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Section 6.2 \?, t, and F Distributions
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Chapter 6 Distributions Derived from Normal

There are 3 distributions derived from from the normal
distributions that occur many statistical problems

» Chi-Squared (x?) distributions

» “Chi-squared” is read "“kai-squared”
» t distributions
» F distributions
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Definitions: Chi-Squared Distributions
Let 21, 25,...,2Z, beiid. ~ N(0,1). The random variable

n
Th=> 27
i=1

is said to be a chi-squared distribution with n degrees of
freedom, denoted as
Ty ~ X,z,.

In HW9, we show using MGF that chi-squared distributions are
special Gamma distributions that

X2 = Gamma(a = n/2,\ = 1/2)

and the corresponding PDF is

1 P
an(t) = mt( /2) le t/2, t > O
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Properties of Chi-Squared Distributions

If Y ~ x2, then its MGF is
M(t) = (1—2t)""?,
from which we can derive its expected value and variance

> E[Y]=n

» Var(Y)=2n

» If U~ x2and V ~ 2 are independent, then U + V ~ X%n—l—n
» The proof is straight forward using MGF
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Definition: (Student'’s) t-Distributions

If Z ~ N(0,1) and U ~ x?2 and Z and U are independent, then

the distribution of
Z

VvU/n

is called the (Student’s) t-distribution with n degrees of
freedom, denoted as

T =

T ~ ty.
The PDF is given by
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Proof for the PDF of the t-Distribution
By the independence of Z and U, their joint PDF is given by

1 1 n_q1 _yu
fzu(Z,U)ZEe /2'2,7/27”@”2 temu/?,
— us ! exp(—%(zz +u)) —o<z<oo, u>0
\/7?211;—1 r(g) bl 9

Consider the transformation W = % Y = U, with inverse

transformation
0z 0z

Z-wVY. e B B 2]
Uy :>Jacob|an_37u %_ 0 Y =Y.
w Oy
The joint PDF for (W,Y) is
fwy (w,y) = fzu(w\/y,y) -y
n__ n+l
e 1exlo(—%(wzyﬂ/))\fy: y > texp (=5 (1+w?)
VA2 I(3) VR2Er(3)
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The marginal PDF for W can be obtained by integrating
fwy (w, y) over y.

n+1 y
/fwywy )y = ——F5—— / y'7 e s (1) gy,
\f2zrg
Let 5 d
y B X B X
2(1+W):>y_71+w2’dy_1+w2
Then

) = — o [ (125) T e
w P E—— X
" VA2 r(e) Jo \1+w? 1+w?

n+1

1
VAT ()L +wd)F o
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The PDFforT:\/%:ﬁWis

9/34



Properties of t-Distributions
For T ~ t, with the PDF

vV VVY

vy

P o B U T
(t)fﬁr(g) " , —oo<t<oo

Bell-shaped, symmetric about 0
With 1 degrees of freedom, t; = Cauchy
E[T]=0ifdf > 1

constant
For large t, the t-density with n df is & ————

tntl

» = heavier tail than normal
E[T] doesn't exist if k > degrees of freedom (df)
higher df = lighter tails
As df — oo, too — N(0,1) === t,df=5
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Definition: F-Distributions
Let U and V be independent chi-square random variables with m
and n degrees of freedom, respectively. The distribution of

_U/m
X= V/n

is called the F-distribution with m and n degrees of freedom,
denoted by

X ~ Fmp.
The PDF is given by
r(m+n) m m/j2 m —min
f(x) = =2 | — 21 (1 — ) 0.
™ r(?)r(;)<n) <o) e

The PDF can be obtained similarly as for the t-distribution.
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Properties of F-Distributions

For X ~ Fpn.n

E(X) = nz2 if n> 2

E(X¥) exists only if k < n/2

If T ~t,, then T2 ~ Fy,

asymmetric PDF

F-distribution can be transformed to Beta distribution

If X ~ Fm p, then
m
b=—
b=7)

vVvyVvyVy Vv

_ _(m/mX etafa=
Y= T (mymx B ( =

NI S
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Section 6.3 Sample Mean & Sample Variance
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First Statistics Question in STAT 24400

If we observed
X1, Xo, ..oy Xn, iiid. ~ N(p,0?),

but the true value of i and 02 are UNKNOWN.
How to use the observed value of Xi, X3,..., X, to estimate the
unknown values of x and 02?7
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First Statistics Question in STAT 24400

If we observed
X1, Xo, ..oy Xn, iiid. ~ N(p,0?),
but the true value of i and 02 are UNKNOWN.

