STAT 24400 Lecture 10 A Technique to Find Expectation & Variance Section 4.4 Conditional Expectation & Prediction

> Yibi Huang Department of Statistics University of Chicago

## A Technique to find Expected Value & Variance

### A Technique to find Expected Value & Variance

Sometimes it might be hard to find the exact distribution of a discrete random variable Y, but it's possible to express it as a sum of several random variables

$$Y = X_1 + X_2 + \dots + X_n$$

that the distribution for  $X_i$ 's are easier to find.

We can then find E(Y) and Var(Y) by

$$\mathsf{E}(Y) = \mathsf{E}(X_1) + \mathsf{E}(X_2) + \dots + \mathsf{E}(X_n),$$
$$\mathsf{Var}(Y) = \sum_{i=1}^n \mathsf{Var}(X_i) + 2\sum_{i < j} \mathsf{Cov}(X_i, X_j),$$

even when the distribution of Y is unknown

An example is Coupon Collector's Problem on p.27-29 in L09.

## Example (Random Hats Problem)

At a party, n men take off their hats.

The hats are then mixed up, and each man randomly grabs one. Let Y be the number of men who grab their own hats. Find E(Y) and Var(Y).

Not trivial to find the PMF P(Y = k), k = 0, 1, 2, ..., n.

## Example (Random Hats Problem)

At a party, n men take off their hats.

The hats are then mixed up, and each man randomly grabs one. Let Y be the number of men who grab their own hats. Find E(Y) and Var(Y).

- Not trivial to find the PMF P(Y = k), k = 0, 1, 2, ..., n.
- Nonetheless, we can find E(Y) and Var(Y) by writing Y as

$$Y=X_1+X_2+\cdots+X_n,$$

where

 $X_i = \begin{cases} 1, & \text{if the } i\text{th man grabs his own hat,} \\ 0, & \text{otherwise.} \end{cases}$ 

Note X<sub>i</sub>'s are Bernoulli but NOT independent

Expectation, Variance & Covariance of Bernoulli R.V.'s

For a Bernoulli Random Variable X with p = P(X = 1), it's expected value is

$$E[X] = 1 \cdot P(X = 1) + 0 \cdot P(X = 0) = P(X = 1) = p,$$

and the variance is

$$Var(X_i) = p(1-p) = P(X = 1) (1 - P(X = 1)).$$

Expectation, Variance & Covariance of Bernoulli R.V.'s

For a Bernoulli Random Variable X with p = P(X = 1), it's expected value is

$$E[X] = 1 \cdot P(X = 1) + 0 \cdot P(X = 0) = P(X = 1) = p,$$

and the variance is

$$Var(X_i) = p(1-p) = P(X = 1) (1 - P(X = 1)).$$

For two Bernoulli random variables  $X_i$ ,  $X_j$ ,

$$\begin{split} \mathsf{E}(X_i X_j) &= 1 \cdot 1 \cdot \mathrm{P}(X_i = 1, X_j = 1) + 1 \cdot 0 \cdot \mathrm{P}(X_i = 1, X_j = 0) \\ &+ 0 \cdot 1 \cdot \mathrm{P}(X_i = 0, X_j = 1) + 0 \cdot 0 \cdot \mathrm{P}(X_i = 0, X_j = 0) \\ &= \mathrm{P}(X_i = 1, X_j = 1), \end{split}$$

their covariance is thus

$$Cov(X_i, X_j) = E(X_i X_j) - E(X_i) E(X_j)$$
  
=  $P(X_i = 1, X_j = 1) - P(X_i = 1)P(X_j = 1).$ 

Example (Random Hats Problem) — E(Y)

As the *i*th man is equally likely to grab any of the n hats, it follows that

$$P(X_i = 1) = P(i$$
th man grabs his own hat)  $= \frac{1}{n}$ ,

and so

$$\mathsf{E}[X_i] = \mathrm{P}(X_i = 1) = \frac{1}{n}.$$

Hence, we obtain

$$\mathsf{E}(Y) = \mathsf{E}(X_1) + \dots + \mathsf{E}(X_n) = \underbrace{\frac{1}{n} + \dots + \frac{1}{n}}_{n \text{ times}} = n \cdot \frac{1}{n} = 1.$$

Example (Random Hats Problem) — E(Y)

As the *i*th man is equally likely to grab any of the n hats, it follows that

$$\mathrm{P}(X_i=1)=\mathrm{P}(i$$
th man grabs his own hat)  $=rac{1}{n},$ 

and so

$$\mathsf{E}[X_i] = \mathrm{P}(X_i = 1) = \frac{1}{n}.$$

Hence, we obtain

$$\mathsf{E}(Y) = \mathsf{E}(X_1) + \dots + \mathsf{E}(X_n) = \underbrace{\frac{1}{n} + \dots + \frac{1}{n}}_{n \text{ times}} = n \cdot \frac{1}{n} = 1.$$

We expect **only 1 man** can get his own hat if all men grab a hat randomly.

Example (Random Hats Problem) —  $Cov(X_i, X_j)$ 

$$\begin{split} \mathsf{E}(X_i X_j) &= \mathsf{P}(X_i = 1, X_j = 1) \\ &= \mathsf{P}(X_i = 1) \mathsf{P}(X_j = 1 \mid X_i = 1) \\ &= \mathsf{P}(i \text{th man gets his own hat}) \\ &\times \mathsf{P}(j \text{th man gets his own hat} \mid i \text{th man gets his own hat}) \\ &= \frac{1}{n} \cdot \frac{1}{n-1}, \end{split}$$

and thus their covariance is

$$Cov(X_i, X_j) = E(X_i X_j) - E(X_i) E(X_j)$$
$$= \frac{1}{n(n-1)} - \frac{1}{n} \cdot \frac{1}{n}$$
$$= \frac{1}{n^2(n-1)}.$$

Example (Random Hats Problem) — Var(Y)

As  $X_i$ 's are Bernoulli with  $p = \frac{1}{n}$ , their variance is

$$\operatorname{Var}(X_i) = p(1-p) = \frac{1}{n} \left(1 - \frac{1}{n}\right)$$

Example (Random Hats Problem) — Var(Y)

