
STAT 24400 Lecture 10
A Technique to Find Expectation & Variance

Section 4.4 Conditional Expectation & Prediction

Yibi Huang
Department of Statistics

University of Chicago

1 / 47



A Technique to find Expected Value & Variance

2 / 47



A Technique to find Expected Value & Variance
Sometimes it might be hard to find the exact distribution of a
discrete random variable Y , but it’s possible to express it as a sum
of several random variables

Y = X1 + X2 + · · · + Xn

that the distribution for Xi ’s are easier to find.

We can then find E(Y ) and Var(Y ) by

E(Y ) = E(X1) + E(X2) + · · · + E(Xn),

Var(Y ) =
n∑

i=1
Var(Xi) + 2

∑
i<j

Cov(Xi , Xj),

even when the distribution of Y is unknown

An example is Coupon Collector’s Problem on p.27-29 in L09.
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Example (Random Hats Problem)

At a party, n men take off their hats.
The hats are then mixed up, and each man randomly grabs one.
Let Y be the number of men who grab their own hats.
Find E(Y ) and Var(Y ).

▶ Not trivial to find the PMF P(Y = k), k = 0, 1, 2, . . . , n.

▶ Nonetheless, we can find E(Y ) and Var(Y ) by writing Y as

Y = X1 + X2 + · · · + Xn,

where

Xi =
{

1, if the ith man grabs his own hat,
0, otherwise.

▶ Note Xi ’s are Bernoulli but NOT independent
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Expectation, Variance & Covariance of Bernoulli R.V.’s
For a Bernoulli Random Variable X with p = P(X = 1), it’s
expected value is

E[X ] = 1 · P(X = 1) + 0 · P(X = 0) = P(X = 1) = p,

and the variance is

Var(Xi) = p(1 − p) = P(X = 1) (1 − P(X = 1)) .

For two Bernoulli random variables Xi , Xj ,

E(XiXj) = 1 · 1 · P(Xi = 1, Xj = 1) + 1 · 0 · P(Xi = 1, Xj = 0)
+ 0 · 1 · P(Xi = 0, Xj = 1) + 0 · 0 · P(Xi = 0, Xj = 0)

= P(Xi = 1, Xj = 1),

their covariance is thus

Cov(Xi , Xj) = E(XiXj) − E(Xi) E(Xj)
= P(Xi = 1, Xj = 1) − P(Xi = 1)P(Xj = 1).
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Example (Random Hats Problem) — E(Y )

As the ith man is equally likely to grab any of the n hats, it follows
that

P(Xi = 1) = P(ith man grabs his own hat) = 1
n ,

and so
E[Xi ] = P(Xi = 1) = 1

n .

Hence, we obtain

E(Y ) = E(X1) + · · · + E(Xn) = 1
n + · · · + 1

n︸ ︷︷ ︸
n times

= n · 1
n = 1.

We expect only 1 man can get his own hat if all men grab a hat
randomly.
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Example (Random Hats Problem) — Cov(Xi , Xj)

E(XiXj) = P(Xi = 1, Xj = 1)
= P(Xi = 1)P(Xj = 1 | Xi = 1)
= P(ith man gets his own hat)

× P(jth man gets his own hat | ith man gets his own hat)

= 1
n · 1

n − 1 ,

and thus their covariance is

Cov(Xi , Xj) = E(XiXj) − E(Xi) E(Xj)

= 1
n(n − 1) − 1

n · 1
n

= 1
n2(n − 1) .
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Example (Random Hats Problem) — Var(Y )
As Xi ’s are Bernoulli with p = 1

n , their variance is

Var(Xi) = p(1 − p) = 1
n

(
1 − 1

n

)
.

Putting everything together, we get

Var(Y ) =
n∑

i=1
Var(Xi) + 2

∑
i<j

Cov(Xi , Xj),

=
n∑

i=1

1
n

(
1 − 1

n

)
+ 2

∑
i<j

1
n2(n − 1)

= n · 1
n

(
1 − 1

n

)
+ 2

(
n
2

)
1

n2(n − 1)
= 1
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Example (Random Hats Problem) — PMF (May Skip)

Just FYI, the PMF for Y = # of men who grab their own hats is

P(Y = n) = 1
n! ,

P(Y = n − 1) = 0,

P(Y = 0) =
n∑

i=2

(−1)i

i! = 1
2! − 1

3! + 1
4! − · · · + (−1)n

n!

