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A Technique to Find Expectation & Variance
Section 4.4 Conditional Expectation & Prediction
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A Technique to find Expected Value & Variance
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A Technique to find Expected Value & Variance

Sometimes it might be hard to find the exact distribution of a
discrete random variable Y, but it's possible to express it as a sum
of several random variables

Y =X+ Xo+ -+ X,

that the distribution for X;'s are easier to find.

We can then find E(Y) and Var(Y) by
E(Y) = E(X1) + E(X2) + - + E(Xy),

Var(Y) = Var(X;) + 2> Cov(X;, X;),
i=1 i<j

even when the distribution of Y is unknown

An example is Coupon Collector's Problem on p.27-29 in L09.
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Example (Random Hats Problem)

At a party, n men take off their hats.

The hats are then mixed up, and each man randomly grabs one.
Let Y be the number of men who grab their own hats.

Find E(Y) and Var(Y).

» Not trivial to find the PMF P(Y = k), k=0,1,2,...,n.
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Example (Random Hats Problem)

At a party, n men take off their hats.

The hats are then mixed up, and each man randomly grabs one.
Let Y be the number of men who grab their own hats.

Find E(Y) and Var(Y).

» Not trivial to find the PMF P(Y = k), k=0,1,2,...,n.
» Nonetheless, we can find E(Y) and Var(Y) by writing Y as

Y = Xi+Xo+ -+ Xn,

where

i =

B {1, if the ith man grabs his own hat,

0, otherwise.

> Note X;'s are Bernoulli but NOT independent
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Expectation, Variance & Covariance of Bernoulli R.V.s
For a Bernoulli Random Variable X with p = P(X = 1), it's
expected value is

EX]=1-P(X=1)+0-P(X=0)=P(X =1) =p,
and the variance is

Var(Xij) =p(l—p)=P(X=1)(1-P(X =1)).
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Expectation, Variance & Covariance of Bernoulli R.V.s
For a Bernoulli Random Variable X with p = P(X = 1), it's
expected value is

EX]=1-P(X=1)+0-P(X=0)=P(X =1) = p,
and the variance is
Var(Xij) =p(l—p)=P(X=1)(1-P(X =1)).
For two Bernoulli random variables X;, Xj,
E(XiXj))=1-1-P(X;=1,X;=1)+1-0-P(X; =1,X; =0)
+0-1-P(Xi=0,X;=1)+0-0-P(X;=0,X; =0)
=P(X;=1,X;=1),

their covariance is thus

Cov(X;, Xj) = E(XiX;) — E(Xi) E(X))

=P(Xi=1,X;=1)—P(X; =1)P(X; =1).
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Example (Random Hats Problem) — E(Y)

As the jth man is equally likely to grab any of the n hats, it follows
that

1
P(X; = 1) = P(ith man grabs his own hat) = —,

n
and so 1
E[X]=P(Xi=1)= e
Hence, we obtain
1 1 1
E(Y)=EXi)+ - +EXp) ==+ 4+=-=n-—=1.
n n n
n times
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Example (Random Hats Problem) — E(Y)

As the jth man is equally likely to grab any of the n hats, it follows
that

1
P(X; = 1) = P(ith man grabs his own hat) =

)
n

and so 1
E[X]=P(Xi=1)=—-.
n

Hence, we obtain

1 1 1
E(Y)=E(X)+ - +EXp) ==+ +-=n-~-=1.
n n n
n times

We expect only 1 man can get his own hat if all men grab a hat
randomly.
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Example (Random Hats Problem) — Cov(Xj, Xj)

E(XX) = P(X; = 1,X = 1)

(Xi=1)P(X; =1[Xi=1)
(ith man gets his own hat)

Il
) *U

x P(jth man gets his own hat | ith man gets his own hat)
1 1
n n—1

and thus their covariance is

Cov(X;, Xj) = E(XiX;) — E(X;) E(X))
B 1 11
n(n—1) n n
1
- n?(n—1)
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Example (Random Hats Problem) — Var(Y)

As X;'s are Bernoulli with p = % their variance is

Var(X;) = p(1 —p) = 1( — 1).

n n
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Example (Random Hats Problem) — Var(Y)

As X;'s are Bernoulli with p = % their variance is

Var(X;) = p(1 —p) = 1( — 1).

n n

Putting everything together, we get

Var(Y) = z": Var(Xi) +2_ Cov(X;, X)),
i=1

i<j

() s iy
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Example (Random Hats Problem) — PMF (May Skip)

Just FYI, the PMF for Y = # of men who grab their own hats is

P(Y =)=,
P(Y =n—1)=0

fork=1,...,n—2.
See Example 5d on p.111-112 in

Y 1(1 1 1 (—1)nk
> 5 (21_3I+4!_'”+>

(n—k)!