As  $X_i$ 's are Bernoulli with  $p = \frac{1}{n}$ , their variance is

$$\operatorname{Var}(X_i) = p(1-p) = rac{1}{n} \left(1 - rac{1}{n}
ight).$$

Putting everything together, we get

$$Var(Y) = \sum_{i=1}^{n} Var(X_i) + 2 \sum_{i < j} Cov(X_i, X_j),$$
  
=  $\sum_{i=1}^{n} \frac{1}{n} \left( 1 - \frac{1}{n} \right) + 2 \sum_{i < j} \frac{1}{n^2(n-1)}$   
=  $n \cdot \frac{1}{n} \left( 1 - \frac{1}{n} \right) + 2 {n \choose 2} \frac{1}{n^2(n-1)}$   
= 1

## Example (Random Hats Problem) — PMF (May Skip)

Just FYI, the PMF for Y = # of men who grab their own hats is

$$P(Y = n) = \frac{1}{n!},$$

$$P(Y = n - 1) = 0,$$

$$P(Y = 0) = \sum_{i=2}^{n} \frac{(-1)^{i}}{i!} = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots + \frac{(-1)^{n}}{n!}$$

$$P(Y = k) = \frac{1}{k!} \sum_{i=2}^{n-k} \frac{(-1)^{i}}{i!} = \frac{1}{k!} \left(\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots + \frac{(-1)^{n-k}}{(n-k)!}\right)$$

for k = 1, ..., n - 2.

See Example 5d on p.111-112 in *A First Course in Probability*, 10ed, by Sheldon Ross for calculation.

# Example (Another Coupon Collector)

If each box of breakfast cereals contains a coupon,

- there are 25 different types of coupons,
- the coupon in any box is equally likely to be any of the 25 types,

Let Y = the number of types of coupons in 10 boxes of cereals. Find E(Y) and Var(Y).

# Example (Another Coupon Collector)

If each box of breakfast cereals contains a coupon,

- there are 25 different types of coupons,
- the coupon in any box is equally likely to be any of the 25 types,

Let Y = the number of types of coupons in 10 boxes of cereals. Find E(Y) and Var(Y).

Again, it's not trivial to find the PMF of Y

# Example (Another Coupon Collector)

If each box of breakfast cereals contains a coupon,

- there are 25 different types of coupons,
- the coupon in any box is equally likely to be any of the 25 types,

Let Y = the number of types of coupons in 10 boxes of cereals. Find E(Y) and Var(Y).

Again, it's not trivial to find the PMF of Y
Nonetheless, we can find E(Y) and Var(Y) by writing Y as

$$Y=X_1+X_2+\cdots+X_{25},$$

where

$$X_i = \begin{cases} 1, & \text{if at least one type } i \text{ coupon is in the 10 boxes,} \\ 0, & \text{otherwise.} \end{cases}$$

# Example (Another Coupon Collector) — E(Y)

$$\begin{split} \mathsf{E}[X_i] &= \mathrm{P}(X_i = 1) \\ &= \mathrm{P}(\text{at least one type } i \text{ coupon is in the 10 boxes}) \\ &= 1 - \mathrm{P}(\text{no type } i \text{ coupons are in the 10 boxes}) \\ &= 1 - \left(\frac{24}{25}\right)^{10} \end{split}$$

where the last equality follows since each of the 10 boxes will (independently) not contain a type i with probability 24/25. Hence,

$$E(Y) = E(X_1) + \cdots + E(X_{25}) = 25\left(1 - \left(\frac{24}{25}\right)^{10}\right) \approx 8.38.$$

### Example (Another Coupon Collector) — $Cov(X_i, X_j)$ It's easier to find

 $P(X_i = 0, X_j = 0) = P(\text{No Type } i \text{ or } j \text{ coupons in 10 boxes}) = \left(\frac{23}{25}\right)^{10},$ than to find

 $P(X_i = 1, X_j = 1) = P(Both Types i and j are in 10 boxes).$ 

### Example (Another Coupon Collector) — $Cov(X_i, X_j)$ It's easier to find

 $P(X_i = 0, X_j = 0) = P(\text{No Type } i \text{ or } j \text{ coupons in 10 boxes}) = \left(\frac{23}{25}\right)^{10},$ than to find

 $P(X_i = 1, X_j = 1) = P(Both Types i and j are in 10 boxes).$ 

Can we find  $Cov(X_i, X_j)$  using  $P(X_i = 0, X_j = 0)$ ?

### Example (Another Coupon Collector) — $Cov(X_i, X_j)$ It's easier to find

$$P(X_i = 0, X_j = 0) = P(\text{No Type } i \text{ or } j \text{ coupons in 10 boxes}) = \left(\frac{23}{25}\right)^{10},$$
  
than to find

 $P(X_i = 1, X_j = 1) = P(Both Types i and j are in 10 boxes).$ 

Can we find  $Cov(X_i, X_j)$  using  $P(X_i = 0, X_j = 0)$ ?

Yes. Let 
$$Z_i = 1 - X_i$$
, then  
 $Cov(Z_i, Z_j) = Cov(1 - X_i, 1 - X_j) = Cov(X_i, X_j)$ , and  
 $Cov(Z_i, Z_j) = E(Z_i Z_j) - E(Z_i) E(Z_j)$   
 $= P(Z_i = 1, Z_j = 1) - P(Z_i = 1)P(Z_j = 1)$   
 $= P(X_i = 0, X_j = 0) - P(X_i = 0)P(X_j = 0)$   
 $= \left(\frac{23}{25}\right)^{10} - \left(\frac{24}{25}\right)^{20} \approx -0.007614.$ 

10

## Example (Another Coupon Collector) — Var(Y)

As  $X_i$ 's are Bernoulli with  $p = 1 - (24/25)^{10}$ , their variance is

$$\operatorname{Var}(X_i) = p(1-p) = \left(\frac{24}{25}\right)^{10} \left(1 - \left(\frac{24}{25}\right)^{10}\right) \approx 0.22283.$$

## Example (Another Coupon Collector) — Var(Y)

As  $X_i$ 's are Bernoulli with  $p = 1 - (24/25)^{10}$ , their variance is

$$\operatorname{Var}(X_i) = p(1-p) = \left(\frac{24}{25}\right)^{10} \left(1 - \left(\frac{24}{25}\right)^{10}\right) \approx 0.22283.$$

Putting everything together, we get

$$Var(Y) = \sum_{i=1}^{25} Var(X_i) + 2 \sum_{i < j} Cov(X_i, X_j),$$
  
 $\approx 25 \times 0.22283 + 2 {25 \choose 2} (-0.007614)$   
 $\approx 1.0024.$ 

### Example (Coin Flip Pattern HTTH) — E(Y)

Let Y be the total number of times that you see the pattern HTTH in n flips of a fair coin. Find E(Y) and Var(Y).

