STAT 24400 Lecture 14 Section 8.3 Parameter Estimation Section 8.4 The Method of Moments Section 8.5 The Method of Maximum Likelihood

> Yibi Huang Department of Statistics University of Chicago

Section 8.3 Parameter Estimation

Parameter Estimation

Suppose that we observe data X_1, X_2, \ldots, X_n generated from a known distribution with unknown parameter(s), e.g., the data is from

- $N(\mu, \sigma^2)$, with μ unknown (& σ^2 known)
- $N(\mu, \sigma^2)$, with $\mu \& \sigma^2$ unknown
- Exponential(λ), with λ unknown
- Binomial(n, p), with *n* known and *p* unknown

How can we estimate the unknown parameter(s)? How can we perform inference on the unknown parameter(s)?

General Notation

- X_1, \ldots, X_n = data drawn i.i.d. from the distribution
- θ = the unknown parameter(s)
- θ lies in Θ = subspace of \mathbb{R} (or \mathbb{R}^2 if two parameters, etc)

General Notation

- X_1, \ldots, X_n = data drawn i.i.d. from the distribution
- θ = the unknown parameter(s)
- θ lies in Θ = subspace of \mathbb{R} (or \mathbb{R}^2 if two parameters, etc)
- We will write f(x | θ) for the PDF or PMF of the distribution, e.g.,

• Exponential(
$$\lambda$$
) \rightsquigarrow PDF $f(x \mid \lambda) = \lambda e^{-\lambda x}$

• Poisson(
$$\lambda$$
) \rightsquigarrow PMF $f(x \mid \lambda) = \frac{\lambda^{x} e^{-\lambda}}{x!}$

Parameter Estimation (Point Estimate)

Given data X_1, \ldots, X_n i.i.d. $\sim f(x \mid \theta)$, would like to estimate the unknown θ

The *point estimate* or *estimator* of a parameter θ , is a function

$$\widehat{\theta} = g(X_1,\ldots,X_n)$$

computed from the observed data $\{X_1, \ldots, X_n\}$ that is a sensible guess for the unknown θ .

Note: any estimator $\hat{\theta}$ must be a function of X_1, \ldots, X_n only it cannot involve any unknown parameter, e.g.,

$$\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{n}$$

is not a estimator since it involves the unknown μ .

Examples of Point Estimates

Example 1: If X_1, \ldots, X_n are i.i.d. $N(\mu, \sigma^2)$, the point estimate for the population mean μ can be

- the sample mean $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- the median of X_1, \ldots, X_n
- the average of X₁,..., X_n after excluding the minimum & maximum

The point estimate for the population variance σ^2 can be

• the sample variance
$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$$

▶ an alternative estimator would result from using divisor n instead of n-1

$$\widehat{\sigma}^2 = \frac{\sum_{i=1}^n \left(X_i - \overline{X}\right)^2}{n}$$

Example 2: If $X \sim Bin(n, p)$ is Binomial, the point estimate for the success probability p can be

the sample proportion \$\hat{p} = \frac{X}{n}\$
Wilson's plus-four estimate \$\tilde{p} = \frac{X+2}{n+4}\$

adding successes and two failures to the sample and then calculate the sample proportion of successes With many possible point estimates $\hat{\theta}$'s for a parameter θ , how to choose a good one among them?

A population criterion is to compare their *Mean Squared Error* (*MSE*), defined as

Mean Squared Error (MSE) = $E[(\hat{\theta} - \theta)^2]$

$MSE = (Bias)^2 + Variance$

Recall the shortcut formula for the variance of any variable Y

$$Var(Y) = E(Y^2) - (E(Y))^2,$$

Rearranging the terms, we get

$$E(Y^{2}) = (E(Y))^{2} + Var(Y).$$
Plugging in $Y = \hat{\theta} - \theta$, then $E(\hat{\theta} - \theta) = E(\hat{\theta}) - \theta$, we get
$$E[(\hat{\theta} - \theta)^{2}] = [E(\hat{\theta}) - \theta]^{2} + Var(\hat{\theta} - \theta)$$

$$\parallel \qquad \parallel \qquad \parallel$$

$$MSE = (Bias)^{2} + Var(\hat{\theta})$$

where the *bias* of an point estimate $\hat{\theta}$ for θ is defined to be the difference between the expected value of the estimate and the true value of the parameter

$$\mathsf{Bias} = \mathsf{E}(\widehat{\theta}) - \theta$$

A point estimator $\widehat{\theta}$ is said to be an *unbiased estimator* of θ if $\mathsf{E}(\widehat{\theta})=\theta$

for every possible value of θ .

A point estimator $\hat{\theta}$ is said to be an *unbiased estimator* of θ if

$$\mathsf{E}(\widehat{\theta}) = \theta$$

for every possible value of θ .

For unbiased estimators, MSE = Variance.

