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Chapter 6 Distributions Derived from Normal

There are 3 distributions derived from from the normal
distributions that occur many statistical problems

▶ Chi-Squared (χ2) distributions
▶ “Chi-squared” is read “kai-squared”

▶ t distributions
▶ F distributions
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Definitions: Chi-Squared Distributions
Let Z1, Z2, . . . , Zn be i.i.d. ∼ N(0, 1). The random variable

Tn =
n∑

i=1
Z 2

i

is said to be a chi-squared distribution with n degrees of
freedom, denoted as

Tn ∼ χ2
n.

In HW9, we show using MGF that chi-squared distributions are
special Gamma distributions that

χ2
n = Gamma(α = n/2, λ = 1/2)

and the corresponding PDF is

fTn(t) = 1
2n/2Γ(n

2 )
t(n/2)−1e−t/2, t > 0.
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Properties of Chi-Squared Distributions

If Y ∼ χ2
n, then its MGF is

M(t) = (1 − 2t)−n/2,

from which we can derive its expected value and variance

▶ E[Y ] = n
▶ Var(Y ) = 2n
▶ If U ∼ χ2

n and V ∼ χ2
m are independent, then U + V ∼ χ2

m+n
▶ The proof is straight forward using MGF
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Definition: (Student’s) t-Distributions

If Z ∼ N(0, 1) and U ∼ χ2
n and Z and U are independent, then

the distribution of
T = Z√

U/n
is called the (Student’s) t-distribution with n degrees of
freedom, denoted as

T ∼ tn.

The PDF is given by

f (t) =
Γ(n+1

2 )
√

nπ Γ(n
2 )

(
1 + t2

n

)−(n+1)/2

, −∞ < t < ∞.
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Proof for the PDF of the t-Distribution
By the independence of Z and U, their joint PDF is given by

fZU(z , u) = 1√
2π

e−z2/2 · 1
2n/2Γ(n

2 )
u

n
2 −1e−u/2,

=
u n

2 −1 exp(−1
2(z2 + u))

√
π2 n+1

2 Γ(n
2 )

, −∞ < z < ∞, u > 0.

Consider the transformation W = Z√
U , Y = U, with inverse

transformation
Z = W

√
Y ,

U = Y ⇒ Jacobian =
∣∣∣∣∣

∂z
∂w

∂z
∂y

∂u
∂w

∂u
∂y

∣∣∣∣∣ =
∣∣∣∣∣
√y w

2√y
0 1

∣∣∣∣∣ = √y .

The joint PDF for (W , Y ) is
fWY (w , y) = fZU(w√y , y) · √y

=
y n

2 −1 exp(−1
2(w2y + y))

√
π2 n+1

2 Γ(n
2 )

√y =
y n+1

2 −1 exp
(
− y

2
(
1 + w2))

√
π2 n+1

2 Γ(n
2 )
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The marginal PDF for W can be obtained by integrating
fWY (w , y) over y .

fW (w) =
∫ ∞

0
fWY (w , y)dy = 1

√
π2 n+1

2 Γ(n
2 )

∫ ∞

0
y

n+1
2 −1e− y

2 (1+w2)dy .

Let
x = y

2 (1 + w2) ⇒ y = 2x
1 + w2 , dy = dx

1 + w2 .

Then,

fW (w) = 1
√

π2 n+1
2 Γ(n

2 )

∫ ∞

0

( 2x
1 + w2

) n+1
2 −1

e−x dx
1 + w2 dx

= 1
√

πΓ(n
2 )(1 + w2) n+1

2

∫ ∞

0
x

n+1
2 −1e−xdx︸ ︷︷ ︸

=Γ( n+1
2 )

=
Γ(n+1

2 )
√

πΓ(n
2 )(1 + w2)− n+1

2 , −∞ < w < ∞.
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The PDF for T = Z√
U/n

=
√

n W is

fT (t) = 1√
n fW

( t√
n

)
=

Γ(n+1
2 )

√
nπΓ(n

2 )

(
1 + t2

n

)− n+1
2

, −∞ < t < ∞.
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Properties of t-Distributions
For T ∼ tn with the PDF

f (t) =
Γ(n+1

2 )
√

nπ Γ(n
2 )

(
1 + t2

n

)−(n+1)/2

, −∞ < t < ∞.

