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Moment Generating Function (MGF)

The moment generating function (MGF) M(t) of the random
variable X is defined to be

M(t) = E(etX ) =
{∑

x etxpX (x) if discrete∫∞
−∞ etx fX (x)dx if continuous

where pX (x) and fX (x) are the PMF/PDF of X .

▶ MGF M(t) is NOT a single value but a function of t
▶ M(0) = E(e0Ẋ ) = E[1] = 1 always

2 / 24



Moment Generating Function (MGF)

The moment generating function (MGF) M(t) of the random
variable X is defined to be

M(t) = E(etX ) =
{∑

x etxpX (x) if discrete∫∞
−∞ etx fX (x)dx if continuous

where pX (x) and fX (x) are the PMF/PDF of X .

▶ MGF M(t) is NOT a single value but a function of t
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Example: MGF for Geometric
For Geometric(p), the PMF is

p(x) = (1 − p)xp, x = 0, 1, 2, . . . ,

Its MGF is

M(t) =
∞∑

x=0
etxp(x)

=
∞∑

x=0
etx (1 − p)xp

= p
∞∑

x=0
(et(1 − p))x

= p
1 − (1 − p)et , since

∞∑
x=0

r x = 1
1 − r .

The last step is valid only when (1 − p)et < 1, or
t < − log(1 − p). Thus the MGF is defined when (1 − p)et < 1
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Example: MGF for Binomial

For Binomial(n, p), the PMF is

p(x) =
(

n
x

)
px (1 − p)n−x , k = 0, 1, 2, . . . , n.

Its MGF is

M(t) =
n∑

x=0
etxp(x) =

n∑
x=0

etx
(

n
x

)
px (1 − p)n−x

=
n∑

x=0

(
n
x

)
(pet)x (1 − p)n−x

= (pet + (1 − p))n valid for − ∞ < t < ∞.

The last step comes from the Binomial expansion
(a + b)N =

∑N
x=0

(N
x
)
axbN−x for a = pet , b = 1 − p, and N = n.
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Example: MGF for Exponential

For Exponential(λ), the PDF is

f (x) = λe−λx , 0 ≤ x < ∞.

Its MGF is

M(t) =
∫ ∞

0
etx f (x)dx =

∫ ∞

0
etxλe−λxdx

=
∫ ∞

0
λe−(λ−t)xdx

= λ

λ − t ,

The integral is finite only when λ − t > 0.
Thus the MGF is defined only when −∞ < t < λ.
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MGF for Standard Normal N(0, 1)
The PDF for N(0, 1) is ϕ(x) = 1√

2π
e−x2/2 for −∞ ≤ x < ∞.

Its MGF is thus

M(t) =
∫ ∞

−∞
etx ϕ(x)dx =

∫ ∞

−∞
etx 1√

2π
e−x2/2dx = 1√

2π

∫ ∞

−∞
e

see below︷ ︸︸ ︷
−x2/2 + tx dx

Using the technique of completing the square, as

−x2

2 + tx = −1
2 (x2 − 2tx + t2) + t2

2 = −1
2 (x − t)2 + t2

2 ,

the integral equals

M(t) = 1√
2π

∫ ∞

−∞
e−(x−t)2/2+t2/2dx = et2/2 1√

2π

∫ ∞

−∞
e−(x−t)2/2dx︸ ︷︷ ︸
=1

= et2/2.

The last integral is 1 since it integrates over PDF of N(t, 1).
The MGF is defined for all −∞ < t < ∞.
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Moments and Moment Generating Functions
As M(t) = E(etX ), its first derivative is

M ′(s) = d
dt E[etX ] = E

[ d
dt etX

]
= E[XetX ].

Its second derivative is

M ′′(s) = d
dt M ′(t) = d

dt E[XetX ] = E
[ d

dt XetX
]

= E[X 2etX ].

In general, the kth derivative of the MGF is

M(k)(s) = dk

dtk M(t) = E[X ketX ].

Plugging in t = 0, we get

M ′(0) = E(X ), M ′′(0) = E(X 2), M(k)(0) = E(X k), . . . ,

Moment generating functions got the name since the moments of
X can be obtained by successively differentiating M(t).

7 / 24



Example: Calculating Moments Using MGF — Exponential

The MGF for Exponential(p) is

M(t) = λ

λ − t .