P(Y = k) = 1
k!

n−k∑
i=2

(−1)i

i! = 1
k!

(
1
2! − 1

3! + 1
4! − · · · + (−1)n−k

(n − k)!

)

for k = 1, . . . , n − 2.

See Example 5d on p.111-112 in
A First Course in Probability, 10ed, by Sheldon Ross
for calculation.
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Example (Another Coupon Collector)
If each box of breakfast cereals contains a coupon,

▶ there are 25 different types of coupons,
▶ the coupon in any box is equally likely to be any of the 25

types,

Let Y = the number of types of coupons in 10 boxes of cereals.
Find E(Y ) and Var(Y ).

▶ Again, it’s not trivial to find the PMF of Y
▶ Nonetheless, we can find E(Y ) and Var(Y ) by writing Y as

Y = X1 + X2 + · · · + X25,

where

Xi =
{

1, if at least one type i coupon is in the 10 boxes,
0, otherwise.
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Example (Another Coupon Collector) — E(Y )

E[Xi ] = P(Xi = 1)
= P(at least one type i coupon is in the 10 boxes)
= 1 − P(no type i coupons are in the 10 boxes)

= 1 −
(24

25

)10

where the last equality follows since each of the 10 boxes will
(independently) not contain a type i with probability 24/25. Hence,

E(Y ) = E(X1) + · · · + E(X25) = 25
(

1 −
(24

25

)10
)

≈ 8.38.
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Example (Another Coupon Collector) — Cov(Xi , Xj)
It’s easier to find

P(Xi = 0, Xj = 0) = P(No Type i or j coupons in 10 boxes) =
(23

25

)10
,

than to find

P(Xi = 1, Xj = 1) = P(Both Types i and j are in 10 boxes).

Can we find Cov(Xi , Xj) using P(Xi = 0, Xj = 0)?

Yes. Let Zi = 1 − Xi , then
Cov(Zi , Zj) = Cov(1 − Xi , 1 − Xj) = Cov(Xi , Xj), and

Cov(Zi , Zj) = E(ZiZj) − E(Zi) E(Zj)
= P(Zi = 1, Zj = 1) − P(Zi = 1)P(Zj = 1)
= P(Xi = 0, Xj = 0) − P(Xi = 0)P(Xj = 0)

=
(23

25

)10
−
(24

25

)20
≈ −0.007614.
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Example (Another Coupon Collector) — Var(Y )

As Xi ’s are Bernoulli with p = 1 − (24/25)10, their variance is

Var(Xi) = p(1 − p) =
(24

25

)10
(

1 −
(24

25

)10
)

≈ 0.22283.

Putting everything together, we get

Var(Y ) =
25∑

i=1
Var(Xi) + 2

∑
i<j

Cov(Xi , Xj),

≈ 25 × 0.22283 + 2
(

25
2

)
(−0.007614)

≈ 1.0024.
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Example (Coin Flip Pattern HTTH) — E(Y )
Let Y be the total number of times that you see the pattern HTTH
in n flips of a fair coin. Find E(Y ) and Var(Y ).

Note the coin flip sequences with the pattern can overlap.
e.g., the pattern HTTH shows up twice, not once, in the sequence

H
first︷ ︸︸ ︷

H T T H T T H︸ ︷︷ ︸
second

H T

Sol. Let (C1, . . . , Cn) be the outcome of the n flips. Writing Y as

Y = X1 + X2 + · · · + Xn−3,

where
Xi =

{
1, if (Ci , Ci+1, Ci+2, Ci+3) = HTTH,

0, otherwise.

As

E[Xi ] = P(Xi = 1) = P((Ci , Ci+1, Ci+2, Ci+3) = HTTH) = (1/2)4,

we get E(Y ) = E(X1) + · · · + E(Xn−3) = (n − 3)(1/2)4.
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Example (Coin Flip Pattern HTTH) — Cov(Xi , Xj)
▶ Cov(Xi , Xj) = 0 if |i − j | > 3 as (Ci , Ci+1, Ci+2, Ci+3) and

(Cj , Cj+1, Cj+2, Cj+3) are independent if |i − j | > 3.