▶ Bell-shaped, symmetric about 0
▶ With 1 degrees of freedom, t1 = Cauchy
▶ E[T ] = 0 if df > 1
▶ For large t, the t-density with n df is ≈ constant

tn+1
▶ ⇒ heavier tail than normal

▶ E[T k ] doesn’t exist if k ≥ degrees of freedom (df)
▶ higher df ⇒ lighter tails
▶ As df → ∞, t∞ → N(0, 1)

x

dn
or

m
(x

)

−4 −2 0 2 4

N(0,1)
t, df=5
t, df=2
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Definition: F -Distributions

Let U and V be independent chi-square random variables with m
and n degrees of freedom, respectively. The distribution of

X = U/m
V /n

is called the F-distribution with m and n degrees of freedom,
denoted by

X ∼ Fm,n.

The PDF is given by

f (x) =
Γ(m+n

2 )
Γ(m

2 )Γ(n
2 )

(m
n

)m/2
x

m
2 −1

(
1 + m

n x
)− m+n

2
, x > 0.

The PDF can be obtained similarly as for the t-distribution.
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Properties of F -Distributions

For X ∼ Fm,n

▶ E(X ) = n
n − 2 if n > 2

▶ E(X k) exists only if k < n/2
▶ If T ∼ tn, then T 2 ∼ F1,n
▶ asymmetric PDF
▶ F -distribution can be transformed to Beta distribution

If X ∼ Fm,n, then

Y = (m/n)X
1 + (m/n)X ∼ Beta

(
a = n

2 , b = m
2

)

12 / 34



Section 6.3 Sample Mean & Sample Variance
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First Statistics Question in STAT 24400
If we observed

X1, X2, . . . , Xn, i.i.d. ∼ N(µ, σ2),
but the true value of µ and σ2 are UNKNOWN.
How to use the observed value of X1, X2, . . . , Xn to estimate the
unknown values of µ and σ2?

▶ X1, X2, . . . , Xn are sometimes called the sample
▶ n is called the sample size
▶ Usually estimate µ by X = 1

n
∑n

i=1
Xi , called the sample mean.

▶ As σ2 = E[(Xi − µ)2], one might attempt to estimate it by∑n
i=1 (Xi − µ)2

n .

However, µ is unknown. We thus estimate σ2 by

S2 =
∑n

i=1
(
Xi − X

)2

n − 1 , called the sample variance.

▶ Why divide by n − 1, not n?
▶ We will discuss estimation problems in Chapter 8 in detail
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Population Mean/Variance v.s. Sample Mean/Variance

If X1, . . . , Xn are i.i.d. ∼ N(µ, σ2),

▶ µ is called the population mean

▶ X = 1
n

n∑
i=1

Xi is called the sample mean

▶ σ2 is called the populaition variance

▶ S2 =
∑n

i=1

(
Xi − X

)2

n − 1 is called the sample variance
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Sample Mean

For the sample mean

X = 1
n

n∑
i=1

Xi

we have shown earlier that

E(X ) = µ and Var(X ) = σ2

n

and
X ∼ N

(
µ,

σ2

n

)
.
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A Useful Identity
The following identity always holds for any value of c.

n∑
i=1

(Xi − c)2 =
n∑

i=1
(Xi − X )2 + n(X − c)2, where X = 1

n

n∑
i=1

Xi .