Examples of MSE

If X_1, \ldots, X_n are i.i.d. with population mean μ and population variance σ^2 , using the sample mean $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ the point estimate for the population mean μ

The MSE for \overline{X} is hence

$$MSE = (Bias)^2 + Variance = 0^2 + \frac{\sigma^2}{n} = \frac{\sigma^2}{n}$$

MSE of Sample Variance S^2

In L13, we have shown that if X_1, X_2, \ldots, X_n are i.i.d. $\sim N(\mu, \sigma^2)$, then S^2 is an unbiased estimate for σ^2 .

$$\mathsf{E}[S^2] = \sigma^2$$

To obtain the MSE, we need to calculate $Var(S^2)$. From that

$$T=\frac{(n-1)S^2}{\sigma^2}\sim\chi^2_{n-1},$$

and the variance for $\mathcal{T}\sim \chi^2_{n-1}$ is 2(n-1), it follows that

$$\operatorname{Var}(S^2) = \operatorname{Var}\left(\frac{\sigma^2 T}{n-1}\right) = \left(\frac{\sigma^2}{n-1}\right)^2 \underbrace{\operatorname{Var}(T)}_{=2(n-1)} = \frac{2\sigma^4}{n-1}.$$

The MSE of S^2 is hence

$$\mathsf{MSE} = (\mathsf{Bias})^2 + \mathsf{Variance} = 0^2 + \frac{2\sigma^4}{n-1} = \frac{2\sigma^4}{n-1}$$

A Biased Estimator for $\sigma^2 w/a$ Smaller MSE

Consider an alternative estimator for σ^2 that using divisor n+1 instead of n-1

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n+1} = \frac{(n-1)S^2}{n+1}$$

The expected value and variance of $\widehat{\sigma}^2$ are respectively

$$E(\hat{\sigma}^2) = \frac{(n-1)E(S^2)}{n+1} = \frac{(n-1)\sigma^2}{n+1},$$

$$Var(\hat{\sigma}^2) = \left(\frac{n-1}{n+1}\right)^2 Var(S^2) = \left(\frac{n-1}{n+1}\right)^2 \frac{2\sigma^4}{(n-1)} = \frac{2(n-1)\sigma^4}{(n+1)^2}$$

Hence, $\widehat{\sigma}^2$ is a \mathbf{biased} estimator for σ^2 with

Bias = E(
$$\hat{\sigma}^2$$
) - $\sigma^2 = \frac{(n-1)\sigma^2}{n+1} - \sigma^2 = \frac{-2\sigma^2}{n+1}$

The MSE of $\hat{\sigma}^2$ is

$$\begin{aligned} \mathsf{MSE} &= (\mathsf{Bias})^2 + \mathsf{Variance} \\ &= \left(\frac{-2\sigma^2}{n+1}\right)^2 + \frac{2(n-1)\sigma^4}{(n+1)^2} = \frac{2n\sigma^4}{(n+1)^2} \end{aligned}$$

which is lower than the MSE of $\frac{2\sigma^4}{n-1}$ for the sample variance S^2 .

The MSE of $\hat{\sigma}^2$ is

$$MSE = (Bias)^{2} + Variance$$
$$= \left(\frac{-2\sigma^{2}}{n+1}\right)^{2} + \frac{2(n-1)\sigma^{4}}{(n+1)^{2}} = \frac{2n\sigma^{4}}{(n+1)^{2}}$$

which is lower than the MSE of $\frac{2\sigma^4}{n-1}$ for the sample variance S^2 .

A biased estimator might have a smaller MSE if it has a smaller variance.

MSE of the Sample Proportion $\hat{p} = \frac{X}{n}$

If $X \sim Bin(n, p)$ is Binomial, a point estimate for the success probability p is the sample proportion $\hat{p} = \frac{X}{n}$. As X is Binomial,

$$E(X) = np \qquad \Rightarrow \qquad E(\widehat{p}) = \frac{E(X)}{n} = \frac{np}{n} = p$$
$$Var(X) = np(1-p) \qquad \Rightarrow \qquad Var(\widehat{p}) = \frac{Var(X)}{n^2} = \frac{np(1-p)}{n^2} = \frac{p(1-p)}{n}$$

Thus the sample proportion \hat{p} is **unbiased** with the MSE

$$\mathsf{MSE} = (\mathsf{Bias})^2 + \mathsf{Variance} = 0^2 + \frac{p(1-p)}{n} = \frac{p(1-p)}{n}.$$

MSE for Wilson's "Plus-Four" Estimate for Proportions

Recall Wilson's plus-four estimate is

$$\tilde{p} = \frac{X+2}{n+4}.$$

It's expected value and variance are respectively,

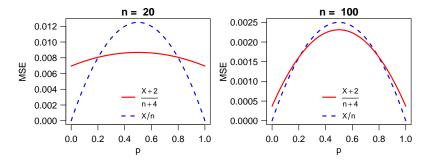
$$\mathsf{E}(\tilde{p}) = \frac{\mathsf{E}(X) + 2}{n+4} = \frac{np+2}{n+4}$$
, and $\mathsf{Var}(\tilde{p}) = \frac{\mathsf{Var}(X)}{(n+4)^2} = \frac{np(1-p)}{(n+4)^2}$.

