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Moment Generating Function (MGF)

The moment generating function (MGF) M(t) of the random
variable X is defined to be

M(t) = E(e¥) = > %px(x) if discrete
a a J20, e fx(x)dx if continuous

where px(x) and fx(x) are the PMF/PDF of X.
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Moment Generating Function (MGF)

The moment generating function (MGF) M(t) of the random
variable X is defined to be

M(t) = E(e¥) = > %px(x) if discrete
a a 20, e fx(x)dx if continuous

where px(x) and fx(x) are the PMF/PDF of X.

> MGF M(t) is NOT a single value but a function of t
> M(0) = E(e”X) = E[1] = 1 always
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Example: MGF for Geometric
For Geometric(p), the PMF is

p(X):(l_p)va X:071727"'a

Its MGF is
M(t) - ge“p(n
= i e™(1—p)p
- pr_ojo(ef(l )y

p = 1
= _—————— since Z r* = .
1—(1—pet = 1—r

The last step is valid only when (1 — p)et < 1, or
t < —log(1l — p). Thus the MGF is defined when (1 — p)e <1
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Example: MGF for Binomial

For Binomial(n, p), the PMF is

p(x) = (") p“(1—p)"*, k=0,1,2,...,n.
X

Its MGF is
M(t) = Z e™p(x) = Z e™ (Z) p*(1—p)"*
x=0 x=0
3 <X> (pe') (1= p)"
x=0

= (pe' + (1 —p))" valid for — oo < t < cc.

The last step comes from the Binomial expansion
(a+b)N =N, (')\(l)aXbN*X fora=pet, b=1—p, and N = n.
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Example: MGF for Exponential

For Exponential()\), the PDF is
f(x)=Xe™™, 0<x< oo,
Its MGF is

I\/I(t):/ etXf(x)dx:/ e™ e Mdx
0 0

= /Oo e (A=xqy
0
A

A—t’

The integral is finite only when A — t > 0.
Thus the MGF is defined only when —co < t < A.
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MGF for Standard Normal N(0, 1)

The PDF for N(0,1) is ¢(x) = \/%e’xz/z for —oco < x < 0.
Its MGF is thus

see below

—_—N—
0o 00 1 2 1 o 2
M(t) = etx d :/ etx e X /2d — / e*X /2+ th
( ) /;00 ¢(X) X —00 V 271— X V 27T — 00 x

Using the technique of completing the square, as
x2 1, t2 1 t2
o ptx= (X = 2x )+ — = —Z(x—t)* + =

the integral equals

1 o0 1 o
M(t) = E/ e—(X—t)2/2+t2/2dX — et2/2 ?/ e_(X_t)2/2dX _ et2/2.
Vi — 00 V —00

=1

The last integral is 1 since it integrates over PDF of N(t,1).
The MGF is defined for all —oo < t < oo.
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Moments and Moment Generating Functions
As M(t) = E(e%X), its first derivative is

d

M'(s) = % EleX] =E [dtefx] = E[Xe™].

Its second derivative is

d d d
M’(s) = —M'(t) = — E[Xe™ :E{X fx} = E[X%e™].
(5) = S M/(1) = = E[Xe™] = E | = xeX| = E[X?eX]

In general, the kth derivative of the MGF is

dk

ME(s) =

M(t) = E[X*e™].
Plugging in t = 0, we get
M'(0) = E(X), M"(0) =E(Xx?), MK(0)=E(X"),...,

Moment generating functions got the name since the moments of
X can be obtained by successively differentiating M(t).
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Example: Calculating Moments Using MGF — Exponential

The MGF for Exponential(p) is

M(t) = %

The derivatives and the moments are thus

M) = A o E0 =M - >
M’(t) = o 2_At)3 E(X?) = M"(0) = %
M) () = o _k!j)kﬂ E(X¥) = MK)(0) = %
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Example: Calculating Moments Using MGF — N(0, 1)

The MGF for N(0,1) is
M(t) = et/
The derivatives and the moments are thus

M(t) =tet’/? = E(X)=M(0)=0

M'(t) = /2 4 2t/ = E(X2)—I\/I”(0):
(k)

MO (1) = 3te’/2 + 3et/2 = E(X3) =

(0) =

MO (t) = (343t + 32+ t3)et’/2 = E(X4) = M (0) =3
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MGF for a 4 bX

If X has the MGF Mx(t) and Y = a+ bX, then the MGF for Y is

t) = E(e™)

( eat+th )

“E(e"™)
- eatl\/lx(bt)

=E
E(eat th)
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MGF for N(u, o?)