Note the coin flip sequences with the pattern can overlap. e.g., the pattern HTTH shows up twice, not once, in the sequence



Sol. Let  $(C_1, \ldots, C_n)$  be the outcome of the *n* flips. Writing Y as

$$Y=X_1+X_2+\cdots+X_{n-3},$$

where

$$X_i = egin{cases} 1, & ext{if } (C_i, C_{i+1}, C_{i+2}, C_{i+3}) = ext{HTTH}, \ 0, & ext{otherwise}. \end{cases}$$

As

$$E[X_i] = P(X_i = 1) = P((C_i, C_{i+1}, C_{i+2}, C_{i+3}) = HTTH) = (1/2)^4,$$
  
we get  $E(Y) = E(X_1) + \dots + E(X_{n-3}) = (n-3)(1/2)^4.$ 

Example (Coin Flip Pattern HTTH) —  $Cov(X_i, X_j)$ 

• 
$$Cov(X_i, X_j) = 0$$
 if  $|i - j| > 3$  as  $(C_i, C_{i+1}, C_{i+2}, C_{i+3})$  and  $(C_j, C_{j+1}, C_{j+2}, C_{j+3})$  are independent if  $|i - j| > 3$ .

Example (Coin Flip Pattern HTTH) —  $Cov(X_i, X_j)$ 

- $Cov(X_i, X_j) = 0$  if |i j| > 3 as  $(C_i, C_{i+1}, C_{i+2}, C_{i+3})$  and  $(C_j, C_{j+1}, C_{j+2}, C_{j+3})$  are independent if |i j| > 3.
- $E(X_iX_{i+1}) = P(X_i = 1, X_{i+1} = 1) = 0$  since if  $(C_i, C_{i+1}, C_{i+2}, C_{i+3}) = HTTH$ , then  $(C_{i+1}, C_{i+2}, C_{i+3}, C_{i+4})$  would be TTH?, not HTTH.

Example (Coin Flip Pattern HTTH) —  $Cov(X_i, X_i)$ 

would be TTH?, not HTTH. It follows that

$$Cov(X_i, X_{i+1}) = E(X_i X_{i+1}) - E(X_i) E(X_{i+1}) = 0 - (1/2)^8 = \frac{-1}{256}$$

Example (Coin Flip Pattern HTTH) —  $Cov(X_i, X_i)$ 

Cov(X<sub>i</sub>, X<sub>i+1</sub>) = E(X<sub>i</sub>X<sub>i+1</sub>)−E(X<sub>i</sub>) E(X<sub>i+1</sub>) = 0−(1/2)<sup>8</sup> = 
$$\frac{-1}{256}$$
  
Likewise, Cov(X<sub>i</sub>, X<sub>i+2</sub>) =  $\frac{-1}{256}$ .

Example (Coin Flip Pattern HTTH) —  $Cov(X_i, X_i)$ 

$$Cov(X_i, X_{i+1}) = E(X_i X_{i+1}) - E(X_i) E(X_{i+1}) = 0 - (1/2)^8 = \frac{-1}{256}$$

$$(C_i, C_{i+1}, C_{i+2}, C_{i+3}, C_{i+4}, C_{i+5}, C_{i+6}) = \text{HTTHTTH},$$

and thus 
$$Cov(X_i, X_{i+3}) = E(X_i X_{i+3}) - E(X_i) E(X_{i+3})$$
  
=  $(1/2)^7 - (1/2)^8 = \frac{1}{256}$ .

Example (Random Hats Problem) — Var(Y)

As  $X_i$ 's are Bernoulli with  $p = (1/2)^4 = 1/16$ , their variance is

$$Var(X_i) = p(1-p) = \frac{15}{256}$$

Example (Random Hats Problem) — Var(Y)

As  $X_i$ 's are Bernoulli with  $p = (1/2)^4 = 1/16$ , their variance is

$$Var(X_i) = p(1-p) = \frac{15}{256}$$

Putting everything together, we get

$$Var(Y) = \sum_{i=1}^{n-3} Var(X_i) + 2 \sum_{i < j} Cov(X_i, X_j),$$
  
=  $(n-3) Var(X_i) + 2(n-4) Cov(X_i, X_{i+1})$   
+  $2(n-5) Cov(X_i, X_{i+2}) + 2(n-6) Cov(X_i, X_{i+3})$   
=  $(n-3) \frac{15}{256} + 2(n-4)(\frac{-1}{256})$   
+  $2(n-5)(\frac{-1}{256}) + 2(n-6)(\frac{1}{256})$   
=  $(n-3) \frac{13}{256}$ 

### Conditional Expectation and Prediction

#### Conditional Expectation

For two random variables X and Y, the *conditional mean* or *conditional expected value of* Y given X = x is defined to be

$$\mu_{Y|X=X} = \mathsf{E}(Y \mid X = x) = \begin{cases} \sum_{y} y \, p_{Y|X}(y \mid x) & \text{if discrete} \\ \int_{-\infty}^{\infty} y \, f_{Y|X}(y \mid x) dy & \text{if continuous} \end{cases}$$

where  $p_{Y|X}(y|x)$  and  $f_{Y|X}(y|x)$  are the conditional PMF/PDF of Y given X.

#### Conditional Expectation

For two random variables X and Y, the *conditional mean* or *conditional expected value of* Y given X = x is defined to be

$$\mu_{Y|X=X} = \mathsf{E}(Y \mid X = x) = \begin{cases} \sum_{y} y \, p_{Y|X}(y \mid x) & \text{if discrete} \\ \int_{-\infty}^{\infty} y \, f_{Y|X}(y \mid x) dy & \text{if continuous} \end{cases}$$

where  $p_{Y|X}(y|x)$  and  $f_{Y|X}(y|x)$  are the conditional PMF/PDF of Y given X.

The conditional mean E(Y | X = x) is NOT a single value but a function of the x value given.
 ⇒ E(Y | X) is a function h(X) of X and thus is a random variable.