▶ E(XiXi+1) = P(Xi = 1, Xi+1 = 1) = 0 since if
(Ci , Ci+1, Ci+2, Ci+3) = HTTH, then (Ci+1, Ci+2, Ci+3, Ci+4)
would be TTH?, not HTTH. It follows that

Cov(Xi , Xi+1) = E(XiXi+1)−E(Xi) E(Xi+1) = 0−(1/2)8 = −1
256

▶ Likewise, Cov(Xi , Xi+2) = −1
256.

▶ E(XiXi+3) = P(Xi = 1, Xi+3 = 1) = (1/2)7 since
(Ci , Ci+1, Ci+2, Ci+3) = HTTH and
(Ci+3, Ci+4, Ci+5, Ci+6) = HTTH implies

(Ci , Ci+1, Ci+2, Ci+3, Ci+4, Ci+5, Ci+6) = HTTHTTH,

and thus Cov(Xi , Xi+3) = E(XiXi+3) − E(Xi) E(Xi+3)

= (1/2)7 − (1/2)8 = 1
256 .
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Example (Random Hats Problem) — Var(Y )
As Xi ’s are Bernoulli with p = (1/2)4 = 1/16, their variance is

Var(Xi) = p(1 − p) = 15
256 .

Putting everything together, we get

Var(Y ) =
n−3∑
i=1

Var(Xi) + 2
∑
i<j

Cov(Xi , Xj),

= (n − 3) Var(Xi) + 2(n − 4) Cov(Xi , Xi+1)
+ 2(n − 5) Cov(Xi , Xi+2) + 2(n − 6) Cov(Xi , Xi+3)

= (n − 3) 15
256 + 2(n − 4)( −1

256)

+ 2(n − 5)( −1
256) + 2(n − 6)( 1

256)

= (n − 3) 13
256
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Conditional Expectation and Prediction
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Conditional Expectation
For two random variables X and Y , the conditional mean or
conditional expected value of Y given X = x is defined to be

µY |X=X = E(Y | X = x) =
{∑

y y pY |X (y | x) if discrete∫∞
−∞ y fY |X (y | x)dy if continuous

where pY |X (y |x) and fY |X (y |x) are the conditional PMF/PDF of
Y given X .

▶ The conditional mean E(Y | X = x) is NOT a single value
but a function of the x value given.
⇒ E(Y | X ) is a function h(X ) of X and thus is a random
variable.

More generally, the conditional mean or conditional expected value
of g(Y ) given X = x is

E(g(Y ) | X = x) =
{∑

y g(y) pY |X (y | x) if discrete∫∞
−∞ g(y) fY |X (y | x)dy if continuous
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Conditional Variance

We can also define the conditional variance of Y given X = x .

Var(Y | X = x) = E
(
[Y − E(Y | X = x)]2 | X = x

)
Shortcut formula for conditional variance:

Var(X | X = x) = E(X 2 | X = x) − [E(Y | X = x)]2
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Example (Gas Station) — Conditional Mean

Recall in L06, the conditional PMF of Y given X = x is as follows.

Y
conditional PMF p(y | x) 0 1 2

0 0.625 0.25 0.125
X 1 0.2353 0.5882 0.1765

2 0.12 0.28 0.60

The conditional mean of Y given X = x is

E(Y | X = x) =


0 · 0.625 + 1 · 0.25 + 2 · 0.125 = 0.5 if x = 0
0 · 0.2353 + 1 · 0.5882 + 2 · 0.1765 = 0.9412 if x = 1
0 · 0.12 + 1 · 0.28 + 2 · 0.6 = 1.48 if x = 2
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Example — Poisson
For independent r.v.’s X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2), we
showed on p.18 in L06 that, given T = X1 + X2 = t, the
conditional distribution of X1 is

X1 |T=t∼ Bin
(

t,
λ1

λ1 + λ2

)
.

As the expected value for Bin(n, p) is np, and the variance is
np(1 − p) , it follows that

E(X1 | T ) = λ1
λ1 + λ2

T

Var(X1 | T ) = λ1λ2
(λ1 + λ2)2 T

▶ Note that E(X1 | T ) = λ1
λ1+λ2

T and Var(X1 | T ) = λ1λ2
(λ1+λ2)2 T

are both functions of T and hence random variables.
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Example (Mixed Nuts) — Conditional Mean
Recall in L06, we found the conditional PDF fY |X (y | x) of Y
(cashew) given X = x (almond) to be

fY |X (y | x) = f (x , y)
fX (x) = 2y

(1 − x)2 , for 0 ≤ y ≤ 1 − x .

