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Expected Values for Functions of Several R.V.’s

For discrete random variables X1, . . . , Xn with joint PMF
p(x1, . . . , xn), the expected value for g(X1, . . . , Xn) is

E(g(X1, . . . , Xn)) =
∑

x1,...,xn

g(x1, . . . , xn)p(x1, . . . , xn),

provided that
∑

x1,...,xn |g(x1, . . . , xn)|p(x1, . . . , xn) < ∞.

For continuous random variables X1, . . . , Xn with joint PDF
f (x1, . . . , xn), the expected value for g(X1, . . . , Xn) is

E(g(X1, . . . , Xn)) =
∫

· · ·
∫

g(x1, . . . , xn)f (x1, . . . , xn)dx1 . . . dxn,

provided that
∫

·· ·
∫

|g(x1, . . . , xn)|f (x1, . . . , xn)dx1 . . . dxn < ∞.
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E(aX + bY ) = a E(X ) + b E(Y )

If g(X , Y ) = aX + bY for two random variables (discrete or
continuous) X and Y and two constants a and b, we have

E[g(X , Y )] = E(aX + bY ) = a E(X ) + b E(Y ).

Proof. We will prove it for continuous X and Y with joint PDF
f (x , y). The proof for the discrete case is similar.

E(aX + bY ) =
x

(ax + by)f (x , y)dxdy , (by definition)

=
x

axf (x , y)dxdy︸ ︷︷ ︸
Part I

+
x

byf (x , y)dxdy︸ ︷︷ ︸
Part II
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For Part I, we first integrate over y , and then over x .

Part I =
x

axf (x , y)dxdy = a
∫ (∫

xf (x , y)dy
)

dx

= a
∫

x
∫

f (x , y)dy︸ ︷︷ ︸
fX (x)

dx = a
∫

xfX (x)dx︸ ︷︷ ︸
E(X)

= a E(X )

For Part II, we first integrate over x , and then over y .

Part II =
x

byf (x , y)dxdy = b
∫ (∫

yf (x , y)dx
)

dy

= b
∫

y
∫

f (x , y)dx︸ ︷︷ ︸
fY (y)

dy = b
∫

yfY (y)dy︸ ︷︷ ︸
E(Y )

= b E(Y )

Putting Parts I & II together, we get

E(aX + bY ) = a E(X ) + b E(Y ).
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Expected Value for Linear Combination of R.V.’s

The result E(aX + bY ) = a E(X ) + b E(Y ) can be generalized to
linear combinations of several random variables

E(a1X1 +a2X2 + · · ·+anXn) = a1 E(X1)+a2 E(X2)+ · · ·+an E(Xn),

no matter the rv’s are discrete or continuous, independent or not.

6 / 37



E[g(X )h(Y )] = E[g(X )] E[h(Y )] if X , Y are independent
When X and Y are independent, for any functions g and h,

E[g(X )h(Y )] = E[g(X )] E[h(Y )].

In particular, E(XY ) = E(X ) E(Y ).

Proof. We prove the discrete case. The continuous case is similar.
Using that p(x , y) = pX (x)pY (y) when X , Y are indep, one has

E[g(X )h(Y )] =
∑

xy
g(x)h(y)p(x , y)

=
∑

x

∑
y

g(x)h(y)pX (x)pY (y) (by independence)

=
∑

x
g(x)pX (x)︸ ︷︷ ︸
E[g(X)]

∑
y

h(y)pY (y)︸ ︷︷ ︸
E[h(Y )]

= E[g(X )] E[h(Y )]
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Covariance
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Covariance

The covariance of X and Y , denoted as Cov(X , Y ) or σXY , is
defined as

Cov(X , Y ) = σXY = E[(X − µX )(Y − µY )],

in which µX = E(X ), µY = E(Y )

▶ Covariance is a generalization of variance as the variance of a
random variable X is just the covariance of X with itself.

Var(X ) = Cov(X , X ) = E[(X − µX )2]
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Sign of Covariance Reflects the Direction of (X , Y )
Relation

▶ Cov(X , Y ) > 0 means a positive relation between X , Y
▶ When X increases, Y tends to increase

▶ Cov(X , Y ) < 0 means a negative relation between X , Y
▶ When X increases, Y tends to decrease

Sign of (X − µX )(Y − µY )

µx

µy

X − µx < 0

X − µx < 0

X − µx > 0

X − µx > 0
Y − µy < 0 Y − µy < 0

Y − µy > 0 Y − µy > 0
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Shortcut Formula for Covariance

Cov(X , Y ) = E(XY ) − E(X ) E(Y )

▶ Similar to the Shortcut Formula for Variance

Var(X ) = E(X 2) − [E(X )]2.

▶ If X , Y are independent,
⇒ E(XY ) = E(X ) E(Y ) ⇒ Cov(X , Y ) = 0.