A First Course in Probability, 10ed, by Sheldon Ross

for calculation.
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Example (Another Coupon Collector)
If each box of breakfast cereals contains a coupon,
> there are 25 different types of coupons,

» the coupon in any box is equally likely to be any of the 25
types,

Let Y = the number of types of coupons in 10 boxes of cereals.

Find E(Y) and Var(Y).
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Example (Another Coupon Collector)
If each box of breakfast cereals contains a coupon,
> there are 25 different types of coupons,

» the coupon in any box is equally likely to be any of the 25
types,

Let Y = the number of types of coupons in 10 boxes of cereals.

Find E(Y) and Var(Y).

» Again, it's not trivial to find the PMF of Y
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Example (Another Coupon Collector)

If each box of breakfast cereals contains a coupon,

> there are 25 different types of coupons,
» the coupon in any box is equally likely to be any of the 25
types,

Let Y = the number of types of coupons in 10 boxes of cereals.
Find E(Y) and Var(Y).

» Again, it's not trivial to find the PMF of Y
» Nonetheless, we can find E(Y) and Var(Y) by writing Y as

Y =Xi+Xo+ -+ Xos,
where

X {1, if at least one type i/ coupon is in the 10 boxes,
i =

0, otherwise.
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Example (Another Coupon Collector) — E(Y)

E[X]]=P(X;=1)
= P(at least one type i coupon is in the 10 boxes)

=1 — P(no type i coupons are in the 10 boxes)

10
e
25

where the last equality follows since each of the 10 boxes will
(independently) not contain a type i with probability 24/25. Hence,

E(Y) = E(X0) + - + E(Xas) = 25 (1 _ (5‘5‘)“)) ~ 8.38.
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Example (Another Coupon Collector) — Cov(Xj, X;)

It's easier to find

23 10
P(Xi =0, X; = 0) = P(No Type i or j coupons in 10 boxes) = (25) ,

than to find

P(Xi =1,X; = 1) = P(Both Types i and j are in 10 boxes).
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Example (Another Coupon Collector) — Cov(Xj, X;)

It's easier to find
23 10
P(Xi =0, X; = 0) = P(No Type i or j coupons in 10 boxes) = (25) ,

than to find
P(Xi =1,X; = 1) = P(Both Types i and j are in 10 boxes).
Can we find Cov(Xj, X;) using P(X; =0, X; = 0)?
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Example (Another Coupon Collector) — Cov(Xj, X;)

It's easier to find

23 10
P(Xi =0, X; = 0) = P(No Type i or j coupons in 10 boxes) = (25) ,

than to find
P(Xi =1,X; = 1) = P(Both Types i and j are in 10 boxes).

Can we find Cov(Xj, X;) using P(X; =0, X; = 0)?
Yes. Let Z; =1 — X;, then
Cov(Zj, Zj) = Cov(1 — Xi, 1 — X;) = Cov(Xj, X;), and
Cov(Z:,Z)) = E(Z:Z)) ~ E(Z) E(Z)
—P(Z=1,Z=1)—P(Z =1)P(Z =1)
= P(X; = 0,X; = 0) — P(X; = 0)P(X; = 0)

23\10 12420
:(25> _<25> ~ —0.007614.
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Example (Another Coupon Collector) — Var(Y)

As X;'s are Bernoulli with p = 1 — (24/25)1°, their variance is

Var(X;) = p(1 — p) = (5‘5‘)10 <1 _ <§‘5‘>lo> ~ 0.22283.
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Example (Another Coupon Collector) — Var(Y)

As X;'s are Bernoulli with p = 1 — (24/25)1°, their variance is

Var(X;) = p(1 — p) = (g;‘)m <1 _ <§‘5‘)lo> ~ 0.22283.

Putting everything together, we get

25
Var(Y) = Var(X;) + 2> Cov(X;, X;),
i=1 i<j

25
~ 25 x 0.22283 + 2 ( ) ) (—0.007614)

~ 1.0024.
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Example (Coin Flip Pattern HTTH) — E(Y)

Let Y be the total number of times that you see the pattern HTTH
in n flips of a fair coin. Find E(Y) and Var(Y).