The conditional expected weight of Y (cashew) in a can given
there being X = x lbs of almond in the can is

E(Y | X = x) =
∫ ∞

−∞
yfY |X (y | x)dy

=
∫ 1−x

0
y · 2y

(1 − x)2 dy

= 2y3

3(1 − x)2

∣∣∣∣y=1−x

y=0
= 2

3(1 − x).

c(−0.55, 1.15)

c(
−

0.
45

, 1
.4

)

x

y

1
0

1

(x,1−x)2 3
2

3
(1 − x)

given x

▶ Note that E(Y | X ) = 2
3(1 − X ) is a function of X and is thus

a random variable.
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Example (Mixed Nuts) — Conditional Variance

E(Y 2 | X = x) =
∫ ∞

−∞
y2fY |X (y | x)dy

=
∫ 1−x

0
y2 · 2y

(1 − x)2 dy

= y4

2(1 − x)2

∣∣∣∣y=1−x

y=0
= 1

2(1 − x)2.

So

Var(Y | X = x) = E(Y 2 | X = x) − [E(Y | X = x)]2

= 1
2(1 − x)2 −

(2
3(1 − x)

)2

= 1
18(1 − x)2

▶ Note Var(Y | X ) = 1
18(1 − X )2 is a a function of X and is

thus a random variable.
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Tower Law E(E(Y | X )) = E(Y )

As E(Y | X ) is a random variable and it’s a function of X we can
take its expected value and it can be shown that

E(E(Y | X )) = E(Y ).

This is called the Tower Law, or Law of Total Expectation.

EX (

taking expectation over
condi. distn. of Y given X︷ ︸︸ ︷
EY |X (Y | X ) )︸ ︷︷ ︸

taking expectation over
marginal distn. of X

= E(Y ).

* Tower Law is useful when it’s hard to find the marginal
distribution of Y , but easy to find EY |X (Y | X ).
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Example (Gas Station) — Tower Law
The conditional mean of Y given X = x is

x 0 1 2
E(Y | X = x) 0.5 0.9412 1.48

and the marginal PMFs for X was obtained in L05 to be
x 0 1 2

pX (x) 0.16 0.34 0.50 .

It follows that
EX (E(Y | X )) = E(Y | X = 0)pX (0)

+ E(Y | X = 1)pX (1)
+ E(Y | X = 2)pX (2)

= 0.5 · 0.16 + 0.9412 · 0.34 + 1.48 · 0.50 = 1.14.

which is identical to E(Y ) computed using the marginal PMF of Y
y 0 1 2

pY (y) 0.24 0.38 0.38 , E(Y ) = 0·0.24+1·0.38+2·0.38 = 1.14.
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Example — Poisson

For independent r.v.’s X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2),
and T = X1 + X2, recall we showed earlier the conditional mean of
X1 given T is

E(X1 | T ) = λ1T
λ1 + λ2

.

Also recall that T = X1 + X2 ∼ Poisson(λ1 + λ2),and thus
E(T ) = λ1 + λ2.
It follows that

E[E(X1 | T )] = E
[

λ1T
λ1 + λ2

]
= λ1 E[T ]

λ1 + λ2
= λ1(λ1 + λ2)

λ1 + λ2
= λ1 = E(X1).

Tower Law is also valid for this example.
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Proof of Tower Law (Discrete Case)

E(E(Y | X )) =
∑

x
E(Y | X = x)︸ ︷︷ ︸

↘

pX (x)

=
∑

x

︷ ︸︸ ︷∑
y

y · pY |X (y | x) pX (x)

=
∑

x

∑
y

y · pXY (x , y)
pX (x) pX (x)

=
∑

x

∑
y

y · pXY (x , y)

=
∑

y
y
∑

x
pXY (x , y)︸ ︷︷ ︸
pY (y)

=
∑

y
y · pY (y) = E(Y )

Proof for the continuous case is similar.
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Sum of a Random Number of Random Variables

Consider sum of the type

T =
N∑

i=1
Xi ,

where

▶ X1, X2, . . . are i.i.d. with E |Xi | < ∞, and
▶ N is a non-negative integer-valued random variable,

independent of Xi ’s.
▶ If N = 0, the sum is 0.