The derivatives and the moments are thus

M ′(t) = λ

(λ − t)2 ⇒ E(X ) = M ′(0) = 1
λ

M ′′(t) = 2λ

(λ − t)3 ⇒ E(X 2) = M ′′(0) = 2
λ2

...

M(k)(t) = k!λ
(λ − t)k+1 ⇒ E(X k) = M(k)(0) = k!

λk .
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Example: Calculating Moments Using MGF — N(0, 1)

The MGF for N(0, 1) is

M(t) = et2/2

The derivatives and the moments are thus

M ′(t) = tet2/2 ⇒ E(X ) = M ′(0) = 0

M ′′(t) = et2/2 + t2et2/2 ⇒ E(X 2) = M ′′(0) = 1

M(3)(t) = 3tet2/2 + t3et2/2 ⇒ E(X 3) = M(k)(0) = 0

M(4)(t) = (3 + 3t + 3t2 + t3)et2/2 ⇒ E(X 4) = M(k)(0) = 3
...
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MGF for a + bX

If X has the MGF MX (t) and Y = a + bX , then the MGF for Y is

MY (t) = E(etY )
= E(eat+btX )
= E(eatebtX )
= eat E(ebtX )
= eatMX (bt)
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MGF for N(µ, σ2)

If X ∼ N(0, 1), we know in L04 that

Y = µ + σX ∼ N(µ, σ2).

As the MGF for X is known to be MX (t) = et2/2, we can obtain
the MGF for Y = µ + σX from MX (t) to be

MY (t) = eµtMX (σt) = eµteσ2t2/2 = eµt+σ2t2/2.
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Cauchy Distribution Has No MGF
The Cauchy Distribution has the PDF

f (x) = 1
π(1 + x2) , −∞ ≤ x < ∞.

Its MGF would be

M(t) =
∫ ∞

−∞

etx

π(1 + x2)dx

>


∫∞

0
etx

π(1+x2)dx = ∞ since lim
x→∞

etx

π(1+x2) = ∞ if t > 0,∫ 0
−∞

etx

π(1+x2)dx = ∞ since lim
x→−∞

etx

π(1+x2) = ∞ if t < 0

Remark

▶ If X has an MGF M(t) that exists for t in an open interval
containing 0, then all the moments E(X k) exist.

▶ If X doesn’t have all the moments E(X k), then X has a
heavier tail than those with all the moments.
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MGFs for Common Discrete Distributions

Name
and range PMF at k Mean Variance MGF

Bernoulli(p)
on {0, 1}

{
1 − p if k = 0
p if k = 1

p p(1 − p) pet + 1 − p

Binomial(n, p)
on {0, 1, . . . , n}

(n
k
)

pk(1 − p)n−k np np(1 − p) (pet + 1 − p)n

Geometric(p)
on {1, 2, 3 . . .}

(1 − p)k−1p
1
p

1 − p
p2

pet

1 − (1 − p)et

Negative Binomial(r , p)
on {r , r + 1, r + 2, . . .}

(k − 1
r − 1

)
pr (1 − p)k−r r

p
r(1 − p)

p2

( pet

1 − (1 − p)et

)r

Poisson(λ)
on {0, 1, 2, . . .}

e−λ λk

k!
λ λ exp(λ(et − 1))

▶ MGF for the Hypergeometric distribution exists but is complicated
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MGFs for Common Continuous Distributions

Name PDF f (x) Range Mean Variance MGF M(t)

Exponential(λ) λe−λx , 0 ≤ x < ∞ 1/λ 1/λ2 λ
λ−t , t < λ

Gamma(α, λ)
λα

Γ(α)
xα−1e−λx , 0 ≤ x < ∞ α/λ α/λ2

(
λ

λ−t

)α
, t < λ

Normal(µ, σ2)
1

σ
√

2π
e− 1

2

(
x−µ

σ

)2

, −∞ < x < ∞ µ σ2 exp
(

µt + σ2t2

2

)
Cauchy

1
π(1 + x2)

, −∞ < x < ∞ not
exist

not
exist

does not exist

▶ MGF for the Beta distribution exists but is complicated.
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MGF for Sum of Independent R.V.’s

If X and Y are independent r.v.’s with MGF’s MX (t) and MY (t),
then MX+Y (t) = MX (t)MY (t) on the common interval where
both MGF’s exist.