#### Conditional Expectation

For two random variables X and Y, the *conditional mean* or *conditional expected value of* Y given X = x is defined to be

$$\mu_{Y|X=X} = \mathsf{E}(Y \mid X = x) = \begin{cases} \sum_{y} y \, p_{Y|X}(y \mid x) & \text{if discrete} \\ \int_{-\infty}^{\infty} y \, f_{Y|X}(y \mid x) dy & \text{if continuous} \end{cases}$$

where  $p_{Y|X}(y|x)$  and  $f_{Y|X}(y|x)$  are the conditional PMF/PDF of Y given X.

The conditional mean E(Y | X = x) is NOT a single value but a function of the x value given.
 ⇒ E(Y | X) is a function h(X) of X and thus is a random variable.

More generally, the conditional mean or conditional expected value of g(Y) given X = x is

$$\mathsf{E}(g(Y) \mid X = x) = \begin{cases} \sum_{y} g(y) \, p_{Y|X}(y \mid x) & \text{if discrete} \\ \int_{-\infty}^{\infty} g(y) \, f_{Y|X}(y \mid x) dy & \text{if continuous} \end{cases}$$

#### **Conditional Variance**

We can also define the *conditional variance* of Y given X = x.

$$Var(Y \mid X = x) = E\left([Y - E(Y \mid X = x)]^2 \mid X = x\right)$$

Shortcut formula for conditional variance:

$$Var(X | X = x) = E(X^{2} | X = x) - [E(Y | X = x)]^{2}$$

Example (Gas Station) — Conditional Mean

Recall in L06, the conditional PMF of Y given X = x is as follows.

conditional PMF
$$p(y \mid x)$$
01200.6250.250.125X10.23530.58820.176520.120.280.60

The conditional mean of Y given X = x is

$$\mathsf{E}(Y \mid X = x) = \begin{cases} 0 \cdot 0.625 + 1 \cdot 0.25 + 2 \cdot 0.125 = 0.5 & \text{if } x = 0\\ 0 \cdot 0.2353 + 1 \cdot 0.5882 + 2 \cdot 0.1765 = 0.9412 & \text{if } x = 1\\ 0 \cdot 0.12 + 1 \cdot 0.28 + 2 \cdot 0.6 = 1.48 & \text{if } x = 2 \end{cases}$$

### Example — Poisson

For independent r.v.'s  $X_1 \sim \text{Poisson}(\lambda_1)$  and  $X_2 \sim \text{Poisson}(\lambda_2)$ , we showed on p.18 in L06 that, given  $T = X_1 + X_2 = t$ , the conditional distribution of  $X_1$  is

$$X_1 \mid_{\mathcal{T}=t} \sim \mathsf{Bin}\left(t, \frac{\lambda_1}{\lambda_1 + \lambda_2}\right).$$

As the expected value for Bin(n, p) is np, and the variance is np(1-p), it follows that

$$E(X_1 \mid T) = \frac{\lambda_1}{\lambda_1 + \lambda_2} T$$
$$Var(X_1 \mid T) = \frac{\lambda_1 \lambda_2}{(\lambda_1 + \lambda_2)^2} T$$

▶ Note that  $E(X_1 | T) = \frac{\lambda_1}{\lambda_1 + \lambda_2} T$  and  $Var(X_1 | T) = \frac{\lambda_1 \lambda_2}{(\lambda_1 + \lambda_2)^2} T$  are both functions of T and hence random variables.

### Example (Mixed Nuts) — Conditional Mean

Recall in L06, we found the conditional PDF  $f_{Y|X}(y \mid x)$  of Y (cashew) given X = x (almond) to be

$$f_{Y|X}(y \mid x) = rac{f(x,y)}{f_X(x)} = rac{2y}{(1-x)^2}, \quad ext{for } 0 \leq y \leq 1-x \,.$$

• •

The conditional expected weight of Y (cashew) in a can given there being X = x lbs of almond in the can is

$$E(Y | X = x) = \int_{-\infty}^{\infty} y f_{Y|X}(y | x) dy$$
  
=  $\int_{0}^{1-x} y \cdot \frac{2y}{(1-x)^2} dy$   
=  $\frac{2y^3}{3(1-x)^2} \Big|_{y=0}^{y=1-x} = \frac{2}{3}(1-x).$   
given x

### Example (Mixed Nuts) — Conditional Mean

Recall in L06, we found the conditional PDF  $f_{Y|X}(y \mid x)$  of Y (cashew) given X = x (almond) to be

$$f_{Y|X}(y \mid x) = rac{f(x,y)}{f_X(x)} = rac{2y}{(1-x)^2}, \quad ext{for } 0 \leq y \leq 1-x \,.$$

The conditional expected weight of Y (cashew) in a can given there being X = x lbs of almond in the can is

$$E(Y \mid X = x) = \int_{-\infty}^{\infty} y f_{Y|X}(y \mid x) dy$$
  
=  $\int_{0}^{1-x} y \cdot \frac{2y}{(1-x)^2} dy$   
=  $\frac{2y^3}{3(1-x)^2} \Big|_{y=0}^{y=1-x} = \frac{2}{3}(1-x).$   
given x

• •

Note that  $E(Y | X) = \frac{2}{3}(1 - X)$  is a function of X and is thus a random variable.

Example (Mixed Nuts) — Conditional Variance

$$E(Y^{2} | X = x) = \int_{-\infty}^{\infty} y^{2} f_{Y|X}(y | x) dy$$
  
=  $\int_{0}^{1-x} y^{2} \cdot \frac{2y}{(1-x)^{2}} dy$   
=  $\frac{y^{4}}{2(1-x)^{2}} \Big|_{y=0}^{y=1-x} = \frac{1}{2}(1-x)^{2}.$ 

So

$$Var(Y \mid X = x) = E(Y^2 \mid X = x) - [E(Y \mid X = x)]^2$$
$$= \frac{1}{2}(1-x)^2 - \left(\frac{2}{3}(1-x)\right)^2$$
$$= \frac{1}{18}(1-x)^2$$

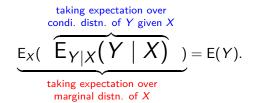
Note  $Var(Y | X) = \frac{1}{18}(1 - X)^2$  is a function of X and is thus a random variable.

# Tower Law E(E(Y | X)) = E(Y)

As E(Y | X) is a random variable and it's a function of X we can take its expected value and it can be shown that

 $\mathsf{E}(\mathsf{E}(Y \mid X)) = \mathsf{E}(Y).$ 

This is called the Tower Law, or Law of Total Expectation.



\* Tower Law is useful when it's hard to find the marginal distribution of Y, but easy to find  $E_{Y|X}(Y \mid X)$ .