Its bias and MSE are respectively

Bias = E(
$$\tilde{p}$$
) - $p = \frac{np+2}{n+4} - p = \frac{2-4p}{n+4}$
MSE = (Bias)² + Variance = $\left(\frac{2-4p}{n+4}\right)^2 + \frac{np(1-p)}{(n+4)^2}$

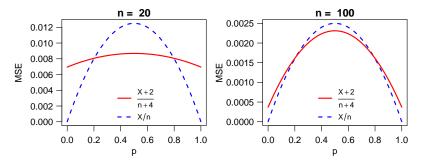
MSE's for Sample Proportion & Wilson's "Plus-Four" Below are the graphs of the MSE for $\hat{p} = X/n$ and $\tilde{p} = \frac{X+2}{n+4}$

$$MSE(\hat{p}) = \frac{p(1-p)}{n}, MSE(\tilde{p}) = \left(\frac{2-4p}{n+4}\right)^2 + \frac{np(1-p)}{(n+4)^2}$$



MSE's for Sample Proportion & Wilson's "Plus-Four" Below are the graphs of the MSE for $\hat{p} = X/n$ and $\tilde{p} = \frac{X+2}{n+4}$

$$\mathsf{MSE}(\hat{p}) = \frac{p(1-p)}{n}, \quad \mathsf{MSE}(\tilde{p}) = \left(\frac{2-4p}{n+4}\right)^2 + \frac{np(1-p)}{(n+4)^2}$$



p̂ = X/n has a smaller MSE only when p is close to 0 or 1
 p̃ = X+2/n+4 has a smaller MSE when p is NOT close to 0 or 1
 The two MSE's are close when n is large

Sampling Distributions

The sampling distribution of a point estimate $\widehat{\theta}$ is simply its probability distribution, e.g.,

Ex1. If X_1, \ldots, X_n are i.i.d. $\sim N(\mu, \sigma^2)$, the sampling distribution for $\hat{\mu} = \overline{X}$ is

$$\widehat{\mu} = \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

and the sampling distribution for S^2 is that

$$S^2 = rac{\sigma^2 T}{n-1}, \quad ext{where} \ T \sim \chi^2_{n-1}$$

Note: The sampling distribution generally depends on some unknown parameter θ .

Ex2: If X_1, \ldots, X_n are i.i.d. from some distribution with mean μ and variance σ^2 (not necessarily normal),

- the exact sampling distribution would depend on the distribution of X_i
- CLT asserts that

$$\widehat{\mu} = \overline{X}$$
 is approx. $\sim N\left(\mu, \frac{\sigma^2}{n}\right)$.

Standard Error

The *standard error* (*SE*) of a point estimate $\hat{\theta}$ refers to any estimate of the standard deviation of $\hat{\theta}$.

Ex1. If X_1, \ldots, X_n are i.i.d. $\sim N(\mu, \sigma^2)$,

• the standard deviation for $\hat{\mu} = \overline{X}$ is

$$\mathsf{SD}(\overline{X}) = \sqrt{\mathsf{Var}(\overline{X})} = \sqrt{\frac{\sigma^2}{n}}$$

which involves the unknown σ^2 the standard error for \overline{X} is

$$\operatorname{SE}(\overline{X}) = \sqrt{\frac{S^2}{n}}$$

which replaces the unknown σ^2 by its estimate S^2 .

Ex2. If $X \sim Bin(n, p)$,

• the standard deviation for $\hat{p} = X/n$ is

$$\mathsf{SD}(\widehat{p}) = \sqrt{\mathsf{Var}(\widehat{p})} = \sqrt{\frac{p(1-p)}{n}}$$

which involves the unknown p

• the standard error for \hat{p} is

$$\operatorname{SE}(\widehat{p}) = \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}$$

which replaces the unknown p by its estimate \hat{p} .

Note: The true SD may depend on $\theta,$ while SE depends on the data but not on θ

Section 8.4 The Method of Moments

Recall the *k*th moment of a random variable X is $E[X^k]$.

If X_1, \ldots, X_n are i.i.d. from some distribution $f(x \mid \theta)$, the *kth* sample moment is defined to be

$$\widehat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

The Method of Moments (MME)

The *method of moments* is a strategy for finding an estimator $\hat{\theta}$.