Ex: Let N be the number of claims an insurance company receives
in a given month, and the amounts of the individual claims
X1, X2, . . . are i.i.d. The total amount of claims in the month is
then

∑N
i=1 Xi .
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Expected Sum of a Random Number of Random Variables
If N = n is a constant, we know

E[T ] = E
[∑n

i=1
Xi
]

= n E(X ),

where E(X ) is the common mean of Xi ’s.
For random N, we can first find the conditional expected sum
given N = n,

E[T | N = n] = E
[∑N

i=1
Xi
∣∣∣N = n

]
=

n∑
i=1

E [Xi | N = n]︸ ︷︷ ︸
= E[X ] by indep.

of N and Xi ’s

= n E[X ]

i.e., E[T | N] = N E[X ]. Applying the Tower Law, we get

E[T ] = E
[

E[T | N]︸ ︷︷ ︸
=N E[X ]

]
= E[N E[X ]︸ ︷︷ ︸

constant

] = E[N] E[X ].
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Example (a Game)

Find the expected reward for the following game: at each round,
you toss a coin.

▶ If it’s Heads, you roll a die and win $1 if you rolled a 6.
▶ If it’s Tails, the game ends

Sol. Your total reward is T =
∑N

i=1 Xi , where

▶ Xi ’s are i.i.d. Bernoulli(1/6), ⇒ E[Xi ] = 1/6.
▶ N = # of consecutive H’s obtained before getting the first T

▶ Observe that M = N + 1 is Geometric(p = 1/2),
⇒ E[M] = 1/p = 2 ⇒ E[N] = 1.

▶ So your expected total reward is

E[T ] = E[N] E[X ] = 1 × (1/6) = 1/6.
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Example (Mouse Trapped in a Maze)

A mouse is placed at a room in a maze containing 3 doors.

▶ Door #1 leads to a path that will lead it to freedom after 6
minutes of travel.

▶ Door #2 leads to a path that will return it to the same after 4
minutes of travel.

▶ Door #3 leads to a path that will return it to the same room
after 2 minutes of travel.

Suppose the mouse always randomly chooses one of the 3 doors
equally likely whenever it returns to the room it started. What is
the expected length of time it takes the mouse to get free?
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Example (Mouse Trapped in a Maze)
The total amount of time before the mouse gets free can be
written as

T =
∑N

i=1
Xi

where
Xi = travel time (in minutes) for its ith departure
N = # of departures from the room until free

▶ Observe N is Geometric(p = 1/3), so E[N] = 1/p = 3.
▶ Clearly, Xi ’s are i.i.d. with the PMF

x 2 4 6
p(x) 1/3 1/3 1/3 , ⇒ E[X ] = 2 + 4 + 6

3 = 4.

▶ However, Xi ’s and N are NOT independent.
▶ XN = 6, always
▶ For i < N, Xi is equally likely to be 4 or 2, implying

E[Xi | N = n] = 4 + 2
2 = 3, i < n.
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Example (Mouse Trapped in a Maze)
So

E[T | N = n] = E
[∑N

i=1
Xi
∣∣∣N = n

]
=
∑n−1

i=1
E[Xi | N = n]︸ ︷︷ ︸

=3

+ E[Xn | N = n]︸ ︷︷ ︸
=6

= 3(n − 1) + 6 = 3n + 3.

As E[T | N] = 3N + 3, apply the Tower Law and recall E[N] = 3,
we have

E[T ] = E[E[T | N]] = E[3N + 3] = 3 E[N] + 3 = 3 × 3 + 3 = 12.

On average, it takes the mouse 12 minutes to escape.

Remark: Note in this example,

E
[∑N

i=1
Xi
∣∣∣N = n

]
︸ ︷︷ ︸

=3n+3

̸= E
[∑n

i=1
Xi
]

︸ ︷︷ ︸
=n E[Xi ]=4n
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Tower Law for Functions of X , Y

Tower Law not only works for Y itself, but also

▶ for any function g(Y ) of Y :

EX
[
EY |X (g(Y ) | X )

]
= E(g(Y )),

▶ as well as for any function h(X , Y ) of X , Y :

EX [EY |X (h(X , Y ) | X )] = E(h(X , Y )).