Proof.
n∑

i=1
(Xi − c)2 =

n∑
i=1

(Xi − X + X − c)2

=
n∑

i=1
(Xi − X )2 + 2

n∑
i=1

(Xi − X ) (X − c)︸ ︷︷ ︸
constant

+
n∑

i=1
(X − c)2︸ ︷︷ ︸

constant

=
n∑

i=1
(Xi − X )2 + 2(X − c)

n∑
i=1

(Xi − X )︸ ︷︷ ︸
=0, see below

+n(X − c)2

where
n∑

i=1
(Xi − X ) =

n∑
i=1

Xi −
n∑

i=1
X = nX − nX = 0.
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Corollary of the Useful Identity

n∑
i=1

(Xi − c)2 =
n∑

i=1
(Xi − X )2 + n(X − c)2

▶ The case c = 0 gives the shortcut formula for the sample
variance

S2 =
∑n

i=1(Xi − X )2

n − 1 =
(∑n

i=1 X 2
i
)

− nX 2

n − 1 .

▶ The value c that minimize
∑n

i=1(Xi − c)2 is c = X .

18 / 34



Expectation of Sample Variance (Why Divide by n − 1, not n?)
Letting c = µ = E[Xi ] in the useful identity

n∑
i=1

(Xi − µ)2 =
n∑

i=1
(Xi − X )2

︸ ︷︷ ︸
=(n−1)S2

+n(X − µ)2.

gives the following expression for S2

S2 = 1
n − 1

( n∑
i=1

(Xi − µ)2 − n(X − µ)2
)

.

Taking expected values on both sides, we get

E[S2] = 1
n − 1

( n∑
i=1

E[(Xi − µ)2]︸ ︷︷ ︸
=Var(Xi )=σ2

−n E[(X − µ)2]︸ ︷︷ ︸
=Var(X)=σ2/n

)

= 1
n − 1

(
nσ2 − n · σ2

n

)
= σ2.
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X is Independent of S2
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X Is Independent of S2 (⋆⋆)
We will first prove that

X is indep. of
︷ ︸︸ ︷
(X2 − X , X3 − X , . . . , Xn − X ) .

This would imply X is independent of S2 since (n − 1)S2 can be
written as a function of (X2 − X , X3 − X , . . . , Xn − X ) as follows

(n − 1)S2 =
n∑

i=1
(Xi − X )2 = (X1 − X︸ ︷︷ ︸

See below

)2 +
n∑

i=2
(Xi − X )2

where X1 − X = −
∑n

i=2(Xi − X ) since
∑n

i=1(Xi − X ) = 0.

Steps of the proof:

1. find the joint PDF fY(y1, y2, . . . , yn) of Y1 = X , and
Yi = Xi − X for i = 2, 3, . . . , n.

2. show that the joint PDF fY(y1, y2, . . . , yn) can factor as the
product of a function of y1 and a function of (y2, . . . , yn).

f (y1, y2, . . . , yn) = g(y1)h(y2, . . . , yn), for all y1, y2, . . . , yn.
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Multivariate Transformation
Suppose (X1, . . . , Xn) are continuous r.v.’s with joint PDF

fX(x1, . . . , xn).

They are mapped onto (Y1, . . . , Yn) by a 1-to-1 transformation

y1 = g1(x1, . . . , xn)
...

yn = gn(x1, . . . , xn)

and the transformation can be inverted to obtain

x1 = h1(y1, . . . , yn)
...

xn = hn(y1, . . . , yn).
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The joint PDF fY(y1, . . . , yn) is given by

fY(y1, . . . , yn) = fX(h1(y1, . . . , yn), . . . , hn(x1, . . . , yn))
∣∣∣∣∂(x1, . . . , xn)
∂(y1, . . . , yn)

∣∣∣∣ ,
where

∣∣∣∂(x1,...,xn)
∂(y1,...,yn)

∣∣∣ is absolute value of the Jacobian of the
transformation, defined as the determinant of the n × n matrix∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂y1

∂x1
∂y2

· · · ∂x1
∂yn

∂x2
∂y1

∂x2
∂y2

· · · ∂x2
∂yn... . . . ...