Note the coin flip sequences with the pattern can overlap.
e.g., the pattern HTTH shows up twice, not once, in the sequence

first
/_/H
HHTTHTTHHT
——

second

Sol. Let (G, ..., Cy) be the outcome of the n flips. Writing Y as
Y=X1+Xo++ Xy_3,
where X = {1, if (Ci, Cit1, Ciga, Cis3) = HTTH,
0, otherwise.
As
E[X/] = P(X; = 1) = P((C;, Ciy1, Civa, Cir3) = HITH) = (1/2)%,
we get E(Y) = E(X1) + -+ + E(X,—3) = (n = 3)(1/2)*.
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Example (Coin Flip Pattern HTTH) — Cov(Xj, X))
> COV(X,',)(j) =0if |i —J| >3 as (C,', C,'_|_1, C,'+2, C,'+3) and
(Gj, Ciy1, 42, Cj43) are independent if |i — j| > 3.
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Example (Coin Flip Pattern HTTH) — Cov(Xj, X))
> COV(X,',)(j) =0if |i —j| > 3 as (C,', C,'_|_1, C,'+2, C,'+3) and
(Gj, Ciy1, 42, Cj43) are independent if |i — j| > 3.
> E(X,'X,'+1) = P(X, =1,Xip1 = ].) = 0 since if
(C,', Cit1, Cito, C,'+3) = HTTH, then (CiJr]_, Cito, Ciy3, C,'+4)
would be TTH?, not HTTH.
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Example (Coin Flip Pattern HTTH) — Cov(Xj, X))
> COV(X,',)(j) =0if |i —j| > 3 as (C,', Cf+17 C,'+2, C,'+3) and
(Gj, Ciy1, 42, Cj43) are independent if |i — j| > 3.
> E(X,'X,'+1) = P(X, =1,Xip1 = ].) = 0 since if
(C,', Cit1, Cito, C,'+3) = HTTH, then (CiJr]_, Cito, Ciy3, C,'+4)
would be TTH?, not HTTH. It follows that
1

Cov(X;, Xit1) = E(XiXi1)—E(Xi) E(Xi11) = 0—(1/2)° = ﬁ
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Example (Coin Flip Pattern HTTH) — Cov(Xj, X))
> COV(X,',)(j) =0if |i —j| > 3 as (C,', Cf+17 C,'+2, C,'+3) and
(Gj, Ciy1, 42, Cj43) are independent if |i — j| > 3.
> E(X,'X,'+1) = P(X, =1,Xip1 = ].) = 0 since if
(C,', Cit1, Cito, C,'+3) = HTTH, then (CiJr]_, Cito, Ciy3, C,'+4)
would be TTH?, not HTTH. It follows that

-1
Cov(Xj, Xit1) = E(XiXi11)—E(X;) E(Xi41) = 0—(1/2)® = 56
-1
> Likewi Xi, Xipo) = ——.
ikewise, Cov( +2) 756
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Example (Coin Flip Pattern HTTH) — Cov(Xj, X))
> COV(X,',)(j) =0if |i —j| > 3 as (C,', Cf+17 C,'+2, C,'+3) and
(Gj, Ciy1, 42, Cj43) are independent if |i — j| > 3.
> E(X,'X,'+1) = P(X, =1,Xip1 = ].) = 0 since if
(C,', Cit1, Cito, C,'+3) = HTTH, then (CiJrl, Cito, Ciy3, C,'+4)
would be TTH?, not HTTH. It follows that

-1
Cov(Xj, Xit1) = E(XiXi11)—E(X;) E(Xi41) = 0—(1/2)® = 56
-1
> Likewi Xi, Xipo) = ——.
ikewise, Cov( +2) 756

> E(XiXiJr?,) = P(X, = 1,X,'+3 = 1) = (1/2)7 since
(C,', C;+1, Ci+2, Ci+3) = HTTH and
(Cit3, Ciya, Ciys, Ciyg) = HTTH implies

(Gi, Cit1, Ciyo, Ciy3, Ciya, Cigs, Cipe) = HTTHTTH,

and thus
Cov(Xj, Xiy3) = E(XiXi43) — E(X;) E(Xi13)

= (1/2) = (1/2)° = 5.
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Example (Random Hats Problem) — Var(Y)
As X;'s are Bernoulli with p = (1/2)* = 1/16, their variance is