If there is only one parameter θ ,

- 1. Compute E(X) as a function of θ
- 2. Compute the sample mean $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- 3. Choose $\hat{\theta}$ as the value of θ so that $E(X) = \overline{X}$

If there are k parameters $\theta_1, \ldots, \theta_k$

1. Compute E(X), $E(X^2)$, ..., $E(X^k)$ as functions of θ_i 's

2. Compute the sample moments

$$\widehat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n X_i, \quad \widehat{\mu}_2 = \sum_{i=1}^n X_i^2, \dots, \widehat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k.$$

3. Choose $(\widehat{\theta}_1, \ldots, \widehat{\theta}_m)$ as the value of θ_i so that

$$\mathsf{E}(X^j) = rac{1}{n} \sum_{i=1}^n X^j_i \quad ext{for } 1 \leq j \leq k.$$

(solving a system of k equations, for k unknowns)

Examples (1 Parameter)

Ex1: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathsf{Poisson}(\lambda)$ for unknown $\lambda > 0$

• PMF:
$$f(x \mid \lambda) = e^{-\lambda} \lambda^x / x!$$
, $x = 0, 1, 2, ...$
• $E(X) = \lambda$

• The method of moment estimate (MME) for λ is $\hat{\lambda} = \overline{X}$

Ex2: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Geometric}(p)$ for unknown p

• PMF:
$$f(x \mid p) = (1 - p)^{x-1}p, x = 1, 2, 3, ...$$

$$E(\Lambda) = 1/p$$

$$MME \text{ for } p \text{ is } \hat{p}$$

• MME for
$$p$$
 is $\hat{p} = 1/\overline{X}$

Ex3: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Exponential}(\lambda)$ for unknown $\lambda > 0$

► PDF:
$$f(x \mid \lambda) = \lambda e^{-\lambda x}$$
, $x > 0$
► $E(X) = 1/\lambda$

• MME for
$$\lambda$$
 is $\lambda = 1/\overline{X}$.

Example 4 — Uniform $[0, \theta]$

$X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Uniform}[0, \theta]$ for unknown $\theta > 0$

PDF:
$$f(x \mid \theta) = \frac{1}{\theta}, \ 0 \le x \le \theta$$

 \sim

$$\blacktriangleright E(X) = \theta/2$$

• MME for
$$\theta$$
 is $\theta = 2\overline{X}$.

Example 5 — MME for Gamma

 $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathsf{Gamma}(lpha, \lambda)$ for unknown $lpha, \lambda > 0$

►
$$\operatorname{Var}(X) = \alpha/\lambda^2 \Rightarrow \operatorname{E}[X^2] = \operatorname{Var}(X) + (\operatorname{E}(X))^2 = \frac{\alpha(\alpha+1)}{\lambda^2}$$

• The MMEs for α and λ must satisfy

$$\overline{X} = \frac{\widehat{\alpha}}{\widehat{\lambda}}, \quad \widehat{\mu}_2 = \frac{\widehat{\alpha}(\widehat{\alpha}+1)}{\widehat{\lambda}^2} \qquad (\text{Recall } \widehat{\mu}_2 = \frac{1}{n} \sum_{i=1}^n X_i^2)$$

From the second equation

$$\widehat{\mu}_2 = \overline{X}^2 + \frac{\overline{X}}{\lambda} \quad \Rightarrow \quad \widehat{\lambda} = \frac{\overline{X}}{\widehat{\mu}_2 - \overline{X}^2}$$

and from the first equation,

$$\widehat{\alpha} = \widehat{\lambda}\overline{X} = \frac{\overline{X}^2}{\widehat{\mu}_2 - \overline{X}^2}.$$

 $\alpha (\alpha + 1)$

Section 8.5 Likelihood & Maximum Likelihood Estimation

A Probability Question

Let p be the proportion of US adults that are willing to get the latest flu shot.

A sample of 20 subjects are randomly selected. Let X be the number of them that are willing to get the latest flu shot. What is P(X = 8)?

Answer: X is Binomial (n = 20, p) (Why?)

$$P(X = x \mid p) = {\binom{20}{x}} p^x (1-p)^{n-x}.$$

If p is known to be 0.3, then

$$P(X = 8 \mid p) = {\binom{20}{8}} (0.3)^8 (0.7)^{12} \approx 0.1144.$$

A Statistics Question

Suppose 8 of 20 randomly selected U.S. adults said they are willing to get the latest flu shot.

What can we infer about the value of

p = proportion of U.S. adults that are willing to get a flu shot?

The chance to observe X = 8 in a random sample of size n = 20 is

$$P(X = 8 \mid p) = \begin{cases} \binom{20}{8} (0.3)^8 (0.7)^{12} \approx 0.1144 & \text{if } p = 0.3 \\ \binom{20}{8} (0.6)^8 (0.4)^{12} \approx 0.0355 & \text{if } p = 0.6 \end{cases}$$

It appears that p = 0.3 is **more likely** to be true value p than p = 0.6, since the former gives a higher prob. to observe the outcome X = 8.

We say the *likelihood* of p = 0.3 is higher than that of p = 0.6.

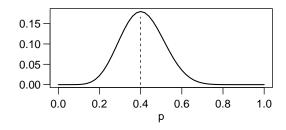
Maximum Likelihood Estimate (MLE)

The maximum likelihood estimate (MLE) of a parameter θ is the value at which the likelihood function is maximized.