If X ~ N(0,1), we know in LO4 that
Y =p+o0X~ N(uo?).

As the MGF for X is known to be Mx(t) = e’/2, we can obtain
the MGF for Y =+ o X from Mx(t) to be

My(t) — eMth(Ut) _ eut602t2/2 _ er+U2t2/2'
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Cauchy Distribution Has No MGF
The Cauchy Distribution has the PDF

1
f - - _x< )
(X) 7T(1+X2)’ o0 X<
Its MGF would be
o0 etx
M(t) = - 4
(&) /—oo 7r(1+x2) x
fo 1+X2) =00 since I|m (1+X2) =o0if t >0,
f—oo 7r(1+x2)dX since Xﬂrpoo ﬂ.(lJer) =0 ift <0
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Cauchy Distribution Has No MGF
The Cauchy Distribution has the PDF

1

f - - _x< )
(X) 7T(1+X2)’ o0 X<
Its MGF would be
o0 etx
M(t) = - 4
(&) /oo7r(1+x2) x
fo 1+X2) =00 since I|m (1+X2) =o0if t >0,
f—oo 7r(1+x2)dX 0o since xﬂrl]oo ﬂ.(lJer) =0 ift <0

Remark

» If X has an MGF M(t) that exists for t in an open interval
containing 0, then all the moments E(X¥) exist.

» If X doesn't have all the moments E(X¥), then X has a
heavier tail than those with all the moments.
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MGFs for Common Discrete Distributions

Name

PMF at k Mean | Variance MGF
and range
Bernoulli(p) 1—-p ifk=0 1 b1
on {0,1} p k_1 | P |PA=P) ]| pettl-p
Binomial(n, p) M k(1 — p)n—k 1_ to1_p)n
on {0,1,...,n} (k)” (1-»p) np |np(1—p)| (pe'+1-p)
Geometric(p) (1—p)k-1p 1 1-p pet
on {1,2,3...} p p2 1—(1—p)et
Negative Binomial(r, p) (k 1) (1 - p)<- r | r(l—p) ( pet )'
on{r,r+1,r+2,...} 1 p P2 1—(1— p)et
k
Poisson(\) AN A\ A\ Aet — 1
on {0,1,2,...} € T exp(A(e’ — 1))

» MGF for the Hypergeometric distribution exists but is complicated
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MGFs for Common Continuous Distributions

Name PDF f(x) Range Mean | Variance MGF M(t)
Exponential()) e M 0<x<oo | 1/x| 1/X2 ﬁ, t< A
A% o
B PY 2 A
Gamma(c, A) F(a)xa e ™, 0<x<oo |a/A| a/A (ﬁ) , E<A
Normal(,0?) | —— e 1 (52)" _oo < < 2 ( t+f’2t2>
ormal(u, o 7 , —00 < X < 00 o ex —
2 T w plu 5
1
Cauchy _—, —00 < x < 00 nc.>t nc.)t does not exist
m(1+ x2) exist | exist

» MGF for the Beta distribution exists but is complicated.
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MGF for Sum of Independent R.V's

If X and Y are independent r.v.s with MGF's Mx(t) and My (t),
then Mx,y(t) = Mx(t)My(t) on the common interval where
both MGF's exist.

Proof.
My yy(t) = E(e!XFY)) = E(eXetY)
= ( XYE(etY) since X, Y are indep.
= Mx(t)My(t)
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MGF for Sum of Independent R.V's

If X and Y are independent r.v.s with MGF's Mx(t) and My (t),
then Mx,y(t) = Mx(t)My(t) on the common interval where
both MGF's exist.

