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Markov Inequality (p.121 in Textbook)
If X is a random variable that only take nonnegative values
P(X ≥ 0) = 1 and for which E(X ) exists, then

P(X ≥ t) ≤ E(X )
t .

Proof. We will prove this for the discrete case; the continuous case
is entirely analogous.

E(X ) =
∑

x
xp(x) =

≥0 since X≥0︷ ︸︸ ︷∑
x<t

xp(x) +
∑
x≥t

xp(x)

≥
∑
x≥t

xp(x)

≥
∑
x≥t

tp(x) = tP(X ≥ t)
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Chebyshev’s Inequality (p.133, Textbook)

Let X be a random variable with mean µ and variance σ2. Then,
for any t > 0,

P(|X − µ| > k) ≤ σ2

k2 .

Proof. Since (X − µ)2 is a nonnegative random variable, we can
apply Markov’s inequality (with t = k2) to obtain

P(|X − µ| ≥ k) = P((X − µ)2 ≥ k2) ≤

=Var(X)=σ2︷ ︸︸ ︷
E[(X − µ)2]

k2 = σ2

k2 .
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The Weak Law of Large Numbers (WLLN)
Let X1, X2, . . . , Xn, . . . be indep. r.v.s with E(Xi) = µ and
Var(Xi) = σ2. Let Xn = 1

n
∑n

i=1 Xi . Then, for any ε > 0,

P(|Xn − µ| > ε) → 0 as n → ∞.

Proof. We first find E(Xn) and Var(Xn):

E(Xn) = 1
n

n∑
i=1

E(Xi) = 1
n

n∑
i=1

µ = µ.

Since the Xi are independent,

Var(Xn) = 1
n2

n∑
i=1

Var(Xi)︸ ︷︷ ︸
=σ2

= 1
n2 · nσ2 = σ2

n .

The desired result now follows immediately from Chebyshev’s
inequality, which

P(|Xn − µ| > ε) ≤ Var(Xn)
ε2 = σ2

nε2 → 0, as n → ∞.
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Counterexample for WLLN — Cauchy
▶ The WLLN above is proved assuming the existence of Var(Xi).

WLLN can be proved only assuming the existence of E(Xi).
▶ If E(Xi) doesn’t exist, WLLN might not work. A

counterexample the Cauchy distribution. If X1, X2, . . . , Xn, . . .
are i.i.d. Cauchy, we can show using the Characteristic
function1 in the next page that

Xn = 1
n
∑n

i=1
Xi ∼ Cauchy

which doesn’t converge to a single value and this implies

P(|X n| > ε) = 2
∫ ∞

ε

1
π(1 + x2)dx = 2

[
arctan(x)

π

]x=∞

x=ε

= 1−2 arctan(ε)
π

For example, P(|Xn| > 1) = 1 − 2 arctan(1)
π = 1

2 for all n, which
doesn’t converge to 0 as n → ∞.

1In fact, we have proved a special case in L07 that if X1 and X2 are indep.
Cauchy, then 1

2 (X1 + X2) also has the Cauchy distribution
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Distribution of Sample Mean of Cauchy R.V.’s
Recall we mentioned at the end of L11 that the characteristic
function of the Cauchy distribution is

ϕX (t) = E[eitX ] =
∫ ∞

−∞
eitx 1

π(1 + x2)dx = e−|t|, −∞ < t < ∞.

If X1, X2, . . . , Xn, . . . are i.i.d. Cauchy, then the characteristic
function for

∑n
i=1 Xi is

ϕ∑n
i=1 Xi

(t) = [ϕX (t)]n = e−n|t|, −∞ < t < ∞.