Proof.
MX+Y (t) = E(et(X+Y )) = E(etX etY )

= E(etX ) E(etY ) since X , Y are indep.
= MX (t)MY (t)

More generally, if X1, . . . , Xn are independent with corresponding
MGF MXi (t)’s, then the MGF for T =

∑n
i=1 Xi is

MT (t) = E[et
∑n

i=1 Xi ] =
∏n

i=1
E[etXi ] =

∏n
i=1

MXi (t),

and it exists on the common interval where all MGF’s exist.
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The MGF Uniquely Determines the Distribution (⋆⋆⋆⋆⋆)

If the moment-generating function M(t) exists for t in an open
interval containing 0, like (−t0, t0), for some t0 > 0, then it
uniquely determines the probability distribution.

That is, if X and Y have identical MGF

MX (t) = MY (t) for all t in an open interval containing 0,

then X and Y have the same probability distribution.

▶ Ex1 If X has the MGF M(t) = (1/2)10(et + 1)10, then X
must be ∼ Bin(n = 10, p = 1/2).

▶ Ex2 If X has the MGF M(t) = exp(3(et − 1)), what’s the
distribution of X? Poisson(λ = 3)
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Finding the Distribution of the Sum of Indep. R.V.’s Using MGF

Ex1. X ∼ N(µx , σ2
x ) and Y ∼ N(µy , σ2

y ) are independent, what’s
the distribution of X + Y ?

Sol. The MGF for X + Y is

M(t) = MX (t)MY (t) = exp
(

µx t + σ2
x t2

2

)
exp

(
µy t +

σ2
y t2

2

)

= exp
(

(µx + µy )t +
(σ2

x + σ2
y )t2

2

)

which is the MGF for N(µx + µy , σ2
x + σ2

y ), meaning

X + Y ∼ N(µx + µy , σ2
x + σ2

y ).

17 / 24



Finding the Distribution of the Sum of Indep. R.V.’s Using MGF

Ex1. X ∼ N(µx , σ2
x ) and Y ∼ N(µy , σ2

y ) are independent, what’s
the distribution of X + Y ?

Sol. The MGF for X + Y is

M(t) = MX (t)MY (t) = exp
(

µx t + σ2
x t2

2

)
exp

(
µy t +

σ2
y t2

2

)

= exp
(

(µx + µy )t +
(σ2

x + σ2
y )t2

2

)

which is the MGF for N(µx + µy , σ2
x + σ2

y ), meaning

X + Y ∼ N(µx + µy , σ2
x + σ2

y ).

17 / 24



Finding the Distribution of the Sum of Indep. R.V.’s Using MGF

Ex2. What’s the distribution of
∑n

i=1 Xi for independent Xi ∼
Poisson(λi)?

Sol. The MGF for Xi is MXi (t) = exp(λi(et − 1)). The MGF for∑n
i=1 Xi is

M(t) =
n∏

i=1
exp(λi(et − 1)) = exp

(
(et − 1)

n∑
i=1

λi

)
,

which is the MGF for Poisson(
∑n

i=1 λi), meaning

n∑
i=1

Xi ∼ Poisson
( n∑

i=1
λi

)
.
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Sum of i.i.d. Random Variables
If X1, X2, . . . , Xn are i.i.d. with MGF MX (t), the MGF for

∑n
i=1 Xi

would be

M(t) = E[et
∑n

i=1 Xi ] =
n∏

i=1
E[etXi ] =

n∏
i=1

MX (t) = (MX (t))n .

Ex3. If X1, X2, . . . , Xn are i.i.d. Exponential(λ), what’s the
distribution of

∑n
i=1 Xi?

Sol. The MGF for Exponential(λ) is MX (t) = λ

λ − t .
The MGF for

∑n
i=1 Xi would be

M(t) = (MX (t))n =
(

λ

λ − t

)n
,

which is the MGF for Gamma(α = n, λ), meaning
n∑

i=1
Xi ∼ Gamma(α = n, λ).
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Sum of i.i.d. Random Variables

Ex4. If X1, X2, . . . , Xn are i.i.d. Geometric(p), what’s the
distribution of

∑n
i=1 Xi?