Proof.
My yy(t) = E(e!XFY)) = E(eXetY)
= ( XYE(etY) since X, Y are indep.
= Mx(t)My(t)

More generally, if Xi,..., X, are independent with corresponding
MGF Mx.(t)'s, then the MGF for T = Y1 ; Xj is

Mr(t) = Ele* 2 %] = T E[e™] = []_, Mx,(1),

and it exists on the common interval where all MGF's exist.
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The MGF Uniquely Determines the Distribution (%% %)

If the moment-generating function M(t) exists for t in an open
interval containing 0, like (—tp, tp), for some tg > 0, then it
uniquely determines the probability distribution.
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The MGF Uniquely Determines the Distribution (%% %)

If the moment-generating function M(t) exists for t in an open
interval containing 0, like (—tp, tp), for some tg > 0, then it
uniquely determines the probability distribution.

That is, if X and Y have identical MGF
Mx(t) = My(t) for all t in an open interval containing 0,

then X and Y have the same probability distribution.
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The MGF Uniquely Determines the Distribution (%% %)

If the moment-generating function M(t) exists for t in an open
interval containing 0, like (—tp, tp), for some tg > 0, then it
uniquely determines the probability distribution.

That is, if X and Y have identical MGF
Mx(t) = My(t) for all t in an open interval containing 0,

then X and Y have the same probability distribution.

» Ex1 If X has the MGF M(t) = (1/2)'%(ef + 1)1°, then X
must be ~ Bin(n =10, p = 1/2).

» Ex2 If X has the MGF M(t) = exp(3(e* — 1)), what's the
distribution of X?
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The MGF Uniquely Determines the Distribution (%% %)

If the moment-generating function M(t) exists for t in an open
interval containing 0, like (—tp, tp), for some tg > 0, then it
uniquely determines the probability distribution.

That is, if X and Y have identical MGF
Mx(t) = My(t) for all t in an open interval containing 0,

then X and Y have the same probability distribution.

» Ex1 If X has the MGF M(t) = (1/2)'%(ef + 1)1°, then X
must be ~ Bin(n =10, p = 1/2).

» Ex2 If X has the MGF M(t) = exp(3(e* — 1)), what's the
distribution of X? Poisson(\ = 3)
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Finding the Distribution of the Sum of Indep. R.V.s Using MGF

Ex1. X ~ N(ux,02) and Y ~ N(py,07) are independent, what's
the distribution of X 4+ Y7
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Finding the Distribution of the Sum of Indep. R.V.s Using MGF

Ex1. X ~ N(ux,02) and Y ~ N(py,07) are independent, what's
the distribution of X 4+ Y7

Sol. The MGF for X + Y is

o2t? o2t?
M(t) = Mx(t)My(t) = exp ,uXt+XT exp | pyt + y2

(02 + 02)¢t?
— exp ((MX _|_ My)t _|_ %

which is the MGF for N(px + 1y, 02 + 02), meaning

X+ Y ~ N+ py, 0% +03).
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Finding the Distribution of the Sum of Indep. R.V.s Using MGF

Ex2. What's the distribution of > ; X; for independent X; ~
Poisson(A;)?
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Finding the Distribution of the Sum of Indep. R.V.s Using MGF

Ex2. What's the distribution of > ; X; for independent X; ~
Poisson(A;)?

Sol. The MGF for X; is Mx,(t) = exp(\i(e* — 1)). The MGF for
M(t) = Hexp e—l)-exp((e—l) )\),
1

which is the MGF for Poisson(}_/; A;), meaning

n n
ZX,- ~ Poisson (Z )\,-> .
i=1 i=1
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Sum of i.i.d. Random Variables
If X1, Xa, ..., X, are i.i.d. with MGF Mx(t), the MGF for 7_, X;
would be

M(t) = E[et 2 %] = T E[e™] = [ Mx(t) = (Mx(1))"
i=1 i=1
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Sum of i.i.d. Random Variables
If X1, Xa, ..., X, are i.i.d. with MGF Mx(t), the MGF for 7_, X;
would be

M(t) = E[et 2 %] = T E[e™] = [ Mx(t) = (Mx(1))"
i=1 i=1

Ex3. If X1, Xa,..., X, are i.i.d. Exponential()\), what's the
distribution of >>7_; X;?
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Sum of i.i.d. Random Variables
If X1, Xa, ..., X, are i.i.d. with MGF Mx(t), the MGF for 7_, X;
would be

M(t) = E[et 2 %] = T E[e™] = [ Mx(t) = (Mx(1))"
i=1 i=1

Ex3. If X1, Xa,..., X, are i.i.d. Exponential()\), what's the
distribution of >>7_; X;?