15

Var(X;) = p(l—p) = 556"
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Example (Random Hats Problem) — Var(Y)
As X;'s are Bernoulli with p = (1/2)* = 1/16, their variance is

15
Var(X;) = p(l—p) = 556"

Putting everything together, we get

n—3
Var(Y) = > Var(X;) +2) _ Cov(X;, X)),
i=1 i<j
= (n—3) Var(X;) + 2(n — 4) Cov(Xi, Xit+1)
+ 2(!7 — 5) COV(X,', X,'+2) + 2(!7 — 6) COV()(,'7 X;+3)

—(n- 3)21?56 +2(n— 4)(%)
+2(n5)(gg) + 21— 6)(555)
o3B3

256
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Conditional Expectation and Prediction
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Conditional Expectation
For two random variables X and Y, the conditional mean or
conditional expected value of Y given X = x is defined to be

Zypr|X(y | x) if discrete

x=E(Y | X=x)=
Hy|x=x ( | ) {f—ooooy fy|X(y ’ x)dy if continuous

where py|x(y|x) and fy|x(y|x) are the conditional PMF/PDF of
Y given X.
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Conditional Expectation

For two random variables X and Y, the conditional mean or
conditional expected value of Y given X = x is defined to be

>, yp y|x if discrete
pyix=x =E(Y | X=x) =" vix(y [ x) ! |
Jo%y fY|X(y | x)dy if continuous

where py|x(y|x) and fy|x(y|x) are the conditional PMF/PDF of
Y given X.

» The conditional mean E(Y | X = x) is NOT a single value
but a function of the x value given.

= E(Y | X) is a function h(X) of X and thus is a random
variable.
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Conditional Expectation

For two random variables X and Y, the conditional mean or
conditional expected value of Y given X = x is defined to be

[y x=x = E(Y | X = x) _ Zogypr(y ’ X) if discrete

J22. v fvix(y | x)dy  if continuous
where py|x(y|x) and fy|x(y|x) are the conditional PMF/PDF of
Y given X.

» The conditional mean E(Y | X = x) is NOT a single value
but a function of the x value given.

= E(Y | X) is a function h(X) of X and thus is a random
variable.

More generally, the conditional mean or conditional expected value
of g(Y) given X = x is

) = >y &) pyix(y | x) if discrete
HelY) [ X =)= {f_ y) fyix(y | x)dy if continuous
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Conditional Variance

We can also define the conditional variance of Y given X = x.
Var(Y [ X =x) = E([Y —E(Y | X =x)P | X = x)
Shortcut formula for conditional variance:

Var(X | X = x) = E(X? | X = x) — [E(Y | X = x)]?
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Example (Gas Station) — Conditional Mean

Recall in L06, the conditional PMF of Y given X = x is as follows.

conditional PMF p(y | x) 0 ’1/ 2
0 0.625 025  0.125
X 1 0.2353 0.5882 0.1765
0.12 0.28 0.60

The conditional mean of Y given X = x is

0-0.625+1-0.25+2-0.125 = 0.5 if x =0
E(Y | X=x)=140-0.2353+1-0.5882+2-0.1765 = 0.9412 if x = 1
0-012+1-0.28+2-0.6=1.48 if x =2
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Example — Poisson

For independent r.v.'s X; ~ Poisson(A1) and X, ~ Poisson(Az), we

showed on p.18 in LO6 that, given T = X; + X5 = t, the
conditional distribution of Xj is

. A1 )
X: —+~ B t, .
! ’T_t m( A1+ Ao

As the expected value for Bin(n, p) is np, and the variance is
np(1l — p) , it follows that

A1
E(Xl ’ T) - A1+ Ao
A1 A2
Vel D = e

> Note that E(Xy | T) = 5 +)\
are both functions of T and hence random variables.