Example. If 8 of 20 randomly selected U.S. adults are comfortable getting the flu shot, the likelihood function

$$L(p \mid x = 8) = {\binom{20}{8}} p^8 (1-p)^{12}$$

reaches its max at p = 0.4, the MLE for p is $\hat{p} = 0.4$ given the data X = 8.



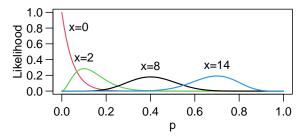
Maximum Likelihood Estimate (MLE)

The probability

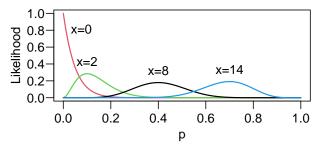
$$P(X = x \mid p) = \binom{n}{x} p^{x} (1-p)^{n-x} = L(p \mid x)$$

viewed as a function of p, is called the *likelihood function*, (or just the **likelihood**) of p, denoted as L(p | x).

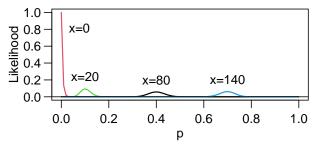
It measure the "plausibility" of a value being the true value of p.



Likelihood functions $L(p \mid x)$ at different values of x for n = 20.



Likelihood functions $L(p \mid x)$ for various values of x when n = 20.



Likelihood functions $L(p \mid x)$ at various values of x when n = 200.

Likelihood in General

In general, suppose the observed data $(X_1, X_2, ..., X_n)$ have a joint PDF or PMF with some parameter(s) called θ

$$f(x_1, x_2, \ldots, x_n \mid \theta)$$

The *likelihood function* for the parameter θ is

$$L(\theta) = L(\theta \mid X_1, X_2, \ldots, X_n) = f(X_1, X_2, \ldots, X_n \mid \theta).$$

Note the likelihood function regards the probability as a function of the parameter θ rather than as a function of the data X₁, X₂,..., X_n.
 If

$$L(\theta_1 \mid x_1,\ldots,x_n) > L(\theta_2 \mid x_1,\ldots,x_n),$$

then θ_1 appears more plausible to be the true value of θ than θ_2 does, given the observed data x_1, \ldots, x_n .

Maximizing the Log-likelihood

Rather than maximizing the likelihood, it is often computationally easier to maximize its natural logarithm, called the *log-likelihood*, denoted as

$$\ell(\theta) = \log L(\theta)$$

which results in the same answer since logarithm is strictly increasing,

$$x_1 > x_2 \quad \Longleftrightarrow \quad \log(x_1) > \log(x_2).$$

So

$$L(heta_1) > L(heta_2) \quad \iff \quad \log L(heta_1) > \log L(heta_2).$$

Here, log() is always the natural log.

Notation:

Example (MLE for Binomial)

If the observed data $X \sim \text{Binomial } (n, p)$ but p is unknown, the likelihood of p is

$$L(p \mid x) = p(X = x \mid p) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

and the *log-likelihood* is

$$\ell(p) = \log L(p \mid x) = \log \binom{n}{x} + x \log(p) + (n-x) \log(1-p).$$

From Calculus, we know a function g(u) reaches its max at $u = u_0$ if

$$rac{d}{\mathrm{d} u}g(u)=0 ext{ at } u=u_0 \quad ext{ and } \quad rac{d^2}{du^2}g(u)<0 ext{ at } u=u_0.$$

Example — MLE for Binomial

$$\frac{d}{dp}\ell(p\mid x) = \frac{x}{p} - \frac{n-x}{1-p} = \frac{x-np}{p(1-p)}$$

equals 0 when

$$\frac{x - np}{p(1 - p)} = 0$$

That is, when x - np = 0.

Solving for *p* gives the ML estimator (MLE) $\hat{p} = \frac{x}{n}$.

and
$$\displaystyle rac{d^2}{dp^2}\ell(p\mid x) = -rac{x}{p^2} - rac{n-x}{(1-p)^2} < 0$$
 for any 0

Thus, we know $\ell(p \mid x)$ reaches its max when p = x/n.

So MLE of *p* is
$$\hat{p} = \frac{X}{n}$$
 = sample proportion of successes.