How to use the observed value of Xi, X3,..., X, to estimate the
unknown values of x and 02?7

> X1, X5,...,X, are sometimes called the sample
» nis called the sample size
_ 1 n
» Usually estimate p by X = — Z ) X;, called the sample mean.
n “i=
> As 02 = E[(X; — 11)?], one might attempt to estimate it by
2
27:1 (X’ - :u“)
B —
However, j is unknown. We thus estimate o2 by

n 2
2 _ 2z (Xi—X)
n—1

» Why divide by n — 1, not n?
» We will discuss estimation problems in Chapter 8 in detail

, called the sample variance.
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Population Mean/Variance v.s. Sample Mean/Variance

If Xi,...,X, are iid. ~ N(u,0?),
» 1 is called the population mean

_ 1
> X =- E X; is called the sample mean
n“
i=1

» o2 is called the populaition variance

PRy (X,- - 7)2

> 52 —
n—1

is called the sample variance
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Sample Mean

For the sample mean

|
I
S|
3

|
-

we have shown earlier that

2

E(X)=p and Var(X)= U?

and
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A Useful Identity

The following identity always holds for any value of c.

n n o o o 1 n
Z(Xi —c)? = Z(X,- —X)? 4+ n(X —c)?, where X = - ZX,-.
i=1 i=1 i=1
Proof.

Z(X, — C)2 = Z(X, — yﬂ-?— C)2
i=1 i=1
=Y (X = XP+2) (X —X) (X =)+ > (X—c)?
i=1 i=1 — O
constant constant
= (X = X)?+2(X =) (X = X)+n(X — c)?
i=1 i=1

=0, see below

where Z(X,- - X) = ZX,- - ZY =nX —nX=0.
i=1 i=1 i=1
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Corollary of the Useful Identity

n n

ST(Xi— )2 =3 (X — X)? + n(X - c)?

i=1 i=1

» The case ¢ = 0 gives the shortcut formula for the sample
variance
- -2
> a(Xi = X)? _ (X X?) — nX ‘

S2 — —
n—1 n—1

» The value c that minimize 71 (X; — ¢)? is ¢ = X.
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Expectation of Sample Variance (Why Divide by n — 1, not n?)
Letting ¢ = p = E[X]] in the useful identity

n

Z(X p)? = (Xi = X)? +n(X — p)*.

i=1
=(n—1)8?

gives the following expression for 52

=1 (i(x,- ) (X u)2> .

i=1

Taking expected values on both sides, we get

1<ZE[X w7 = EIX — 1) ]>
= Var(X)=0?  —Var(X)=02/n

1 2
_ <_ ) o2
n—1 n

E[S?] =
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X is Independent of 52
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X Is Independent of S? (% ¥%)

We will first prove that
X isindep. of (Xo — X, Xz —X,..., X, —X).

This would imply X is independent of S? since (n — 1)S? can be
written as a function of (Xo — X, X3 — X, ..., X, — X) as follows

n n

(n—1)52 =3"(X - X)? = (X1 — X)? + Y_(X; — X)?
i=1 See below i=2

where X; — X = =37 5(Xi — X) since 37 (X;— X)=0.
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X Is Independent of S? (% ¥%)

We will first prove that

no X;1—X

X isindep. of (Xo —X,Xz—X,..., X, — X).

This would imply X is independent of SE since (n — 1)S? can be

written as a function of (X — X, Xz — X, ..., X, — X) as follows
n n
(n=1)S*=>(Xi = X)> = (X1 = X)* + > _(Xi — X)?
i=1 See below i=2

where X; — X = =37 5(Xi — X) since 3 74(X;—X)=0.
Steps of the proof:
1. find the joint PDF A/(y1,y2,--.,¥ns) of Y1 = X, and
Yi=X;—Xfori=2.3,...,n.

2. show that the joint PDF fy(y1,y2,...,ys) can factor as the
product of a function of y; and a function of (ya,...,yn).

f(y1.y2,--- yn) = &W1)h(y2, ..., yn), forall y1,y2,... yn
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Multivariate Transformation
Suppose (X1, ..., X,) are continuous r.v.'s with joint PDF

(X1, ...y Xn).

