (Xi | p) =

[ n∏
i=1

(
Xi − 1
r − 1

)]
pnr (1 − p)(

∑n
i=1 Xi )−nr

=
[ n∏

i=1

(
Xi − 1
r − 1

)]
pnr (1 − p)nX−nr

The log likelihood is

ℓ(p) =
n∑

i=1
log
(

Xi − 1
r − 1

)
+ nr log(p) + n(X − r) log(1 − p)

Solve for MLE:

0 = d
dp ℓ(p) = nr

p − n(X − r)
1 − p = n(r − pX )

p(1 − p) ⇒ p̂ = r
X

.
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To see if log likelihood indeed reaches its max at p = r/X , we
check

d2

dp2 ℓ(p) = −nr
p2 − n(X − r)

(1 − p)2

As Xi ≥ r and hence X ≥ r , the second derivative above is indeed
≤ 0.

This shows p̂ = r
X

is indeed the MLE.
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MLE for Two Parameters

From Calculus, we know a function g(u, v) reaches its maximum
at (u, v) = (u0, v0) if the following 3 conditions are met

1. ∂

∂u g(u, v) = ∂

∂v g(u, v) = 0 at (u, v) = (u0, v0);

2. ∂2

∂u2 g(u, v) < 0 at (u, v) = (u0, v0);

3. the Hessian matrix∣∣∣∣∣∣∣∣
∂2

∂u2 g(u, v) ∂2

∂uv g(u, v)

∂2

∂vu g(u, v) ∂2

∂v2 g(u, v)

∣∣∣∣∣∣∣∣
has a positive determinant at (u, v) = (u0, v0).
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Example — MLE for Normal

X1, . . . , Xn
iid∼ N(µ, σ2) for unknown µ, σ2

▶ PDF: f (x | µ, σ2) = 1√
2πσ2 e−(x−µ)2/2σ2

▶ likelihood:

L(µ, σ2) =
n∏

i=1
f (Xi | µ, σ2) = (2πσ2)− n

2 exp
(

−1
2σ2

n∑
i=1

(Xi − µ)2
)

▶ log likelihood:

ℓ(µ, σ2) = −n
2 log(2πσ2) − 1

2σ2

∑n
i=1

(Xi − µ)2

▶ Solve for MLE:0 = ∂
∂µℓ(µ, σ2) = 1

σ2
∑n

i=1(Xi − µ) = n
σ2 (X − µ)

0 = ∂
∂σ2 ℓ(µ, σ2) = −n

2σ2 + 1
2(σ2)2

∑n
i=1(Xi − µ)2
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0 = ∂
∂µℓ(µ, σ2) = n

σ2 (X − µ)
0 = ∂

∂σ2 ℓ(µ, σ2) = −n
2σ2 + 1

2(σ2)2
∑n

i=1(Xi − µ)2

The first equation immediately gives µ̂ = X .
Plugging µ = X into the second equation, we get

0 = −n
2σ2 + 1

2(σ2)2

∑n
i=1

(Xi − X )2 ⇒ σ̂2 =
∑n

i=1(Xi − X )2

n .

Note the MLE for σ2 is not S2 =
∑n

i=1(Xi −X)2

n−1 .
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To check the log likelihood indeed reach its max when µ = X and
σ̂2 =

∑n
i=1(Xi −X)2

n , we calculate the second derivative of the log
likelihood:

∂2

∂µ2 ℓ(µ, σ2) = − n
σ2 < 0

∂2

∂σ2µ
ℓ(µ, σ2) = − n

σ4 (X − µ)

∂2

∂(σ2)2 ℓ(µ, σ2) = n
2(σ2)2 − 1

(σ2)3

∑n
i=1

(Xi − µ)2

When µ = X and σ2 = σ̂2 =
∑n

i=1(Xi −X)2

n , the Hessian matrix is∣∣∣∣∣−
n
σ̂2 0
0 − n

2(σ̂2)2

∣∣∣∣∣
which has a positive determinant. This shows the MLE for µ and
σ2 are

µ = X and σ̂2 =
∑n

i=1(Xi − X )2

n .
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Example — MLE for Gamma
X1, . . . , Xn

iid∼ Gamma(α, λ) for unknown α, λ

▶ PDF: f (x | α, λ) = λα

Γ(α)xα−1e−λx , x > 0
▶ likelihood:

L(α, λ) =
n∏

i=1
f (Xi | α, λ) = λnα

(Γ(α))n

( n∏
i=1

Xi

)α−1

e−λ
∑n

i=1 Xi

▶ log likelihood:

ℓ(α, λ) = nα log λ − n log Γ(α) + (α − 1)
n∑

i=1
log Xi − λ

n∑
i=1

Xi

▶ Solve for MLE:

0 = ∂

∂α
ℓ(α, λ) = n log λ − nΓ′(α)

Γ(α) +
n∑

i=1
log Xi

0 = ∂

∂λ
ℓ(α, λ) = nα

λ
−

n∑
i=1

Xi = nα

λ
− nX
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The second equation gives

λ̂ = α̂

X
,

plugging it into the first equation we get

n log(α̂) − n log(X ) − nΓ′(α̂)
Γ(α̂) +

n∑
i=1

log Xi = 0

This equation cannot be solved in closed form.
Numerical tools are required to compute the value of the MLE.
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Example — Uniform[0, θ]

X1, . . . , Xn
iid∼ Uniform[0, θ] for unknown θ > 0

▶ PDF: f (x | θ) = 1
θ , 0 ≤ x ≤ θ

▶ Joint PDF:
n∏

i=1
f (Xi | θ) =

{
θ−n if 0 ≤ Xi ≤ θ

0 otherwise

This means the joint PDF is non-zero only if
θ ≥ X(n) = max1≤i≤n Xi .

▶ Likelihood: L(θ) = θ−n

▶ Solve for MLE: Note the smaller the value of θ, the greater the
likelihood, but θ cannot fall below X(n). Thus the MLE for θ is

θ̂ = X(n) (Different from MME.)
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Comparison of MME and MLE for Uniform[0, θ]

MME θ̂MME = 2X :

▶ For each Xi , E(Xi) = θ
2 , Var(Xi) = θ2

12
▶ E(θ̂MME) = 2 E(X ) = 2 · θ

2 = θ

▶ Bias(θ̂MME) = E(θ̂MME) − θ = θ − θ = 0
▶ Variance:

Var(θ̂MME) = Var(2X ) = 22 Var(X ) = 22 Var(Xi)
n = θ2

3n

▶ MSE = bias2 + Var(θ̂MME) = θ2

3n
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Comparison of MME & MLE for Uniform[0, θ]:
MLE θ̂MLE = X(n):
▶ Using tools in L07, one can obtain the PDF of X(n):

f (x) = nxn−1

θn , 0 ≤ x ≤ θ

▶ Bias:
E(θ̂MLE) =

∫ θ

x=0
x · nxn−1

θn dx = nθ

n + 1 ⇒ bias = − θ

n + 1
▶ Variance:

E((θ̂MLE)2) =
∫ θ

x=0
x2 · nxn−1

θn dx = nθ2

n + 2

⇒ Var(θ̂MLE) = nθ2

n + 2 −
( nθ

n + 1

)2
= nθ2

(n + 1)2(n + 2)

▶ MSE(θ̂MLE) = bias2 + Var(θ̂MLE) = 2θ2

(n + 1)(n + 2)
▶ far smaller than MSE(θ̂MME) = θ2

3n
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Properties of MLE for Exponential
For X1, . . . , Xn

iid∼ Exponential(λ) with the PDF
f (x | λ) = λe−λx , x > 0,

The MLE (and MME) for λ is λ̂ = 1
X

.

Since Y = nX =
∑n

i=1 Xi ∼ Gamma(n, λ) has the PDF

fY (y) = λn

Γ(n)yn−1e−λy , y > 0,

we can find the expected value and variance for λ̂ = 1/X = n/Y
as follows,

E[λ̂] = E
( n

Y

)
=
∫ ∞

y=0

n
y · λn

Γ(n)yn−1e−λy dy = nλ

n − 1

E[λ̂2] = E
(

n2

Y 2

)
=
∫ ∞

y=0

n2

y2 · λn

Γ(n)yn−1e−λy dy = n2λ2

(n − 1)(n − 2)

Var(λ̂) = E[λ̂2] − (E[λ̂])2 = n2λ2

(n − 1)(n − 2) −
(

nλ

n − 1

)2
= n2λ2

(n − 1)2(n − 2)
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The bias is

Bias = E[λ̂] − λ = nλ

n − 1 − λ = λ

n − 1 .

The MSE of λ̂ is

MSE = Bias2 + Var(λ̂)

=
(

λ

n − 1

)2
+ n2λ2

(n − 1)2(n − 2) = (n + 2)λ2

(n − 1)(n − 2) .
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