∂xn
∂y1

∂xn
∂y2

· · · ∂xn
∂yn

∣∣∣∣∣∣∣∣∣∣∣
that the (i , j) element is ∂xi

∂yj
.
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Joint PDF of X and (X2 − X , . . . , Xn − X )
For Y1 = X , Yi = Xi − X , for i = 2, 3, . . . , n, the inverse
transformation is

X1 = Y1 − (Y2 + Y3 + · · · + Yn),
Xi = Y1 + Yi , for i = 2, 3, . . . , n.

We see
∂x1
∂yj

=
{

1 if j = 1
−1 if j = 2, 3, . . . , n,

and ∂xi
∂yj

=
{

1 if j = 1 or i
0 otherwise.

The Jacobian matrix is∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂y1

∂x1
∂y2

∂x1
∂y3

· · · ∂x1
∂yn

∂x2
∂y1

∂x2
∂y2

∂x2
∂y3

· · · ∂x2
∂yn

∂x3
∂y1

∂x3
∂y2

∂x3
∂y3

· · · ∂x2
∂yn...

...
... . . . ...

∂xn
∂y1

∂xn
∂y2

∂xn
∂y3

· · · ∂xn
∂yn

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 −1 · · · −1
1 1 0 · · · 0
1 0 1 · · · 0
...

...
... . . . ...

1 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣
The determinant can be shown by induction to be n.
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As Xi ’s are independent, their joint PDF is

fX(x1, x2, . . . , xn) = 1
(2π)n/2σn exp

(
−1
2σ2

n∑
i=1

(xi − µ)2
)

= 1
(2π)n/2σn exp

(
−1
2σ2

( n∑
i=1

(xi − x)2 + n(x − µ)2
))

in which,

x1 − x = −
∑n

i=2
(xi − x) = −

∑n

i=2
yi∑n

i=1
(xi − x)2 = (x1 − x)2 +

∑n

i=2
(xi − x)2 =

(∑n

i=2
yi

)2
+
∑n

i=2
y2

i

The joint PDF of (Y1, . . . , Yn) is thus

fY(y1, y2, . . . , yn) = |J |
(2π)n/2σn exp

[
−1
2σ2

(
(

n∑
i=2

yi)2 +
n∑

i=2
y2

i + n(y1 − µ)2

)]

where |J | = n is the Jacobian shown on the previous page.

25 / 34



We can see the joint PDF fY(y1, y2, . . . , yn) can factor into

▶ a function exp(− n
2σ2 (y1 − µ)2) of y1, and

▶ a function exp
[

−1
2σ2

(
(
∑n

i=2 yi)2 +
∑n

i=2 y2
i
)]

of y2, . . . , yn.

This proves the independence of

Y1 = X and (Y2, . . . , Yn) = (X2 − X , . . . , Xn − X ),

which implies the independence of X and S2.
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Distribution of S2
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If X1, X2, . . . , Xn are i.i.d. ∼ N(µ, σ2), then

X1 − µ

σ
,
X2 − µ

σ
, . . . ,

Xn − µ

σ
are i.i.d. ∼ N(0, 1),

which implies
n∑

i=1

(Xi − µ)2

σ2 ∼ χ2
n

has a chi-squared distribution with n degrees of freedom.

Question: What’s the distribution of
n∑

i=1

(Xi − X )2

σ2 = (n − 1)S2

σ2 ?

Ans: chi-squared distribution with n − 1 degrees of freedom.
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Proof of (n − 1)S2/σ2 ∼ χ2
n−1

Define V1, V2, V3 as follows:∑n
i=1(Xi − µ)2

σ2︸ ︷︷ ︸
=V1

=
∑n

i=1(Xi − X )2

σ2︸ ︷︷ ︸
=V2

+ n(X − µ)2

σ2︸ ︷︷ ︸
=V3

.