For example, E(E(Y 2 | X )) = E(Y 2).

34 / 47



E(Var(Y | X )) & Var(E(Y | X ))
▶ E(Y | X ) is a random variable,

▶ its expected value is E[E(Y | X )] = E[Y ] by Tower Law
▶ its variance is

VarX

( taking expectation over
condi. distn. of Y given X︷ ︸︸ ︷

EY |X (Y | X )
)

︸ ︷︷ ︸
taking variance over
marginal distn. of X

▶ As Var(Y | X ) is also a random variable, we can take
expected value of it

EX

( taking variance over
condi. distn. of Y given X︷ ︸︸ ︷
VarY |X (Y | X )

)
︸ ︷︷ ︸

taking expectation over
marginal distn. of X
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Tower Law for Variance = Law of Total Variance

Var(Y ) = E(Var(Y | X )) + Var(E(Y | X ))

Intuitively, if Y has high variance, it comes from one of two
sources:

▶ Either Y is highly variable even if you already know the value
of X

▶ Or if not, then expected value of Y must change a lot as you
var

36 / 47



Example: Poisson — Tower Law for Variance
For independent r.v.’s X1 ∼ Poisson(λ1), X2 ∼ Poisson(λ2), and
T = X1 + X2, recall we showed earlier that

E(X1 | T ) = λ1
λ1 + λ2

T , Var(X1 | T ) = λ1λ2
(λ1 + λ2)2 T

Also recall T ∼ Poisson(λ1 + λ2) which implies E[T ] = λ1 + λ2
and Var(T ) = λ1 + λ2. It follows that

Var(E(X1 | T )) = Var( λ1
λ1 + λ2

T ) =
(

λ1
λ1 + λ2

)2
Var(T )︸ ︷︷ ︸
=λ1+λ2

= λ2
1

λ1 + λ2

E[Var(X1 | T )] = E
[

λ1λ2
(λ1 + λ2)2 T

]
= λ1λ2

(λ1 + λ2)2 E[T ]︸ ︷︷ ︸
=λ1+λ2

= λ1λ2
λ1 + λ2

Adding them up, we get

Var(E(X1 | T ))+E[Var(X1 | T )] = λ2
1

λ1 + λ2
+ λ1λ2

λ1 + λ2
= λ1 = Var(X1).

Tower Law of Variance is valid for this example.
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Proof of Tower Law of Variance
By the shortcut formula for conditional variance,

Var(Y | X ) = E(Y 2 | X ) − [E(Y | X )]2

taking expectation on both sides, we get

E [Var(Y | X )] = E[E(Y 2 | X )]︸ ︷︷ ︸
=E[Y 2] by Tower Law

− E
{

[E(Y | X )]2
}

.

Applying the shortcut formula for variance
Var(g(X )) = E

{
[g(X )]2

}
− (E[g(X )])2

to g(X ) = E(Y | X ), we get

Var(E(Y | X )) = E
{

[E(Y | X )]2
}

−
(

E[E(Y | X )]︸ ︷︷ ︸
=E[Y ] by Tower Law

)2

Adding them up, we get
E [Var(Y | X )] + Var(E(Y | X ))

= E[Y 2] −
��������
E
{

[E(Y | X )]2
}

+
��������
E
{

[E(Y | X )]2
}

− (E(Y ))2

= E[Y 2] − (E(Y ))2 = Var(Y )
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Variance of Sum of a Random Number of R.V.’s
For a sum of the form

T =
N∑

i=1
Xi , where

{
X ′

i s are i.i.d. with mean E(X )
N is indep of Xi ’s

We found earlier that E[T |N] = N E(X ).

Var(T | N = n) = Var
[∑n

i=1
Xi
∣∣∣N = n

]
=

n∑
i=1

Var(Xi | N = n) (as Xi ’s are indep)

=
n∑

i=1
Var [Xi | N = n]︸ ︷︷ ︸
= Var(X) by indep.

of N and Xi ’s

= n Var(X )

This shows Var(T | N) = N Var(X )
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From E[T |N] = N E(X ) and Var(T | N) = N Var(X ), using the
Tower Law for Variance,

E[Var(T | N)] = E[N
constant︷ ︸︸ ︷
Var(X )] = E[N] Var(X )

Var(E[T | N]) = Var(N E(X )︸ ︷︷ ︸
constant

) = (E(X ))2 Var(N)

we get that

Var(T ) = Var(
∑N

i=1
Xi) = E[N] Var(X ) + (E(X ))2 Var(N).
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Example (Insurance Claims)

Suppose

▶ N = # of claims an insurance company receives in a month,
∼ Poisson(λ),

▶ the amounts of the individual claims X1, X2, . . . are i.i.d. with
mean µ and variance σ2.