### Example (Gas Station) — Tower Law

The conditional mean of Y given X = x is

$$\begin{array}{c|ccc} x & 0 & 1 & 2 \\ \hline \mathsf{E}(Y \mid X = x) & 0.5 & 0.9412 & 1.48 \end{array}$$

and the marginal PMFs for X was obtained in L05 to be

$$\frac{x}{p_X(x)} \begin{array}{c} 0 & 1 & 2 \\ 0.16 & 0.34 & 0.50 \end{array}$$

It follows that

$$E_X(E(Y \mid X)) = E(Y \mid X = 0)p_X(0) + E(Y \mid X = 1)p_X(1) + E(Y \mid X = 2)p_X(2) = 0.5 \cdot 0.16 + 0.9412 \cdot 0.34 + 1.48 \cdot 0.50 = 1.14.$$

which is identical to E(Y) computed using the marginal PMF of Y

### Example — Poisson

For independent r.v.'s  $X_1 \sim \text{Poisson}(\lambda_1)$  and  $X_2 \sim \text{Poisson}(\lambda_2)$ , and  $T = X_1 + X_2$ , recall we showed earlier the conditional mean of  $X_1$  given T is

$$\mathsf{E}(X_1 \mid T) = \frac{\lambda_1 T}{\lambda_1 + \lambda_2}.$$

### Example — Poisson

For independent r.v.'s  $X_1 \sim \text{Poisson}(\lambda_1)$  and  $X_2 \sim \text{Poisson}(\lambda_2)$ , and  $T = X_1 + X_2$ , recall we showed earlier the conditional mean of  $X_1$  given T is

$$\mathsf{E}(X_1 \mid T) = rac{\lambda_1 T}{\lambda_1 + \lambda_2}.$$

Also recall that  $T = X_1 + X_2 \sim \text{Poisson}(\lambda_1 + \lambda_2)$ , and thus  $\mathsf{E}(T) = \lambda_1 + \lambda_2$ . It follows that

$$E[E(X_1 | T)] = E\left[\frac{\lambda_1 T}{\lambda_1 + \lambda_2}\right]$$
$$= \frac{\lambda_1 E[T]}{\lambda_1 + \lambda_2} = \frac{\lambda_1(\lambda_1 + \lambda_2)}{\lambda_1 + \lambda_2} = \lambda_1 = E(X_1).$$

Tower Law is also valid for this example.

Proof of Tower Law (Discrete Case)

$$E(E(Y | X)) = \sum_{x} \underbrace{E(Y | X = x)}_{y} p_X(x)$$

$$= \sum_{x} \underbrace{\sum_{y} y \cdot p_{Y|X}(y | x)}_{y} p_X(x)$$

$$= \sum_{x} \underbrace{\sum_{y} y \cdot \frac{p_{XY}(x, y)}{p_X(x)}}_{p_X(x)} p_X(x)$$

$$= \underbrace{\sum_{x} \sum_{y} y \cdot p_{XY}(x, y)}_{p_Y(y)}$$

$$= \underbrace{\sum_{y} y \underbrace{\sum_{x} p_{XY}(x, y)}_{p_Y(y)}}_{p_Y(y)} E(Y)$$

Proof for the continuous case is similar.

# Sum of a Random Number of Random Variables

Consider sum of the type

$$T=\sum_{i=1}^{N}X_{i},$$

where

- $X_1, X_2, \ldots$  are i.i.d. with  $\mathsf{E}|X_i| < \infty$ , and
- N is a non-negative integer-valued random variable, independent of X<sub>i</sub>'s.
- If N = 0, the sum is 0.

**Ex**: Let *N* be the number of claims an insurance company receives in a given month, and the amounts of the individual claims  $X_1, X_2, \ldots$  are i.i.d. The total amount of claims in the month is then  $\sum_{i=1}^{N} X_i$ .

Expected Sum of a Random Number of Random Variables

If N = n is a constant, we know

$$\mathsf{E}[T] = \mathsf{E}\left[\sum_{i=1}^{n} X_{i}\right] = n \,\mathsf{E}(X),$$

where E(X) is the common mean of  $X_i$ 's.

For random N, we can first find the conditional expected sum given N = n,

$$E[T \mid N = n] = E\left[\sum_{i=1}^{N} X_i \mid N = n\right]$$
$$= \sum_{i=1}^{n} \underbrace{E[X_i \mid N = n]}_{= E[X] \text{ by indep.}}_{\text{of } N \text{ and } X_i \text{'s}} = n E[X]$$

i.e., E[T | N] = N E[X]. Applying the Tower Law, we get  $E[T] = E\left[\underbrace{E[T | N]}\right] = E[N \underbrace{E[X]}] = E[N] E[X].$ 

=N E[X]

# Example (a Game)

Find the expected reward for the following game: at each round, you toss a coin.

If it's Heads, you roll a die and win \$1 if you rolled a 6.
If it's Tails, the game ends

Sol. Your total reward is  $T = \sum_{i=1}^{N} X_i$ , where

X<sub>i</sub>'s are i.i.d. Bernoulli(1/6), ⇒ E[X<sub>i</sub>] = 1/6.
N = # of consecutive H's obtained before getting the first T
Observe that M = N + 1 is Geometric(p = 1/2), ⇒ E[M] = 1/p = 2 ⇒ E[N] = 1.
So your expected total reward is

$$E[T] = E[N] E[X] = 1 \times (1/6) = 1/6.$$

# Example (Mouse Trapped in a Maze)

A mouse is placed at a room in a maze containing 3 doors.

- Door #1 leads to a path that will lead it to freedom after 6 minutes of travel.
- Door #2 leads to a path that will return it to the same after 4 minutes of travel.
- Door #3 leads to a path that will return it to the same room after 2 minutes of travel.

Suppose the mouse always randomly chooses one of the 3 doors equally likely whenever it returns to the room it started. What is the expected length of time it takes the mouse to get free?

# Example (Mouse Trapped in a Maze)

The total amount of time before the mouse gets free can be written as

$$T=\sum_{i=1}^N X_i$$

where

 $X_i$  = travel time (in minutes) for its *i*th departure N = # of departures from the room until free

Observe N is Geometric(p = 1/3), so E[N] = 1/p = 3.
Clearly, X<sub>i</sub>'s are i.i.d. with the PMF

$$\frac{x | 2 | 4 | 6}{p(x) | 1/3 | 1/3 | 1/3}, \quad \Rightarrow \mathsf{E}[X] = \frac{2+4+6}{3} = 4.$$

▶ However, X<sub>i</sub>'s and N are NOT independent.