They are mapped onto (Y1,..., Yy,) by a 1-to-1 transformation

yi= gl(Xl, < 7Xn)

Yn ::gb(Xia--‘,Xn)

and the transformation can be inverted to obtain

x1=h(y1,...,¥n)

Xn = ho(Y1,- -y ¥n)-
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The joint PDF A(y1,...,Yyn) is given by

8(x1 ..
N, - yn) = (b1, ¥n) s ha(Xt, -, ¥n)) ‘ ’
O(X1,yeeXn) | s .

where Wy | 18 absolute value of the Jacobian of the
transformation, defined as the determinant of the n X n matrix

O O« .. Ox1

Bl 0 Oyn

Do Do .. 0%

dy1  Oyz OYn

oxy O O

8}’1 3}’2 6}’n

Ox;
that the (/,) element is o
9y;

8(y1, ..

-5 Xn)

9

3 Yn)
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Joint PDF of X and (Xo — X, ..., X, — X)
For Y1 =X, Yi=X;— X, for i =2,3,...,n, the inverse
transformation is
Xi=Y1—(Y2+Ys+ -+ Yp),
Xi=Y1+Y;, fori=23, ... n

We see
0x1 1 if j=1 0x; 1 ifj=1lori
— = T and = )
dy; -1 ifj=2,3,...,n, dy; 0 otherwise.
The Jacobian matrix is
Ox: 0x: ox: ox:
o oy oy T oow| 1 -1 =1 - -1
dy1  QJya Oys Oyn T
O3 O3 O3 . Ol _11 0 1 --- 0
dy1  Oy» Oys Oyn| =
050 Oxa O .. x| |1 O 0 .- 1
dy1  Oya Oys OYn

The determinant can be shown by induction to be n.
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As X;'s are independent, their joint PDF is
1 -1 <&
(X1, X2, ..., Xn) = (27)"2on exp (%2 ;(Xi - M)2>
1 -1 (& 9 _ 5
= mexp (w <Z(X,’ —X)"+n(xX—p) ))

i=1
in which,
X=X = _ijz(xi —X)= _ijzyi
n n n 2 n
Zizl(xi —%)?=(a—-X)°+ Zi:2(xi —-X)? = (Zi:2 y,-) + Z,-:2 %

The joint PDF of (Yi,...,Y,) is thus

A (Y1, Y2y -y V) = B |) o lz;lz <(ny)2+_zy,-2+n(y1 —u)2>1

where |J| = n is the Jacobian shown on the previous page.
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We can see the joint PDF A¢(y1,¥2,...,Yyn) can factor into

> a function exp(—52z(y1 — 1)?) of y1, and
> a function exp [% (i) + 30 y,-z)} of yo,...,Vn.

This proves the independence of

Yi=X and (Ya,...,Yn)=(Xo—X,..., Xo — X),

which implies the independence of X and S2.
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Distribution of S2

27/34



If X1,Xa,...,X, areii.d. ~ N(u,c?), then

X1—p Xo— Xn =
L Ma 2 M,..., n— K are i.i.d. ~ N(0,1),

(oa g g

which implies
zn: (Xi — ) ~ x>
2 n
-1 7

has a chi-squared distribution with n degrees of freedom.
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If X1,Xa,...,X, areii.d. ~ N(u,c?), then

X1—p Xo— Xn =
L Ma 2 M,..., n— K are i.i.d. ~ N(0,1),

(oa g g

which implies
Xn: (Xi _2H)2 N X,21
-1 7
has a chi-squared distribution with n degrees of freedom.

Question: What's the distribution of

X=X _ (0= 1S,

i=1
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If X1,Xa,...,X, areii.d. ~ N(u,c?), then

X1—p Xo— Xn =
L Ma 2 M,..., n— K are i.i.d. ~ N(0,1),

(oa g g

which implies
Xn: (Xi _2H)2 N X,21
-1 7
has a chi-squared distribution with n degrees of freedom.

Question: What's the distribution of

X=X _ (0= 1S,

i=1

Ans: chi-squared distribution with n — 1 degrees of freedom.
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Proof of (n —1)5%/0% ~ X2 _,

Define V1, V», V3 as follows:

Ya(Xi—p)? XX = X)? | (X —p)®

o2 o2 o2

=V =V, =Vs
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Proof of (n —1)5%/0% ~ X2 _,

Define V1, V», V3 as follows:
SIL (G -0 S 0G =X (X = p)

o2 o2

=V =V, =Vs

> From the previous page, Vi ~ x2 has MGF My, (t) = (1 — 2t)~"/?
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Proof of (n —1)5%/0% ~ X2 _,

Define V1, V», V3 as follows:
SIL (G -0 S 0G =X (X = p)

o2 o2

=V =V, =Vs

> From the previous page, Vi ~ x2 has MGF My, (t) = (1 — 2t)~"/?