T and Var(X; | T) = 2122

(A1+A2)?
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Example (Mixed Nuts) — Conditional Mean
Recall in L06, we found the conditional PDF fy x(y | x) of Y
(cashew) given X = x (almond) to be

f(x,y) 2y
Y|X(y|X) fX(X) (1—X)2’ or0<y< X
The conditional expected weight of Y (cashew) in a can given
there being X = x Ibs of almond in the can is

ECY X =x)= [ vhyix(y | X)dy
1—x 2_)/
= y- dy
/0 (1 x)? g(l—x)
2 3 y=1-x 2
- =Z(1-x)
3(1=x)?1,— 3
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Example (Mixed Nuts) — Conditional Mean

Recall in L06, we found the conditional PDF fy x(y | x) of Y
(cashew) given X = x (almond) to be

f(x,y) 2y
Y|X(y|X) fX(X) (1—X)2’ or0<y< X
The conditional expected weight of Y (cashew) in a can given
there being X = x Ibs of almond in the can is

o0

ECY X =x)= [ vhyix(y | X)dy
1—x 2_)/
/o (1—x)? a9
2 3 y=1-x
=3 =319 Ao
3(1=x)?1,— 3 given x

> Note that E(Y | X) = 2(1 — X) is a function of X and is thus
a random variable.
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Example (Mixed Nuts) — Conditional Variance

1-x 2
— 2, Y

BV [ X =x) = [ y*fuxly [0dy

v y=l-x 4
= 20 o = 5(1 — x)2.
So
Var(Y | X = x) = E(Y2 | X = x) — [E(Y | X = x)]?

1 2 2

= 5(1 —x)? - (3(1 - X))
1

= 1—8(1 — x)?

> Note Var(Y | X) = 15(1 — X)? is a a function of X and is
thus a random variable.
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Tower Law E(E(Y | X)) = E(Y)

As E(Y | X) is a random variable and it's a function of X we can
take its expected value and it can be shown that

E(E(Y [ X)) = E(Y).
This is called the Tower Law, or Law of Total Expectation.

taking expectation over
condi. distn. of Y given X

Ex( Evix(Y | X) )y=€em).

taking expectation over
marginal distn. of X

* Tower Law is useful when it's hard to find the marginal
distribution of Y, but easy to find Eyx(Y | X).
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Example (Gas Station) — Tower Law
The conditional mean of Y given X = x is
X | 0 1 2
E(Y|X=x)|05 09412 1.48
and the marginal PMFs for X was obtained in L05 to be
x | 0o 1 2
px(x) [ 0.16 0.34 0.50 °

It follows that
Ex(E(Y | X)) = E(Y | X = 0)px(0)
+E(Y [ X =1)px(1)
+E(Y | X = 2)px(2)
=0.5-0.16 +0.9412-0.34 + 1.48 - 0.50 = 1.14.
which is identical to E(Y') computed using the marginal PMF of Y

y | o 1 2
py(y)|0.24 038 0.38°

E(Y) = 0-0.24+1-0.38+2-0.38 = 1.14.
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Example — Poisson

For independent r.v.s Xj ~ Poisson(A1) and X, ~ Poisson(\z),
and T = X1 + X5, recall we showed earlier the conditional mean of
X1 given T is

T

E(X1| T)= SV
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Example — Poisson

For independent r.v.'s X; ~ Poisson(A1) and X, ~ Poisson(\z),
and T = X1 + Xz, recall we showed earlier the conditional mean of
X1 given T is

MT
E(Xi1|T)= .
(X[ T) Ve
Also recall that T = Xj + X ~ Poisson(A1 + A2),and thus
E(T) = A1+ Ao
It follows that
T ]
EIE(X1 | T)]|=E
B | T =E |

_ A1 E[T] _ )\1()\1 —i—)\g)
A1+ A2 A1+ A2

— M = E(X).

Tower Law is also valid for this example.
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Proof of Tower Law (Discrete Case)

E(E(Y [ X)) =) E(Y | X =x)px(x)
N

=22,y prix(y | %) px(x)
=22, PrU)) (%)

px(x)

=22,y pxv(xy)
=2,y pxv(xy)
—_———

py(y)

= Zyy -py(y) = E(Y)

Proof for the continuous case is similar.
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Sum of a Random Number of Random Variables

Consider sum of the type

where

> Xi,Xp,...areiid. with E|X;| < oo, and

> N is a non-negative integer-valued random variable,
independent of X;'s.

» If N =0, the sum is 0.

Ex: Let N be the number of claims an insurance company receives
in a given month, and the amounts of the individual claims

X1,X5,... are i.i.d. The total amount of claims in the month is
then -V X;.
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Expected Sum of a Random Number of Random Variables
If N = nis a constant, we know

n
E[T] =€ [} x| =nEX),
where E(X) is the common mean of X;'s.