•  $X_N = 6$ , always

For i < N,  $X_i$  is equally likely to be 4 or 2, implying

$$E[X_i | N = n] = \frac{4+2}{2} = 3, \quad i < n$$

Example (Mouse Trapped in a Maze) So  $E[T | N = n] = E\left[\sum_{i=1}^{N} X_i | N = n\right]$   $= \sum_{i=1}^{n-1} \underbrace{E[X_i | N = n]}_{=3} + \underbrace{E[X_n | N = n]}_{=6}$  = 3(n-1) + 6 = 3n + 3.

As E[T | N] = 3N + 3, apply the Tower Law and recall E[N] = 3, we have

 $\mathsf{E}[T] = \mathsf{E}[\mathsf{E}[T \mid N]] = \mathsf{E}[3N+3] = 3 \mathsf{E}[N] + 3 = 3 \times 3 + 3 = 12.$ 

On average, it takes the mouse 12 minutes to escape.

Example (Mouse Trapped in a Maze) So  $E[T | N = n] = E\left[\sum_{i=1}^{N} X_i | N = n\right]$   $= \sum_{i=1}^{n-1} \underbrace{E[X_i | N = n]}_{=3} + \underbrace{E[X_n | N = n]}_{=6}$  = 3(n-1) + 6 = 3n + 3.

As E[T | N] = 3N + 3, apply the Tower Law and recall E[N] = 3, we have

$$\mathsf{E}[\mathcal{T}] = \mathsf{E}[\mathsf{E}[\mathcal{T} \mid N]] = \mathsf{E}[3N+3] = 3 \,\mathsf{E}[N] + 3 = 3 \times 3 + 3 = 12.$$

On average, it takes the mouse 12 minutes to escape.

Remark: Note in this example,

$$\underbrace{\mathsf{E}\left[\sum_{i=1}^{N} X_{i} \mid N=n\right]}_{=3n+3} \neq \underbrace{\mathsf{E}\left[\sum_{i=1}^{n} X_{i}\right]}_{=n \, \mathsf{E}[X_{i}]=4n}$$

### Tower Law for Functions of X, Y

Tower Law not only works for Y itself, but also

• for any function 
$$g(Y)$$
 of Y:

$$\mathsf{E}_{X}\left[\mathsf{E}_{Y|X}(g(Y) \mid X)\right] = \mathsf{E}(g(Y)),$$

• as well as for any function h(X, Y) of X, Y:

 $\mathsf{E}_X[\mathsf{E}_{Y|X}(h(X,Y)\mid X)] = \mathsf{E}(h(X,Y)).$ 

For example,  $E(E(Y^2 | X)) = E(Y^2)$ .

# $\mathsf{E}(\mathsf{Var}(Y \mid X)) \& \mathsf{Var}(\mathsf{E}(Y \mid X))$

- $\blacktriangleright$  E(Y | X) is a random variable,
  - its expected value is E[E(Y | X)] = E[Y] by Tower Law
  - its variance is

taking expectation over condi. distn. of Y given X

$$\underbrace{\mathsf{Var}_{X}\left(\begin{array}{c} \overbrace{\mathsf{E}_{Y|X}(Y \mid X)} \end{array}\right)}$$

taking variance over marginal distn. of X

 $\mathsf{E}(\mathsf{Var}(Y \mid X)) \& \mathsf{Var}(\mathsf{E}(Y \mid X))$ 

- E(Y | X) is a random variable,
  - its expected value is E[E(Y | X)] = E[Y] by Tower Law
  - its variance is

taking expectation over condi. distn. of Y given X

$$\underbrace{\mathsf{Var}_{X}\left(\begin{array}{c} \widetilde{\mathsf{E}}_{Y|X}(Y|X) \end{array}\right)}$$

taking variance over marginal distn. of X

As Var(Y | X) is also a random variable, we can take expected value of it

 $\underbrace{\mathsf{E}_{X}\left(\overbrace{\mathsf{Var}_{Y|X}(Y\mid X)}^{\mathsf{taking variance over}}\right)}_{\mathsf{taking expectation over}}$ 

marginal distn. of X

Tower Law for Variance = Law of Total Variance

$$Var(Y) = E(Var(Y \mid X)) + Var(E(Y \mid X))$$

Intuitively, if Y has high variance, it comes from one of two sources:

- Either Y is highly variable even if you already know the value of X
- Or if not, then expected value of Y must change a lot as you var

### Example: Poisson — Tower Law for Variance

For independent r.v.'s  $X_1 \sim \text{Poisson}(\lambda_1)$ ,  $X_2 \sim \text{Poisson}(\lambda_2)$ , and  $T = X_1 + X_2$ , recall we showed earlier that

$$\mathsf{E}(X_1 \mid T) = rac{\lambda_1}{\lambda_1 + \lambda_2} T, \quad \mathsf{Var}(X_1 \mid T) = rac{\lambda_1 \lambda_2}{(\lambda_1 + \lambda_2)^2} T$$

#### Example: Poisson — Tower Law for Variance

For independent r.v.'s  $X_1 \sim \text{Poisson}(\lambda_1)$ ,  $X_2 \sim \text{Poisson}(\lambda_2)$ , and  $T = X_1 + X_2$ , recall we showed earlier that

$$\mathsf{E}(X_1 \mid T) = rac{\lambda_1}{\lambda_1 + \lambda_2} T, \quad \mathsf{Var}(X_1 \mid T) = rac{\lambda_1 \lambda_2}{(\lambda_1 + \lambda_2)^2} T$$

Also recall  $T \sim \text{Poisson}(\lambda_1 + \lambda_2)$  which implies  $\mathsf{E}[T] = \lambda_1 + \lambda_2$ and  $\mathsf{Var}(T) = \lambda_1 + \lambda_2$ . It follows that

$$\operatorname{Var}(\mathsf{E}(X_1 \mid T)) = \operatorname{Var}(\frac{\lambda_1}{\lambda_1 + \lambda_2}T) = \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^2 \underbrace{\operatorname{Var}(T)}_{=\lambda_1 + \lambda_2} = \frac{\lambda_1^2}{\lambda_1 + \lambda_2}$$
$$\operatorname{E}[\operatorname{Var}(X_1 \mid T)] = \operatorname{E}\left[\frac{\lambda_1\lambda_2}{(\lambda_1 + \lambda_2)^2}T\right] = \frac{\lambda_1\lambda_2}{(\lambda_1 + \lambda_2)^2} \underbrace{\operatorname{E}[T]}_{=\lambda_1 + \lambda_2} = \frac{\lambda_1\lambda_2}{\lambda_1 + \lambda_2}$$