Likelihood Based on i.i.d. Observations

Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x \mid \theta)$ for an unknown parameter θ

The joint PDF or PMF of (X_1, \ldots, X_n) is the product of the marginal PDF/PMF since they are i.i.d.

$$\prod_{i=1}^n f(x_i \mid \theta) = f(x_1 \mid \theta) f(x_2 \mid \theta) \times \cdots \times f(x_n \mid \theta)$$

The likelihood is then

$$L(\theta) = L(\theta \mid X_1, \ldots, X_n) = \prod_{i=1}^n f(X_i \mid \theta).$$

The log likelihood then has the summation form

$$\ell(\theta) = \log L(\theta \mid X_1, \ldots, X_n) = \log \left(\prod_{i=1}^n f(X_i \mid \theta)\right) = \sum_{i=1}^n \log (f(X_i \mid \theta)).$$

Example — MLE for Exponential

 $X_1, \ldots, X_n \stackrel{\mathsf{iid}}{\sim} \mathsf{Exponential}(\lambda)$ for unknown $\lambda > 0$

$$\ell(\lambda) = \log L(\lambda) = n \log(\lambda) - \lambda \sum_{i=1}^{n} X_i = n \log(\lambda) - n \lambda \overline{X}$$

Solve for MLE:

$$0 = \frac{d}{d\lambda}\ell(\lambda) = \frac{n}{\lambda} - n\overline{X} \quad \Rightarrow \quad \widehat{\lambda} = \frac{1}{\overline{X}} \quad (\text{same as MME})$$

The likelihood indeed reaches its max at $\lambda = 1/\overline{X}$ since

$$rac{d^2}{d\lambda^2}\ell(\lambda)=-rac{n}{\lambda^2}<0.$$

Example — MLE for Poisson

 $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Poisson}(\lambda)$ for unknown $\lambda > 0$

PMF:
$$f(x \mid \lambda) = e^{-\lambda} \lambda^x / x!$$
likelihood: $L(\lambda) = \prod_{i=1}^n f(X_i \mid \lambda) = e^{-n\lambda} \lambda^{\sum_{i=1}^n X_i} / \prod_{i=1}^n X_i!$
log likelihood:

$$\ell(\lambda) = \log L(\lambda) = -n\lambda + \sum_{i=1}^{n} X_i \log(\lambda) - \sum_{i=1}^{n} \log(X_i!)$$

$$0 = \frac{d}{d\lambda}\ell(\lambda) = -n + \frac{\sum_{i=1}^{n} X_i}{\lambda} = -n + \frac{nX}{\lambda}$$

$$\Rightarrow \quad \hat{\lambda} = \overline{X} \quad \text{(same as MME)}$$

The likelihood indeed reaches its max at $\lambda = \overline{X}$ since

$$rac{d^2}{d\lambda^2}\ell(\lambda)=-rac{n\overline{X}}{\lambda^2}\leq 0.$$

Example — Negative Binomial $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} \text{NegBin}(r, p), r \text{ is known, but } p \text{ is unknown}$ The PMF is $f(x \mid p) = \binom{x-1}{r-1}p^r(1-p)^{x-r}$. likelihood $L(p) = \prod_{i=1}^n f(X_i \mid p) = \left[\prod_{i=1}^n \binom{X_i - 1}{r-1}\right]p^{nr}(1-p)^{(\sum_{i=1}^n X_i) - nr}$

likelihood
$$L(p) = \prod_{i=1}^{n} r(X_i \mid p) = \left[\prod_{i=1}^{n} \binom{r-1}{r-1}\right] p^{nr} (1-p)^{C \sum_{i=1}^{n} r(p)}$$

$$= \left[\prod_{i=1}^{n} \binom{X_i - 1}{r-1}\right] p^{nr} (1-p)^{n\overline{X} - nr}$$

The log likelihood is

$$\ell(p) = \sum_{i=1}^{n} \log \binom{X_i - 1}{r - 1} + nr \log(p) + n(\overline{X} - r) \log(1 - p)$$

Solve for MLE:

$$0 = \frac{d}{dp}\ell(p) = \frac{nr}{p} - \frac{n(\overline{X} - r)}{1 - p} = \frac{n(r - p\overline{X})}{p(1 - p)} \quad \Rightarrow \quad \widehat{p} = \frac{r}{\overline{X}}.$$

To see if log likelihood indeed reaches its max at $p = r/\overline{X}$, we check

$$\frac{d^2}{dp^2}\ell(p) = -\frac{nr}{p^2} - \frac{n(\overline{X}-r)}{(1-p)^2}$$

As $X_i \ge r$ and hence $\overline{X} \ge r$, the second derivative above is indeed ≤ 0 .

This shows $\hat{p} = \frac{r}{\overline{X}}$ is indeed the MLE.

MLE for Two Parameters

From Calculus, we know a function g(u, v) reaches its maximum at $(u, v) = (u_0, v_0)$ if the following 3 conditions are met

1.
$$\frac{\partial}{\partial u}g(u,v) = \frac{\partial}{\partial v}g(u,v) = 0 \text{ at } (u,v) = (u_0,v_0);$$

2.
$$\frac{\partial^2}{\partial u^2}g(u,v) < 0 \text{ at } (u,v) = (u_0,v_0);$$

3. the Hessian matrix

$$\frac{\partial^2}{\partial u^2} g(u, v) \quad \frac{\partial^2}{\partial u v} g(u, v) \\ \frac{\partial^2}{\partial v u} g(u, v) \quad \frac{\partial^2}{\partial v^2} g(u, v) \end{vmatrix}$$

has a *positive* determinant at $(u, v) = (u_0, v_0)$.