For random N, we can first find the conditional expected sum
given N = n,

E[T | N:n]:E{Z:\IZIX,-

N =]

=Y E[X;|N=n] =nE[X]
PR e

=1 _ E[X] by indep.
of N and X;'s

i.e., E[T | N] = NE[X]. Applying the Tower Law, we get

E[T]=E [E[T | N]} = E[N EX] ] = E[M E[X]
=N E[X] constant
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Example (a Game)

Find the expected reward for the following game: at each round,
you toss a coin.

» If it's Heads, you roll a die and win $1 if you rolled a 6.
» If it's Tails, the game ends

Sol. Your total reward is T = YV | X;, where

» Xi's are i.i.d. Bernoulli(1/6), = E[Xj] = 1/6.
» N = # of consecutive H's obtained before getting the first T

» Observe that M = N + 1 is Geometric(p = 1/2),
= E[M]=1/p=2 = E[N] =1.

» So your expected total reward is

E[T] = E[N] E[X] = 1 x (1/6) = 1/6.
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Example (Mouse Trapped in a Maze)

A mouse is placed at a room in a maze containing 3 doors.

» Door #1 leads to a path that will lead it to freedom after 6
minutes of travel.

» Door #2 leads to a path that will return it to the same after 4
minutes of travel.

» Door #3 leads to a path that will return it to the same room
after 2 minutes of travel.

Suppose the mouse always randomly chooses one of the 3 doors
equally likely whenever it returns to the room it started. What is
the expected length of time it takes the mouse to get free?
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Example (Mouse Trapped in a Maze)

The total amount of time before the mouse gets free can be
written as

T = N Xi
i=1

where _ o o
X; = travel time (in minutes) for its ith departure

N = # of departures from the room until free

» Observe N is Geometric(p = 1/3), so E[N] =1/p = 3.
» Clearly, X;'s are i.i.d. with the PMF

x |2 4 6 24446
b0y 13 13 130 T EXl= T

» However, X;'s and N are NOT independent.
> Xy = 6, always
> For i < N, X; is equally likely to be 4 or 2, implying
4+2

E[X;|N:n]:T 3, i<n

4.
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Example (Mouse Trapped in a Maze)

S
® E[T|N=n=E Z:\I_lXi‘N:n}
=" EX | N = n] +E[X, | N = ]
=3 =6

=3(n—1)+6=3n+3.

As E[T | N] = 3N + 3, apply the Tower Law and recall E[N] = 3,
we have

E[T] = E[E[T | N]] = E[3N +3] =3E[N] +3=3x3+3=12.

On average, it takes the mouse 12 minutes to escape.
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Example (Mouse Trapped in a Maze)

S
® E[T|N=n=E Z:\I_lXi’N:n}
=" EX | N = n] +E[X, | N = ]
=3 =6

=3(n—1)+6=3n+3.

As E[T | N] = 3N + 3, apply the Tower Law and recall E[N] = 3,
we have

E[T]=E[E[T | N]] =E[BN+3] =3E[N]+3=3x3+3=12.
On average, it takes the mouse 12 minutes to escape.

Remark: Note in this example,

| N = n} 7E [Z:’:lXi}

=3n43 =nE[Xj]=4n
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Tower Law for Functions of X, Y

Tower Law not only works for Y itself, but also

» for any function g(Y) of Y:

Ex [Evix(g(Y) | X)] = E(g(Y)),

» as well as for any function h(X,Y) of X, Y:

Ex[Evix(h(X,Y) | X)] = E(h(X, Y)).

For example, E(E(Y? | X)) = E(Y?).
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E(Var(Y | X)) & Var(E(Y | X))
» E(Y | X) is a random variable,
> its expected value is E[E(Y | X)] = E[Y] by Tower Law

P its variance is ] )
taking expectation over

condi. distn. of Y given X
——~
Varx< Ey|X(Y | X) )

taking variance over
marginal distn. of X
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E(Var(Y | X)) & Var(E(Y | X))
» E(Y | X) is a random variable,
> its expected value is E[E(Y | X)] = E[Y] by Tower Law

P its variance is ] )
taking expectation over

condi. distn. of Y given X
——~
Varx< Ey|X(Y ‘ X) )

taking variance over
marginal distn. of X

» As Var(Y | X) is also a random variable, we can take
expected value of it

taking variance over
condi. distn. of Y given X

x ( Varyx(YX) )

taking expectation over
marginal distn. of X
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Tower Law for Variance = Law of Total Variance

Var(Y) = E(Var(Y | X)) + Var(E(Y | X))

Intuitively, if Y has high variance, it comes from one of two
sources:

» Either Y is highly variable even if you already know the value
of X

» Or if not, then expected value of Y must change a lot as you
var
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Example: Poisson — Tower Law for Variance
For independent r.v.s Xy ~ Poisson(A1), X2 ~ Poisson()\2), and
T = X1 + Xo, recall we showed earlier that
A1
A1+ A2

A1 A2
(A1 + A2)?