#### Example: Poisson — Tower Law for Variance

For independent r.v.'s  $X_1 \sim \text{Poisson}(\lambda_1)$ ,  $X_2 \sim \text{Poisson}(\lambda_2)$ , and  $T = X_1 + X_2$ , recall we showed earlier that

$$\mathsf{E}(X_1 \mid T) = rac{\lambda_1}{\lambda_1 + \lambda_2} T, \quad \mathsf{Var}(X_1 \mid T) = rac{\lambda_1 \lambda_2}{(\lambda_1 + \lambda_2)^2} T$$

Also recall  $T \sim \text{Poisson}(\lambda_1 + \lambda_2)$  which implies  $\mathsf{E}[T] = \lambda_1 + \lambda_2$ and  $\mathsf{Var}(T) = \lambda_1 + \lambda_2$ . It follows that

$$\operatorname{Var}(\mathsf{E}(X_1 \mid T)) = \operatorname{Var}(\frac{\lambda_1}{\lambda_1 + \lambda_2}T) = \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^2 \underbrace{\operatorname{Var}(T)}_{=\lambda_1 + \lambda_2} = \frac{\lambda_1^2}{\lambda_1 + \lambda_2}$$
$$\operatorname{E}[\operatorname{Var}(X_1 \mid T)] = \operatorname{E}\left[\frac{\lambda_1\lambda_2}{(\lambda_1 + \lambda_2)^2}T\right] = \frac{\lambda_1\lambda_2}{(\lambda_1 + \lambda_2)^2} \underbrace{\operatorname{E}[T]}_{=\lambda_1 + \lambda_2} = \frac{\lambda_1\lambda_2}{\lambda_1 + \lambda_2}$$

Adding them up, we get

$$Var(E(X_1 | T)) + E[Var(X_1 | T)] = \frac{\lambda_1^2}{\lambda_1 + \lambda_2} + \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} = \lambda_1 = Var(X_1).$$

Tower Law of Variance is valid for this example.

### Proof of Tower Law of Variance

By the shortcut formula for conditional variance,

$$\mathsf{Var}(Y \mid X) = \mathsf{E}(Y^2 \mid X) - \left[\mathsf{E}(Y \mid X)\right]^2$$

taking expectation on both sides, we get

$$\mathsf{E}\left[\mathsf{Var}(Y \mid X)\right] = \underbrace{\mathsf{E}[\mathsf{E}(Y^2 \mid X)]}_{=\mathsf{E}[Y^2] \text{ by Tower Law}} - \mathsf{E}\left\{\left[\mathsf{E}(Y \mid X)\right]^2\right\}.$$

### Proof of Tower Law of Variance

By the shortcut formula for conditional variance,

$$\mathsf{Var}(Y \mid X) = \mathsf{E}(Y^2 \mid X) - [\mathsf{E}(Y \mid X)]^2$$

taking expectation on both sides, we get

$$\mathsf{E}\left[\mathsf{Var}(Y \mid X)\right] = \underbrace{\mathsf{E}[\mathsf{E}(Y^2 \mid X)]}_{=\mathsf{E}[Y^2] \text{ by Tower Law}} - \mathsf{E}\left\{\left[\mathsf{E}(Y \mid X)\right]^2\right\}.$$

Applying the shortcut formula for variance

$$Var(g(X)) = E\{[g(X)]^2\} - (E[g(X)])^2$$

to  $g(X) = \mathsf{E}(Y \mid X)$ , we get

$$\mathsf{Var}(\mathsf{E}(Y \mid X)) = \mathsf{E}\left\{\left[\mathsf{E}(Y \mid X)\right]^{2}\right\} - \left(\underbrace{\mathsf{E}[\mathsf{E}(Y \mid X)]}_{=\mathsf{E}[Y] \text{ by Tower Law}}\right)^{2}$$

### Proof of Tower Law of Variance

By the shortcut formula for conditional variance,

$$\mathsf{Var}(Y \mid X) = \mathsf{E}(Y^2 \mid X) - [\mathsf{E}(Y \mid X)]^2$$

taking expectation on both sides, we get

$$\mathsf{E}\left[\mathsf{Var}(Y \mid X)\right] = \underbrace{\mathsf{E}[\mathsf{E}(Y^2 \mid X)]}_{=\mathsf{E}[Y^2] \text{ by Tower Law}} - \mathsf{E}\left\{\left[\mathsf{E}(Y \mid X)\right]^2\right\}.$$

Applying the shortcut formula for variance

$$Var(g(X)) = E\{[g(X)]^2\} - (E[g(X)])^2$$
  
to  $g(X) = E(Y | X)$ , we get

$$\mathsf{Var}(\mathsf{E}(Y \mid X)) = \mathsf{E}\left\{ \left[\mathsf{E}(Y \mid X)\right]^2 \right\} - \left( \underbrace{\mathsf{E}[\mathsf{E}(Y \mid X)]}_{=\mathsf{E}[Y] \text{ by Tower Law}} \right)^2$$

Adding them up, we get

$$E[Var(Y | X)] + Var(E(Y | X))$$
  
=  $E[Y^2] - E\{[E(Y+X)]^2\} + E\{[E(Y+X)]^2\} - (E(Y))^2$   
=  $E[Y^2] - (E(Y))^2 = Var(Y)$ 

2

# Variance of Sum of a Random Number of R.V.'s

For a sum of the form

$$T = \sum_{i=1}^{N} X_i$$
, where  $\begin{cases} X'_i s \text{ are i.i.d. with mean } \mathsf{E}(X) \\ N ext{ is indep of } X_i ext{'s} \end{cases}$ 

We found earlier that E[T|N] = N E(X).

$$Var(T | N = n) = Var\left[\sum_{i=1}^{n} X_i | N = n\right]$$
$$= \sum_{i=1}^{n} Var(X_i | N = n) \quad (as X_i's are indep)$$
$$= \sum_{i=1}^{n} \underbrace{Var(X_i | N = n)}_{= Var(X) \text{ by indep.}}_{of N \text{ and } X_i's} = n Var(X)$$