Sol. The MGF for Geometric(p) is MX (t) = pet

1 − (1 − p)et .

The MGF for
∑n

i=1 Xi would be

M(t) = (MX (t))n =
( pet

1 − (1 − p)et

)n
,

which is the MGF for NegBin(r = n, p), meaning

n∑
i=1

Xi ∼ NegBin(r = n, p).
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Joint Moment Generating Functions (Joint MGF’s)
For any n random variables X1, . . . , Xn, the joint moment
generating function (joint MGF) is defined to be

M(t1, . . . , tn) = E [et1X1+···+tnXn ].

▶ The MGF for an individual Xi can be obtained from the joint
PDF by letting all but ti be 0. That is,

MXi (t) = E[etXi ] = M(0, . . . , 0, t, 0, . . . , 0)

where the t is in the ith place.
▶ The joint MGF uniquely determines the joint distribution of

X1, . . . , Xn (⋆⋆⋆⋆⋆, proof too advanced for STAT 244)
▶ Corollary: X1, . . . , Xn are independent if and only if their

joint MGF is the product of their marginal MGF:

M(t1, . . . , tn) = MX1(t1) . . . MXn(tn).
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Example: Proof of Independence by Joint MGF — Normal
Let X and Y be i.i.d. N(µ, σ2). Prove that X + Y and X − Y are
independent by computing their joint MGF.
Proof. The joint MGF for X + Y and X − Y is
M(s, t) = E(es(X+Y )+t(X−Y )) (by definition)

= E(e(s+t)X+(s−t)Y )
= E(e(s+t)X ) E(e(s−t)Y ) (by indep of X , Y )
= MX (s + t)MY (s − t)

= exp
(

µ(s + t) + σ2(s + t)2

2

)
exp

(
µ(s − t) + σ2(s − t)2

2

)
= exp

(
2µs + σ2s2

)
︸ ︷︷ ︸

MGF for N(2µ,2σ2)

exp
(
σ2t2

)
︸ ︷︷ ︸

MGF for N(0,2σ2)

This shows
▶ X + Y ∼ N(2µ, 2σ2) and X − Y ∼ N(0, 2σ2)
▶ X + Y and X − Y are independent 22 / 24



Characteristic Functions

▶ Drawback of MGF: It may not exist.
▶ The characteristic function of a random variable X is defined

to be

ϕ(t) = E(eitX ), where i =
√

−1 = the imaginary number.

▶ ϕ(t) always exists since |eit | = 1, even for Cauchy distribution.
▶ ϕX (t) = MX (it) if Mx (t) exists (See next page)
▶ ϕa+bX (t) = eaitϕX (bt)
▶ ϕX+Y (t) = ϕX (t)ϕY (t) if X and Y are independent
▶ The characteristic function uniquely determines the

distribution
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Characteristic Functions for Common Distributions
Name

and range PMF at k MGF Characteristic
Function

Binomial(n, p)
on {0, 1, . . . , n}

(n
k
)

pk(1 − p)n−k (pet + 1 − p)n (peit + 1 − p)n

Geometric(p)
on {1, 2, 3 . . .}

(1 − p)k−1p
pet

1 − (1 − p)et
peit

1 − (1 − p)eit

Negative Binomial(r , p)
on {r , r + 1, r + 2, . . .}

(k − 1
r − 1

)
pr (1 − p)k−r

( pet

1 − (1 − p)et

)r ( peit

1 − (1 − p)eit

)r

Poisson(λ)
on {0, 1, 2, . . .}

e−λ λk

k!
exp(λ(et − 1)) exp(λ(eit − 1))

Name PDF f (x) Range MGF Characteristic
Function

Exponential(λ) λe−λx , 0 ≤ x < ∞ λ
λ−t

λ
λ−it

Gamma(α, λ)
λα

Γ(α)
xα−1e−λx , 0 ≤ x < ∞

(
λ

λ−t

)α (
λ

λ−it

)α

Normal(µ, σ2)
1

σ
√

2π
e− 1

2

(
x−µ

σ

)2

, −∞ < x < ∞ exp
(

µt + σ2t2

2

)
exp
(

µit − σ2t2

2

)
Cauchy

1
π(1 + x2)

, −∞ < x < ∞ does not
exist

e−|t|
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