E(X | T) = T, Var(Xy|T)=
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Example: Poisson — Tower Law for Variance
For independent r.v.s Xy ~ Poisson(A1), X2 ~ Poisson()\2), and
T = X1 + Xo, recall we showed earlier that

A1 A1A2
E(X]_ | T) = )\1 i )\2 T, Var(X]_ | T) = m

Also recall T ~ Poisson(A1 + A2) which implies E[T] = A1 + A2
and Var(T) = A1 + A2. It follows that

A\ A2 Y
Var(E(X1 | T)) =V T) = Var(T) =
ar(B(X | 7)) ar( A1+ A2 ) <)\1 + )\2> \ir(,—f) A1+ A
=A1+X2
A1A2 ] AlAz A1A2
E[Var(X; | T)]=E — _
WartX [T [(Al Pyl R PE Py L R v
=A1+X2

37/47



Example: Poisson — Tower Law for Variance
For independent r.v.s Xy ~ Poisson(A1), X2 ~ Poisson()\2), and
T = X1 + Xo, recall we showed earlier that

A1 A1A2
E(X]_ | T) = )\1 i )\2 T, Var(X]_ | T) = m

Also recall T ~ Poisson(A1 + A2) which implies E[T] = A1 + A2
and Var(T) = A1 + A2. It follows that

A\ A2 Y
Var(E(X1 | T)) =V T)= Var(T) =
ar(B(X | 7)) ar()\l—l-)\z ) <)\1—|—)\2> \ir(,—f) A1+ A
=A1+X2
A1A2 ] AlAz AIAZ
E[Var(X; | T)]=E — _
WartX [T [(A1+A2)2 CTEP R v
=A1+X2

Adding them up, we get

A2 AL
Var(E(X, | T))+EVar(X | T)] = 5 +1 ot A11+2A2 = A1 = Var(Xy).

Tower Law of Variance is valid for this example.
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Proof of Tower Law of Variance
By the shortcut formula for conditional variance,

Var(Y | X) = E(Y? | X) — [E(Y | X)I
taking expectation on both sides, we get
EVar(Y | X)] = EIE(Y?|X)] —E{[E(Y | X))
—_———

=E[Y?] by Tower Law
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Proof of Tower Law of Variance
By the shortcut formula for conditional variance,

Var(Y | X) = E(Y? | X) — [E(Y | X)I

taking expectation on both sides, we get
E(Var(Y | X)] = E[E(Y2 [ X)] —E{[E(Y X}
—_———
=E[Y?] by Tower Law

Applying the shortcut formula for variance

Var(g(X)) = E{[g(X)]*} — (E[g(X)])’
to g(X) = E(Y | X), we get

Var(E(Y | X)) = E{[E( | X)P} — ( EIECY (X)) )

=E[Y] by Tower Law
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Proof of Tower Law of Variance
By the shortcut formula for conditional variance,

Var(Y | X) = E(Y? | X) — [E(Y | X)I

taking expectation on both sides, we get
EVar(Y | X)] = EIE(Y?|X)] —E{[E(Y | X))
—_———
=E[Y?] by Tower Law

Applying the shortcut formula for variance

Var(g(X)) = E{[g(X)]*} — (E[g(X)])’
to g(X) = E(Y | X), we get

Var(E(Y | X)) = E{[E( | X)P} — ( EIECY (X)) )
=E[Y] by Tower Law
Adding them up, we get
E[Var(Y | X)] + Var(E(Y | X))

—ayﬂjgwiwwmﬁ#fi@u%fﬁT

= E[Y?] = (E(Y))* = Var(Y)
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Variance of Sum of a Random Number of R.V.s

For a sum of the form

N {Xl-’s are i.i.d. with mean E(X)

T = Xi, where
; ’ N is indep of X;'s

We found earlier that E[T|N] = N E(X).