Example — MLE for Normal

$$X_1, \dots, X_n \stackrel{\text{iid}}{\sim} \mathsf{N}(\mu, \sigma^2) \text{ for unknown } \mu, \sigma^2$$

$$\blacktriangleright \mathsf{PDF:} f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$$

$$\flat \text{ likelihood:}$$

$$L(\mu, \sigma^2) = \prod_{i=1}^n f(X_i \mid \mu, \sigma^2) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left(\frac{-1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2\right)$$

$$\ell(\mu, \sigma^2) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(X_i - \mu)^2$$

► Solve for MLE:

$$\begin{cases} 0 = \frac{\partial}{\partial \mu} \ell(\mu, \sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu) = \frac{n}{\sigma^2} (\overline{X} - \mu) \\ 0 = \frac{\partial}{\partial \sigma^2} \ell(\mu, \sigma^2) = \frac{-n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (X_i - \mu)^2 \end{cases}$$

$$\begin{cases} 0 = \frac{\partial}{\partial \mu} \ell(\mu, \sigma^2) = \frac{n}{\sigma^2} (\overline{X} - \mu) \\ 0 = \frac{\partial}{\partial \sigma^2} \ell(\mu, \sigma^2) = \frac{-n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (X_i - \mu)^2 \end{cases}$$

The first equation immediately gives $\hat{\mu} = \overline{X}$. Plugging $\mu = \overline{X}$ into the second equation, we get

$$0 = \frac{-n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (X_i - \overline{X})^2 \quad \Rightarrow \quad \widehat{\sigma}^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n}.$$

Note the MLE for σ^2 is not $S^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}$.

To check the log likelihood indeed reach its max when $\mu = \overline{X}$ and $\widehat{\sigma}^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n}$, we calculate the second derivative of the log likelihood:

$$\begin{aligned} \frac{\partial^2}{\partial \mu^2} \ell(\mu, \sigma^2) &= -\frac{n}{\sigma^2} < 0\\ \frac{\partial^2}{\partial \sigma^2 \mu} \ell(\mu, \sigma^2) &= -\frac{n}{\sigma^4} (\overline{X} - \mu)\\ \frac{\partial^2}{\partial (\sigma^2)^2} \ell(\mu, \sigma^2) &= \frac{n}{2(\sigma^2)^2} - \frac{1}{(\sigma^2)^3} \sum_{i=1}^n (X_i - \mu)^2 \end{aligned}$$
When $\mu = \overline{X}$ and $\sigma^2 = \widehat{\sigma}^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n}$, the Hessian matrix is
$$\begin{vmatrix} -\frac{n}{\widehat{\sigma}^2} & 0\\ 0 & -\frac{n}{2(\widehat{\sigma}^2)^2} \end{vmatrix}$$

which has a positive determinant. This shows the MLE for μ and σ^2 are

$$\mu = \overline{X}$$
 and $\widehat{\sigma}^2 = \frac{\sum_{i=1}^n (X_i - X)^2}{n}$

Example — MLE for Gamma $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Gamma}(\alpha, \lambda)$ for unknown α, λ

• PDF:
$$f(x \mid \alpha, \lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, x > 0$$

likelihood:

$$L(\alpha,\lambda) = \prod_{i=1}^{n} f(X_i \mid \alpha,\lambda) = \frac{\lambda^{n\alpha}}{(\Gamma(\alpha))^n} \left(\prod_{i=1}^{n} X_i\right)^{\alpha-1} e^{-\lambda \sum_{i=1}^{n} X_i}$$

log likelihood:

$$\ell(\alpha,\lambda) = n\alpha \log \lambda - n \log \Gamma(\alpha) + (\alpha-1) \sum_{i=1}^{n} \log X_i - \lambda \sum_{i=1}^{n} X_i$$

Solve for MLE:

$$0 = \frac{\partial}{\partial \alpha} \ell(\alpha, \lambda) = n \log \lambda - n \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} + \sum_{i=1}^{n} \log X_i$$
$$0 = \frac{\partial}{\partial \lambda} \ell(\alpha, \lambda) = \frac{n\alpha}{\lambda} - \sum_{i=1}^{n} X_i = \frac{n\alpha}{\lambda} - n\overline{X}$$

The second equation gives

$$\widehat{\lambda} = \frac{\widehat{\alpha}}{\overline{X}},$$

plugging it into the first equation we get

$$n\log(\widehat{\alpha}) - n\log(\overline{X}) - n\frac{\Gamma'(\widehat{\alpha})}{\Gamma(\widehat{\alpha})} + \sum_{i=1}^{n}\log X_i = 0$$

This equation cannot be solved in closed form. Numerical tools are required to compute the value of the MLE.