A
Sol. The MGF for Exponential(\) is Mx(t) = ——.

A—t
The MGF for >>7_; X; would be

M) = (Mx()" = (1)

which is the MGF for Gamma(a = n, \), meaning

ZX; ~ Gamma(a = n, \).
i=1
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Sum of i.i.d. Random Variables

Ex4. If X1, Xa,...,X, are i.i.d. Geometric(p), what's the
distribution of > ; X;?
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Sum of i.i.d. Random Variables

Ex4. If X1, Xa,...,X, are i.i.d. Geometric(p), what's the
distribution of > ; X;?

pe’

Sol. The MGF for Geometric(p) is Mx(t) = T=(1=p)et’

The MGF for >-7_; X; would be

(o) = (M) = (=25

1-p

which is the MGF for NegBin(r = n, p), meaning

ZX; ~ NegBin(r = n, p).
i=1
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Joint Moment Generating Functions (Joint MGF's)

For any n random variables X, ..., X, the joint moment
generating function (joint MGF) is defined to be

M(tl, ey t,,) = E[et1X1+~--+t,,X,,]'

» The MGF for an individual X; can be obtained from the joint
PDF by letting all but t; be 0. That is,

Mx.(t) = E[e™] = M(0,...,0,t,0,...,0)

where the t is in the ith place.
» The joint MGF uniquely determines the joint distribution of
Xi, ..., Xn (ke kK, proof too advanced for STAT 244)
» Corollary: Xi,..., X, are independent if and only if their
joint MGF is the product of their marginal MGF:

M(tl, ey tn) = Mxl(tl) - MXn(tn)-
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Example: Proof of Independence by Joint MGF — Normal
Let X and Y bei.i.d. N(u,c?). Prove that X + Y and X — Y are
independent by computing their joint MGF.

Proof. The joint MGF for X + Y and X — Y is
M(s, t) = E(eSX+Y)HEX=Y))  (by definition)
— E(e(s+t)X+(sft)Y)
= E(eBTOXYE(DY)  (by indep of X, Y)
= Mx(S + t)My(S — t)

o2 2 o2(s — t)2
= exp (M(S +1)+ (52+t)> exp <u(s —t)+ (SQt)>

= exp <2us + 0252> exp <a2t2>

MGF for N(2u,202) MGF for N(0,202)

This shows

> X+ Y ~ N(2i,202) and X — Y ~ N(0,202)
» X+ Y and X — Y are independent
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Characteristic Functions

» Drawback of MGF: It may not exist.
» The characteristic function of a random variable X is defined
to be

o(t) = E(e’-tX)7 where i = v/—1 = the imaginary number.

> ¢(t) always exists since |e’f| = 1, even for Cauchy distribution.

> dx(t) = Mx(it) if My(t) exists (See next page)

> darbx(t) = e ox(bt)

> dxiy(t) = ox(t)py(t) if X and Y are independent

» The characteristic function uniquely determines the
distribution
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Characteristic Functions for Common Distributions

Name PMF at k MGF Characteristic
and range Function
Binomial(n, p) ™ k(1 — pyr—k t11_ ) 1y
on {0,1,...,n} (k)p (1-p) (pef + p) (pe' + p)
i ot ot
Geometric(p) (1-p)c-1p p p _
on {1,2,3...} 1—(1-p)et 1—-(1—p)et
Negative Binomial(r, p) (k - 1)p'(1 ) ( pet )’ ( pe't )’
on{r,r+1,r+2,...} |\r—1 1—(1-pet 1—(1—p)et
. k
Poisson(\) AN ¢ 1 1
on {0,1,2,...} K exp(A(e ) exp(A(e )
Name PDF f(x) Range MGF Characte..ristic
Function
Exponential()\) Ae= A, 0< x < oo 2= -
)\a «@ «@
Gammsto ) | Fopeter 0sxc | ()T | ()
1 _1(x=s)?
Normal(y, o%) e 1) , —00 < x < 00|exp (uf + #) exp (;tit - %)
o2
1
Cauchy . —00 < X < 00 does_ not o ltl
m(1 4 x2) exist
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