Thus, the characteristic function for Xn = 1
n
∑n

i=1 Xi is

ϕXn
(t) = ϕ∑n

i=1 Xi
(t/n) = e−n|t/n| = e−|t|, −∞ < t < ∞,

which is exactly the characteristic function for Cauchy. As the
characteristic function uniquely determines the distribution, we
know Xn is has the Cauchy PDF below for all n:

f (x) = 1
π(1 + x2) , −∞ ≤ x < ∞.
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Definition: Convergence in Distribution (p.181, Textbook)

Let X1, X2, . . . be a sequence of r.v.s with CDFs F1, F2, . . ., and let
X be a r.v. with CDF F . We say that Xn converges in distribution
to X if

lim
n→∞

Fn(x) = F (x)

at every point at which F is continuous.
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Convergence in MGF Implies Convergence in Distribution

Suppose X1, X2, . . . , Xn, . . . is a sequence of r.v.s, each with MGF
MXi (t). Furthermore, suppose that

lim
i→∞

MXi (t) = MX (t),

for all t in an open interval containing 0, and MX (t) is an MGF.
Then there is a unique CDF FX whose moments are determined by
MX (t) and, for all x where FX (x) is continuous, we have

lim
n→∞

Fn(x) = F (x).

Proof. Too advance for STAT 244.
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Central Limit Theorem (CLT)

Let X1, X2, . . . be a sequence of i.i.d. random variables, each
having mean µ and variance σ2 and let Sn = X1 + · · · + Xn. The
distribution of

Sn − nµ√
nσ

= Xn − µ

σ/
√

n
tends to the standard normal as n → ∞. That is, for
−∞ < a < ∞,

P
(Sn − nµ√

nσ
≤ a

)
−→ 1√

2π

∫ a

−∞
e−x2/2dx as n → ∞.
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Proof of CLT (Using MGF)
We will first prove CLT for the case µ = E(Xi) = 0.
Let M(t) be the common MGF of the Xi ’s. Since Sn is a sum of
independent r.v.’s, we know the MGF of Sn is

MSn(t) = [M(t)]n

The MGF for Zn = Sn√
nσ

is a linear transformation of Sn, so

MZn(t) = MSn

( t√
nσ

)
=
[
M
( t√

nσ

)]n

Take the Taylor series expansion of M(s) about zero:

M(s) =
=1︷ ︸︸ ︷

M(0) +s

=E(X)=0︷ ︸︸ ︷
M ′(0) +1

2s2

=E[X2]=Var(X)=σ2︷ ︸︸ ︷
M ′′(0) +ε

= 1 + σ2

2 s2 + ε

where ε/s2 → 0 as s → 0.
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As M(s) = 1 + σ2

2 s2 + ε, we have

M
( t√

nσ

)
= 1 + σ2

2

( t√
nσ

)2
+ εn = 1 + t2

2n + εn

where εn/(t2/(nσ2)) → 0 as n → ∞.

MZn(t) =
[
M
( t√

nσ

)]n
=
(

1 + t2

2n + εn

)n

→ et2/2 as n → ∞.

The last limit comes from the fact that

lim
n→∞

(
1 + an

n

)n
= ea if lim

n→∞
an = a.

Here et2/2 is the MGF of the standard normal, as was to be shown.

For the case µ = E(Xi) ̸= 0, we can define X ′
i = Xi − µ, and let

S ′
n = X ′

1 + · · · + X ′
n. Then Sn − nµ = S ′

n and the proof goes as the
case for µ = 0.
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Example of CLT — Exponential
If Xi ∼ Exponential(λ = 1) with the PDF

f (x) = e−x , for x > 0, µ = 1, σ2 = 1

Black curve: the exact distribution of Sn =
∑n

i=1 Xi is
Gamma(α = n, λ = 1).
Blue curve: By CLT, Sn is approx. ∼ N(µ = n, σ2 = n).
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Example of CLT — Poisson

If Xi ’s are i.i.d. ∼ Poisson(λ = 1), µ = 1, σ2 = 1
Histogram: exact distn. of Sn =

∑n
i=1 Xi is Poisson(λ = n)

Blue curve: By CLT, Sn is approx. ∼ N(µ = n, σ2 = n).
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Example of CLT — Geometric
If Xi ’s are i.i.d. ∼ Geometric(p = 0.5), with

P(Xi = x) = (0.5)x , x = 1, 2, 3, . . . ⇒ µ = 1
p = 2, σ2 = 1 − p

p2 = 2.