Var(T | N = n) = Var [ZT_ Xi

=1

N = n|

= ZVar(X,- | N=n) (as Xi's are indep)
i=1
= Z Var [X; | N = n] = nVar(X)
— —————
= Var(X) by indep.
of N and X;'s

This shows Var(T | N) = N Var(X)
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From E[T|N] = NE(X) and Var(T | N) = N Var(X), using the
Tower Law for Variance,

constant
E[Var(T | N)] = E[N Var(X)] = E[N] Var(X)
Var(E[T | N]) = Var(N E(X) ) = (E(X))? Var(N)
conseant

we get that

Var(T) = Var(z::\l:1 X;) = E[N] Var(X) + (E(X))? Var(N).
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Example (Insurance Claims)

Suppose

» N = # of claims an insurance company receives in a month,
~ Poisson(\),
» the amounts of the individual claims Xi, X, ... are i.i.d. with

mean p and variance o2.

The total amount of claims in the month is T = YV, X;.

> E[T] = E[N]E[X] = A\
» Var[T] = E[N] Var(X) + (E(X))? Var(N) = Ao + u?\
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Example (Mouse Trapped in a Maze) — Variance

Recall the total amount of time until escape is
N
T=Y X
i=1

where

» X; = travel time (in mins) of its ith departure,
» N = # of departures until free ~ Geometric(p = 1/3)
1 1—-p
E[N]===3, Var(N)= = 6.
V= (V) ==

To find Var(T | N = n):

» Xy =6, always = Var(Xy) =0

> For i < N, X; is equally likely to be 4 or 2, implying
E(X| N=n)=(4+42)/2=3and

(4—-3)2+(2-3)?

Var[Xi | N =n] = =1, i<n

2
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So Var[T | N = n] = Var {Z;lXi ’ N = n}
= Zn Var(Xi | N =n) (as Xj's are indep)
—Z VarX|N—n)+Var(X | N = n]

=1 =0

=n-1

From E[T | N| =3N +3 and Var[T | N] = N — 1, using the Tower
Law for Variance,

E[Var(T | N)] =E[N —1] =E[N] - 1=3-1=2
Var(E[T | N]) = Var(3N + 3) = 32 Var(N) = 32 -6 = 54

we get that
Var(T) = E[Var(T | N)] + Var(E[T | N]) = 2 + 54 = 56

On average, it takes the mouse 12 minutes to escape, give or take
the SD = /56 = 7.48 minutes.
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4.4.2 Prediction and Conditional Expectation
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Predicting a Random variable Y by a Constant
How to best predict a random variable Y by a constant c¢?

» We want the predicted value ¢ to be close to Y. A reasonable
criterion would be to

find ¢ that minimize E [(Y - c)2} .
» The shortcut formula for Var(Y — c) gives

Var(Y —¢) = E[(Y — ¢)?] — (E[Y — ¢])?.
—_— —_———

=Var(Y) =(E(Y)—c)?
Rearranging the terms, we get
E[(Y — ¢)?] = Var(Y) + (E(Y) — ¢)?

This means that E[(Y — ¢)?] is minimized when ¢ = E[Y].
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Prediction and Conditional Expectation

For two random variables X, Y with some joint distribution, if X is
observed to be x, what's the best predicted value for Y7
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Prediction and Conditional Expectation

For two random variables X, Y with some joint distribution, if X is
observed to be x, what's the best predicted value for Y7

» The predicted value would depend on the observed X and
hence must be a function g(X) of X

» We want the predicted value g(X) to be close to Y. A
reasonable criterion would be to

find g(X) that minimize E [(Y — g(X))? ‘ X} .

> As E [(Y — ¢)?] is minimized when ¢ = E(Y), similarly,
E[(Y — g(X))? | X] is minimized when

g(X) = E[Y | X].
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Example (Mixed Nuts) — Prediction
Recall in L05, the joint PDF for

X = the weight of almonds, and

Y = the weight of cashews

in a can of mixed nuts is
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Example (Mixed Nuts) — Prediction
Recall in L05, the joint PDF for

X = the weight of almonds, and

Y = the weight of cashews

in a can of mixed nuts is

2dxy if0<x,y<1l,x+y<1l 2/
0 otherwise “(1-%)

We showed earlier that E(Y | X) = 3(1 — X).
Given there were X = x |bs of almonds in a can, our best
prediction for the amount of cashews in the can is
2
E(Y | X)= 5(1 — X) lbs.
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