Example — Uniform $[0, \theta]$

 $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Uniform}[0, \theta]$ for unknown $\theta > 0$

PDF:
$$f(x | \theta) = \frac{1}{\theta}, 0 \le x \le \theta$$
Joint PDF:

$$\prod_{i=1}^{n} f(X_i \mid \theta) = \begin{cases} \theta^{-n} & \text{if } 0 \le X_i \le \theta \\ 0 & \text{otherwise} \end{cases}$$

This means the joint PDF is non-zero only if

$$\theta \geq X_{(n)} = \max_{1 \leq i \leq n} X_i.$$

• Likelihood:
$$L(\theta) = \theta^{-n}$$

Solve for MLE: Note the smaller the value of θ, the greater the likelihood, but θ cannot fall below X_(n). Thus the MLE for θ is

$$\widehat{\theta} = X_{(n)}$$
 (Different from MME.)

Comparison of MME and MLE for $Uniform[0, \theta]$

MME $\hat{\theta}_{MME} = 2\overline{X}$:

$$\operatorname{Var}(\widehat{\theta}_{\mathsf{MME}}) = \operatorname{Var}(2\overline{X}) = 2^2 \operatorname{Var}(\overline{X}) = 2^2 \frac{\operatorname{Var}(X_i)}{n} = \frac{\theta^2}{3n}$$

• MSE = bias² + Var(
$$\hat{\theta}_{MME}$$
) = $\frac{\theta^2}{3n}$

Comparison of MME & MLE for Uniform $[0, \theta]$: MLE $\hat{\theta}_{MLE} = X_{(n)}$:

• Using tools in L07, one can obtain the PDF of $X_{(n)}$:

$$f(x) = \frac{nx^{n-1}}{\theta^n}, \quad 0 \le x \le \theta$$

Bias:

$$\mathsf{E}(\widehat{\theta}_{\mathsf{MLE}}) = \int_{x=0}^{\theta} x \cdot \frac{nx^{n-1}}{\theta^n} \, \mathrm{d}x = \frac{n\theta}{n+1} \Rightarrow \text{ bias} = -\frac{\theta}{n+1}$$

Variance:

$$E((\hat{\theta}_{MLE})^2) = \int_{x=0}^{\theta} x^2 \cdot \frac{nx^{n-1}}{\theta^n} dx = \frac{n\theta^2}{n+2}$$

$$\Rightarrow \quad Var(\hat{\theta}_{MLE}) = \frac{n\theta^2}{n+2} - \left(\frac{n\theta}{n+1}\right)^2 = \frac{n\theta^2}{(n+1)^2(n+2)}$$

$$MSE(\hat{\theta}_{MLE}) = bias^2 + Var(\hat{\theta}_{MLE}) = \frac{2\theta^2}{(n+1)(n+2)}$$

$$far smaller than MSE(\hat{\theta}_{MME}) = \frac{\theta^2}{3n}$$

Properties of MLE for Exponential

For $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathsf{Exponential}(\lambda)$ with the PDF

$$f(x \mid \lambda) = \lambda e^{-\lambda x}, \quad x > 0,$$

The MLE (and MME) for λ is $\hat{\lambda} = \frac{1}{\overline{X}}$.

Since $Y = n\overline{X} = \sum_{i=1}^{n} X_i \sim \text{Gamma}(n, \lambda)$ has the PDF $f_Y(y) = \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y}, \quad y > 0,$

we can find the expected value and variance for $\widehat{\lambda}=1/\overline{X}=n/Y$ as follows,

$$E[\widehat{\lambda}] = E\left(\frac{n}{Y}\right) = \int_{y=0}^{\infty} \frac{n}{y} \cdot \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y} dy = \frac{n\lambda}{n-1}$$
$$E[\widehat{\lambda}^2] = E\left(\frac{n^2}{Y^2}\right) = \int_{y=0}^{\infty} \frac{n^2}{y^2} \cdot \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y} dy = \frac{n^2 \lambda^2}{(n-1)(n-2)}$$
$$Var(\widehat{\lambda}) = E[\widehat{\lambda}^2] - (E[\widehat{\lambda}])^2 = \frac{n^2 \lambda^2}{(n-1)(n-2)} - \left(\frac{n\lambda}{n-1}\right)^2 = \frac{n^2 \lambda^2}{(n-1)^2(n-2)}$$

The bias is

Bias =
$$\mathsf{E}[\widehat{\lambda}] - \lambda = \frac{n\lambda}{n-1} - \lambda = \frac{\lambda}{n-1}.$$

The MSE of $\widehat{\lambda}$ is

$$\begin{split} \mathsf{MSE} &= \mathsf{Bias}^2 + \mathsf{Var}(\widehat{\lambda}) \\ &= \left(\frac{\lambda}{n-1}\right)^2 + \frac{n^2 \lambda^2}{(n-1)^2 (n-2)} = \frac{(n+2)\lambda^2}{(n-1)(n-2)}. \end{split}$$