Histogram: exact distn. of Sn =
∑n

i=1 Xi is NegBin(n, p = 0.5).
Blue curve: By CLT, Sn is approx. ∼ N(µ = 2n, σ2 = 2n).
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Normal Approximation to Binomial Distribution

Normal approximation to the Binomial distributions is a special
case of CLT:

X =
n∑

i=1
Xi ∼ Bin(n, p),

where X1, X2, ..., Xn are n independent Bernoulli random variables
with success probability p.

Therefore,
E(Xi) = p, Var(Xi) = p(1 − p).

By CLT, for large n, Y ∼ Bin(n, p) is approximately distributed as

N(µY = np, σ2
Y = np(1 − p)).
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Normal Approximation to Bin(n, p = 0.5)
When X1, . . . , Xn ∼ Bernoulli(p = 0.5), the exact distribution of
Sn is Bin(n, p = 0.5)
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For X1, . . . , Xn ∼ Bernoulli(p = 0.1), the exact distribution of Sn is
Bin(n, p = 0.1)

n = 1

Sn

0.0
0.2
0.4
0.6
0.8
1.0
1.2

−1 0 1 2

n = 25

Sn

0.00
0.05
0.10
0.15
0.20
0.25

−3 −1 1 3 5 7

n = 100

Sn

0.00
0.02
0.04
0.06
0.08
0.10
0.12

−1 2 4 6 8 11 14 17 20

n = 400

Sn

0.00
0.01
0.02
0.03
0.04
0.05
0.06

19 25 31 37 43 49 55 61
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Example 3: Roulette Calibration

With a perfectly balanced roulette wheel, red numbers should turn
up 18 in 38 of the time. To test its wheel, one casino records the
results of 3800 plays. Let X be the number of reds the casino got.

Q1: If the roulette wheel is perfectly
balanced, what is the chance that
X ≥ 1890?

Q2 If the casino gets 1890 reds, do
you think the roulette wheel should
be calibrated?
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Example 3: Roulette Calibration
Q1: If the roulette wheel is perfectly balanced, what is the chance
that X ≥ 1890?

Sol.: We know X ∼ Bin(n = 3800, p = 18
38).

Thus

E(X ) = np = 3800(18/38) = 1800
Var(X ) =np(1 − p) = 3800(18/38)(20/38) ≈ 947.37

By CLT, X is approx. ∼ N(µ = 1800, σ2 = 947.37), or
Z = X−1800√

947.37 ∼ N(0, 1) Thus,

P(X ≥ 1890) ≈ P
(

Z ≥ 1890 − 1800√
947.37

≈ 2.92
)

≈ 1−Φ(2.92) ≈ 0.00173.

1-pnorm(1890, m = 1800, s = sqrt(3800*(18/38)*(20/38)))
[1] 0.001728
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Example 3: Roulette Calibration

As X ∼ Bin(n = 3800, p = 18
38), the exact probability of X ≥ 1890

is

P(X ≥ 1890) =
∑3800

k=1890

(
3800

k

)(18
38

)k (20
38

)3800−k
≈ 0.00183

We can see normal approx. to Binomial gives fairly good approx to
the exact Binomial probability.

Q2 If the casino gets 1890 reds, do you think the roulette wheel
should be calibrated? Yes. X ≥ 1890 is very unlikely to happen.
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How Large n Has to Be to Use CLT?

▶ If the population is normal, then any n will do.
▶ If the population distribution is symmetric, then n should be

at least 30 or so.
▶ The more skew or irregular the population, the larger n has to

be
▶ For the Binomial distribution, a rule of thumb is that n should

be such that

np ≥ 10 and n(1 − p) ≥ 10.
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