The total amount of claims in the month is T =
∑N

i=1 Xi .

▶ E[T ] = E[N] E[X ] = λµ
▶ Var[T ] = E[N] Var(X ) + (E(X ))2 Var(N) = λσ2 + µ2λ
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Example (Mouse Trapped in a Maze) — Variance
Recall the total amount of time until escape is

T =
∑N

i=1
Xi

where

▶ Xi = travel time (in mins) of its ith departure,
▶ N = # of departures until free ∼ Geometric(p = 1/3)

E[N] = 1
p = 3, Var(N) = 1 − p

p2 = 6.

To find Var(T | N = n):
▶ XN = 6, always ⇒ Var(XN) = 0
▶ For i < N, Xi is equally likely to be 4 or 2, implying

E(X | N = n) = (4 + 2)/2 = 3 and

Var[Xi | N = n] = (4 − 3)2 + (2 − 3)2

2 = 1, i < n.
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So Var[T | N = n] = Var
[∑n

i=1
Xi
∣∣∣N = n

]
=
∑n

i=1
Var(Xi | N = n) (as Xi ’s are indep)

=
∑n−1

i=1
Var(Xi | N = n)︸ ︷︷ ︸

=1

+ Var(Xn | N = n]︸ ︷︷ ︸
=0

= n − 1

From E[T | N] = 3N + 3 and Var[T | N] = N − 1, using the Tower
Law for Variance,

E[Var(T | N)] = E[N − 1] = E[N] − 1 = 3 − 1 = 2
Var(E[T | N]) = Var(3N + 3) = 32 Var(N) = 32 · 6 = 54

we get that

Var(T ) = E[Var(T | N)] + Var(E[T | N]) = 2 + 54 = 56

On average, it takes the mouse 12 minutes to escape, give or take
the SD =

√
56 ≈ 7.48 minutes.
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4.4.2 Prediction and Conditional Expectation
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Predicting a Random variable Y by a Constant
How to best predict a random variable Y by a constant c?

▶ We want the predicted value c to be close to Y . A reasonable
criterion would be to

find c that minimize E
[
(Y − c)2

]
.

▶ The shortcut formula for Var(Y − c) gives

Var(Y − c)︸ ︷︷ ︸
=Var(Y )

= E[(Y − c)2] − (E[Y − c])2︸ ︷︷ ︸
=(E(Y )−c)2

.

Rearranging the terms, we get

E[(Y − c)2] = Var(Y ) + (E(Y ) − c)2

This means that E[(Y − c)2] is minimized when c = E[Y ].
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Prediction and Conditional Expectation

For two random variables X , Y with some joint distribution, if X is
observed to be x , what’s the best predicted value for Y ?

▶ The predicted value would depend on the observed X and
hence must be a function g(X ) of X

▶ We want the predicted value g(X ) to be close to Y . A
reasonable criterion would be to

find g(X ) that minimize E
[
(Y − g(X ))2

∣∣∣X] .

▶ As E
[
(Y − c)2] is minimized when c = E(Y ), similarly,

E
[
(Y − g(X ))2 | X

]
is minimized when

g(X ) = E[Y | X ].
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Example (Mixed Nuts) — Prediction
Recall in L05, the joint PDF for

X = the weight of almonds, and
Y = the weight of cashews

in a can of mixed nuts is

f (x , y) =
{

24xy if 0 ≤ x , y ≤ 1, x + y < 1
0 otherwise

c(−0.55, 1.15)
c(

−
0.

45
, 1

.4
)

x

y

1
0

1

(x,1−x)2 3
2

3
(1 − x)

given x

We showed earlier that E(Y | X ) = 2
3(1 − X ).

Given there were X = x lbs of almonds in a can, our best
prediction for the amount of cashews in the can is

E(Y | X ) = 2
3(1 − X ) lbs.
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