▶ From the previous page, V1 ∼ χ2
n has MGF MV1(t) = (1 − 2t)−n/2

▶
√

n(X − µ)/σ ∼ N(0, 1)
⇒ V3 ∼ χ2

1 with MGF MV3(t) = (1 − 2t)−1/2

▶ V2 and V3 are independent from the indep of S2 and X .
The MGF of V1 = V2 + V3 is thus

MV1(t) = MV2(t)MV3(t),

implying MV2(t) = MV1(t)
MV3(t) = (1 − 2t)−n/2

(1 − 2t)−1/2 = (1 − 2t)− n−1
2 ,

which is the MGF for χ2
n−1. By the uniqueness of MGFs, this proves

V2 =
∑n

i=1(Xi − X )2

σ2 = (n − 1)S2

σ2 ∼ χ2
n−1.
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▶ V2 and V3 are independent from the indep of S2 and X .
The MGF of V1 = V2 + V3 is thus

MV1(t) = MV2(t)MV3(t),

implying MV2(t) = MV1(t)
MV3(t) = (1 − 2t)−n/2

(1 − 2t)−1/2 = (1 − 2t)− n−1
2 ,

which is the MGF for χ2
n−1. By the uniqueness of MGFs, this proves

V2 =
∑n

i=1(Xi − X )2

σ2 = (n − 1)S2

σ2 ∼ χ2
n−1.
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Back to Statistics
Recall our goal is to estimate the unknown mean µ using the
observed values of X1, X2, . . . , Xn that are i.i.d. ∼ N(µ, σ2).

For Z ∼ N(0, 1), using the normal CDF we know

P(−1.96 ≤ Z ≤ 1.96) = 0.95.

As X ∼ N(µ, σ2/n), which implies X−µ
σ/

√
n ∼ N(0, 1), we have

P
(

−1.96 ≤ X − µ

σ/
√

n ≤ 1.96
)

= 0.95,

or equivalently

P
(

X − 1.96 σ√
n ≤ µ ≤ X + 1.96 σ√

n

)
= 0.95.

This means, for 95% of the time, the sample mean X is within
1.96σ/

√
n from the true value of µ, but σ is UNKNOWN.
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t-Statistic

The result on the previous page relies on the fact that

X − µ

σ/
√

n = X − µ√
σ2/n

∼ N(0, 1), but σ2 is UNKNOWN.

If we replace σ2 by S2, what’s the distribution of

T = X − µ√
S2/n

?

The random variable T defined above is called the t-statistic.
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t-Statistic (2)
Dividing both the numerator and denominator of T by

√
σ2/n, we

can rewrite T as

T =
(X − µ)

/√
σ2/n√

S2/σ2
= Z√

U/(n − 1)
,

where

1. Z = (X−µ)√
σ2/n

∼ N(0, 1)

2. U = (n−1)S2

σ2 ∼ χ2
n−1, and

3. Z and U are independent (from the indep of X and S2).

From the definition of t-distribution, we know

T = X − µ√
S2/n

∼ tn−1

has a t-distribution with n − 1 degrees of freedom.
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95% One-Sample t-Confidence Interval
If T ∼ tn−1, let t0.025,n−1 be the value so that

P(−t0.025,n−1 ≤ T ≤ t0.025,n−1) = 0.95
− t0.025,n−1 t0.025,n−1

0.0250.025 0.95

This means

P
(

− t0.025,n−1 ≤ T = X − µ√
S2/n

≤ t0.025,n−1

)
= 0.95,

or equivalently

P
(

X − t0.025,n−1

√
S2

n ≤ µ ≤ X + t0.025,n−1

√
S2

n

)
= 0.95.

meaning, for 95% of the time, the sample mean X is within
t0.025,n−1

√
S2
n from the true value of µ.
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95% One-Sample t-Confidence Interval

The interval(
X − t0.025,n−1

√
S2

n , X + t0.025,n−1

√
S2

n

)
.

is thus call the 95% one-sample t-confidence interval for µ.

For example, with n = 16 observations, t0.025,16−1 ≈ 2.131, the
95% confidence interval for µ is

(
X − 2.131

√
S2

16 , X + 2.131

√
S2

16

)
.
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