> (X — p)/o ~ N(O, 1)
= V3 ~ x% with MGF M\, (t) = (1 — 2t)~%/2
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2/.2 2
Proof of (n —1)5%/0° ~ x4,
Define V1, V», V3 as follows:

Sia(Xi—p)? YL (Xi—X)? | (X — p)?
o2 o o2 o2 '

=V =V, =Vs

> From the previous page, Vi ~ x2 has MGF My, (t) = (1 — 2t)~"/?

> (X — p)/o ~ N(O, 1)
= V3 ~ x% with MGF M\, (t) = (1 — 2t)~%/2

» Vs, and V3 are independent from the indep of S? and X.
The MGF of V; = V, + V3 is thus

le(t) = MVz(t)MV3(t)7
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2/.2 2
Proof of (n —1)5%/0° ~ x4,
Define V1, V», V3 as follows:

Ya(Xi—p)? XX = X)? | (X —p)®

o2 o2 o2

=V =V, =Vs

> From the previous page, Vi ~ x2 has MGF My, (t) = (1 — 2t)~"/?

> (X — p)/o ~ N(O, 1)
= V3 ~ x% with MGF M\, (t) = (1 — 2t)~%/2

» Vs, and V3 are independent from the indep of S? and X.
The MGF of V; = V, + V3 is thus
le(t) = MVz(t)MV3(t)7
L My, (t) (1 —2t)~"/?
I My, (t) = ——= =
implying Mu, (t) My, (t) (1 —2t)~1/2
which is the MGF for x2_,. By the uniqueness of MGFs, this proves

Yia(Xi—X)? _ (n-1)8
2 ~ Xn-1-

n—1
2 )

=(1-2t)"

V, = _
02 o
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Back to Statistics

Recall our goal is to estimate the unknown mean p using the
observed values of X1, Xa,..., X, that are i.i.d. ~ N(u,c?).
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Back to Statistics

Recall our goal is to estimate the unknown mean p using the
observed values of X1, Xa,..., X, that are i.i.d. ~ N(u,c?).

For Z ~ N(0, 1), using the normal CDF we know

P(—1.96 < Z < 1.96) = 0.95.

As X ~ N(u,o2/n), which implies Z/?/’% ~ N(0,1), we have

p (—1.96 cXor e 1.96) — 0.95,

oA =

or equivalently

_ o — g
P(X-196—<pu<X+196—— ) =0.95.
( 96ﬁ_,u_ + 96ﬁ) 0.95

This means, for 95% of the time, the sample mean X is within
1.960/+/n from the true value of u, but o is UNKNOWN.
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t-Statistic

The result on the previous page relies on the fact that
X—p  X-— N(O.
cr/\/GE /o /,7

If we replace o® by S2, what's the distribution of

1), but o? is UNKNOWN.

X
52/

T = ?

9.

The random variable T defined above is called the t-statistic.
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t-Statistic (2)

Dividing both the numerator and denominator of T by \/02/n, we

can rewrite T as

_X-owfyein  z
/52 /g2 VU/(n=1)

where

1.z =%1 N0, 1)

o?2/n

2. U= ("_0712)52 ~x2_4, and

3. Z and U are independent (from the indep of X and S2).

From the definition of t-distribution, we know
_ X

\/S?%/n

has a t-distribution with n — 1 degrees of freedom.

T

~ th—1
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95% One-Sample t-Confidence Interval
If T ~ t,_1, let to.o5,—1 be the value so that

P(—to025.n-1 < T < too25,-1) = 0.95 0025 0.025
—to.025,n-1 t0.025,n-1
This means
X—p
P( — t0.025,0-1 < T = < to.ozs,n—l) = 0.95,
S2/n

or equivalently

- 52 B S2
P(X — 10.025,n—1 " < < X+ to.025,n-1 n> = 0.95.

meaning, for 95% of the time, the sample mean X is within
t0.025,n—11/ 572 from the true value of p.
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95% One-Sample t-Confidence Interval

The interval

- s2 S2
(X — 10.025,n-11 'y X + t0.025,n-11 n)-

is thus call the 95% one-sample t-confidence interval for .

For example, with n = 16 observations, tg.02516—1 ~ 2.131, the
95% confidence interval for p is

. /g2 /52
(X—2.131 16’ X +2131 16>'
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