This shows Var(T | N) = N Var(X)

From E[T|N] = N E(X) and Var(T | N) = N Var(X), using the Tower Law for Variance,

$$E[Var(T | N)] = E[N Var(X)] = E[N] Var(X)$$
$$Var(E[T | N]) = Var(N \underbrace{E(X)}_{constant}) = (E(X))^2 Var(N)$$

we get that

$$\mathsf{Var}(\mathcal{T}) = \mathsf{Var}(\sum_{i=1}^{\mathsf{N}} X_i) = \mathsf{E}[\mathsf{N}] \, \mathsf{Var}(X) + (\mathsf{E}(X))^2 \, \mathsf{Var}(\mathsf{N}).$$

# Example (Insurance Claims)

Suppose

- N = # of claims an insurance company receives in a month,
   ~ Poisson(λ),
- the amounts of the individual claims X<sub>1</sub>, X<sub>2</sub>,... are i.i.d. with mean μ and variance σ<sup>2</sup>.

The total amount of claims in the month is  $T = \sum_{i=1}^{N} X_i$ .

• 
$$E[T] = E[N] E[X] = \lambda \mu$$
  
•  $Var[T] = E[N] Var(X) + (E(X))^2 Var(N) = \lambda \sigma^2 + \mu^2 \lambda$ 

### Example (Mouse Trapped in a Maze) — Variance

Recall the total amount of time until escape is

$$T=\sum_{i=1}^N X_i$$

where

•  $X_i$  = travel time (in mins) of its *i*th departure,

• N = # of departures until free  $\sim$  Geometric(p = 1/3)

$$E[N] = \frac{1}{p} = 3$$
,  $Var(N) = \frac{1-p}{p^2} = 6$ .

To find Var( $T \mid N = n$ ):  $X_N = 6$ , always  $\Rightarrow$  Var( $X_N$ ) = 0 For i < N,  $X_i$  is equally likely to be 4 or 2, implying  $E(X \mid N = n) = (4 + 2)/2 = 3$  and  $Var[X_i \mid N = n] = \frac{(4 - 3)^2 + (2 - 3)^2}{2} = 1$ , i < n.

So 
$$\operatorname{Var}[T \mid N = n] = \operatorname{Var}\left[\sum_{i=1}^{n} X_i \mid N = n\right]$$
  

$$= \sum_{i=1}^{n} \operatorname{Var}(X_i \mid N = n) \quad (\text{as } X_i \text{'s are indep})$$

$$= \sum_{i=1}^{n-1} \underbrace{\operatorname{Var}(X_i \mid N = n)}_{=1} + \underbrace{\operatorname{Var}(X_n \mid N = n]}_{=0}$$

$$= n - 1$$

From E[T | N] = 3N + 3 and Var[T | N] = N - 1, using the Tower Law for Variance,

$$E[Var(T | N)] = E[N - 1] = E[N] - 1 = 3 - 1 = 2$$
  
Var(E[T | N]) = Var(3N + 3) = 3<sup>2</sup> Var(N) = 3<sup>2</sup> \cdot 6 = 54

we get that

$$Var(T) = E[Var(T \mid N)] + Var(E[T \mid N]) = 2 + 54 = 56$$

On average, it takes the mouse 12 minutes to escape, give or take the SD  $=\sqrt{56}\approx7.48$  minutes.

## 4.4.2 Prediction and Conditional Expectation

## Predicting a Random variable Y by a Constant

How to best predict a random variable Y by a constant c?

We want the predicted value c to be close to Y. A reasonable criterion would be to

find **c** that minimize 
$$E\left[(Y-c)^2\right]$$
.

• The shortcut formula for Var(Y - c) gives

$$\underbrace{\operatorname{Var}(Y-c)}_{=\operatorname{Var}(Y)} = \operatorname{E}[(Y-c)^2] - \underbrace{(\operatorname{E}[Y-c])^2}_{=(\operatorname{E}(Y)-c)^2}.$$

Rearranging the terms, we get

$$\mathsf{E}[(Y-c)^2] = \mathsf{Var}(Y) + (\mathsf{E}(Y)-c)^2$$

This means that  $E[(Y - c)^2]$  is minimized when c = E[Y].

# Prediction and Conditional Expectation

For two random variables X, Y with some joint distribution, if X is observed to be x, what's the best predicted value for Y?

# Prediction and Conditional Expectation

For two random variables X, Y with some joint distribution, if X is observed to be x, what's the best predicted value for Y?

- The predicted value would depend on the observed X and hence must be a function g(X) of X
- We want the predicted value g(X) to be close to Y. A reasonable criterion would be to

find 
$$g(X)$$
 that minimize  $\mathsf{E}\left[(Y-g(X))^2\,\Big|\,X
ight]$  .

As  $E[(Y - c)^2]$  is minimized when c = E(Y), similarly,  $E[(Y - g(X))^2 | X]$  is minimized when

 $g(X) = \mathsf{E}[Y \mid X].$ 

# Example (Mixed Nuts) — Prediction

Recall in L05, the joint PDF for

X = the weight of almonds, and

Y = the weight of cashews

in a can of mixed nuts is  $f(x,y) = \begin{cases} 24xy & \text{if } 0 \le x, y \le 1, x + y < 1 & \frac{2}{3} \\ 0 & \text{otherwise} & \frac{2}{3} (1-x) \\ 0 & \frac{2}{3} (1-x) \\ 0$ 

## Example (Mixed Nuts) — Prediction

Recall in L05, the joint PDF for

X = the weight of almonds, and

Y = the weight of cashews

in a can of mixed nuts is  $f(x,y) = \begin{cases} 24xy & \text{if } 0 \le x, y \le 1, x + y < 1 & \frac{2}{3} \\ 0 & \text{otherwise} & \frac{2}{3} (1-x) \\ 0 & \frac{2}{3} (1-x) & \frac{2}{3} (1-x) & \frac{2}{3} (1-x) \\ 0 & \frac{2}{3} (1-x) & \frac{2}{3} (1-x) & \frac{2}{3} (1-x) \\ 0 & \frac{2}{3} (1-x) & \frac{2}{$ 

We showed earlier that  $E(Y | X) = \frac{2}{3}(1 - X)$ . Given there were X = x lbs of almonds in a can, our best prediction for the amount of cashews in the can is

$$E(Y \mid X) = \frac{2}{3}(1 - X)$$
 lbs.