▶ However, Cov(X , Y ) = 0 does not imply the independence of
X and Y . In this case, we say X and Y are uncorrelated.
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Proof of the Shortcut Formula for Covariance

Cov(X , Y ) = E[(X − µX )(Y − µY )]
= E(XY − µX Y − µY X + µX µY )
= E(XY ) − µX E(Y )︸ ︷︷ ︸

=µY

−µY E(X )︸ ︷︷ ︸
=µX

+µX µY

= E(XY ) − µX µY .
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Example (Gas Station) — E(XY )
Recall the joint PMF for the Gas Station Example in L05 is

Y (full-service)
p(x , y) 0 1 2

X 0 0.10 0.04 0.02
self- 1 0.08 0.20 0.06

service 2 0.06 0.14 0.30

Guess Cov(X , Y ) > 0 or < 0?

0

1

2

0 1 2
x

y

PMF

0.1

0.2

E(XY ) =
∑

xy
xyp(x , y)

= 0 · 0 · 0.10 + 0 · 1 · 0.04 + 0 · 2 · 0.02
+ 1 · 0 · 0.08 + 1 · 1 · 0.20 + 1 · 2 · 0.06
+ 2 · 0 · 0.06 + 2 · 1 · 0.14 + 2 · 2 · 0.30

= 1.8
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Example (Gas Station) — Covariance

Recall in L05, we obtained the marginal PMFs for X and for Y :

x 0 1 2
pX (x) 0.16 0.34 0.50 , E(X ) = 0·0.16+1·0.34+2·0.5 = 1.34

y 0 1 2
pY (y) 0.24 0.38 0.38 , E(Y ) = 0·0.24+1·0.38+2·0.38 = 1.14

By the shortcut formula, the covariance is

Cov(X , Y ) = E(XY ) − E(X ) E(Y )
= 1.8 − 1.34 × 1.14 = 0.2724 > 0.

When one service island is busy, the other also tends to be busy.
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Example (Mixed Nuts)

Recall in L05, the joint PDF for

X = the weight of almonds, and
Y = the weight of cashews

in a can of mixed nuts is

f (x , y) =
{

24xy if 0 ≤ x , y ≤ 1, x + y < 1
0 otherwise

c(−0.25, 1.35)

c(
−

0.
25

, 1
.3

5)

x

y

0 1
0

1 x + y = 1

Before we calculate it, guess Cov(X , Y ) > 0 or < 0?
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Example (Mixed Nuts) — E(XY )

E(XY ) =
x

xyf (x , y)dxdy

=
∫ 1

0

∫ 1−y

0
24x2y2dx︸ ︷︷ ︸

see below

dy

c(−0.75, 1.35)

c(
−

0.
3,

 1
.5

)

x

y

0 1

1

(1−y,y)

1−y

fix y

integrate x
from 0 to 1−y

where ∫ 1−y

0
24x2y2 dx =

[
8x3y2

]x=1−y

x=0
= 8(1 − y)3y2.

Putting it back to the double integral, we get

E(XY ) =
∫ 1

0

∫ 1−y

0
24x2y2 dx dy =

∫ 1

0
8(1 − y)3y2dy = 2

15 .
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Example (Mixed Nuts) — Covariance
Recall in L05, we calculated the marginal PDF’s for X and for Y :

fX (x) = 12x(1 − x)2, fY (y) = 12y(1 − y)2, for 0 ≤ x , y ≤ 1.

using which we can calculate

E(X ) =
∫ 1

0
xfX (x)dx =

∫ 1

0
12x2(1 − x)2dx

=
∫ 1

0
12x2 − 24x3 + 12x4dx =

[
4x3 − 6x4 + 12

5 x5
]1

0
= 2

5 .

Likewise, E(Y ) = 2/5. The covariance by the shortcut formula is

Cov(X , Y ) = E(XY ) − E(X ) E(Y ) = 2
15 − 2

5 × 2
5 = − 2

75

When a can of mixed nuts has more almond, it likely has less
cashew, and vice versa.
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More Properties of Covariance

Cov(X , Y ) = E[(X − E(X ))(Y − E(Y ))] = E(XY ) − E(X ) E(Y )

In the following, a, b are constants. X , Y , Z are random variables

▶ Symmetry: Cov(X , Y ) = Cov(Y , X )
▶ Scaling: Cov(aX , bY ) = ab Cov(X , Y )
▶ Right-linearity: Cov(X + Y , Z ) = Cov(X , Z ) + Cov(Y , Z )
▶ Left-linearity: Cov(X , Y + Z ) = Cov(X , Y ) + Cov(X , Z )
▶ Cov(a, X ) = 0.
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Proofs for Properties of Covariance

The proofs for these propertie are all straightforward from
definition. We just prove the Right-linearity as an example.

Cov(X + Y , Z ) = E((X + Y )Z ) − E(X + Y ) E(Z )
= E(XZ ) + E(YZ ) − [E(X ) + E(Y )] E(Z )
= E(XZ ) − E(X ) E(Z )︸ ︷︷ ︸

Cov(X ,Z)

+ E(YZ ) − E(Y ) E(Z )︸ ︷︷ ︸
Cov(Y ,Z)

= Cov(X , Z ) + Cov(Y , Z )

Note in the proof above, we used the property of expected value
that

E(X + Y ) = E(X ) + E(Y )
E(XZ + YZ ) = E(XZ ) + E(YZ )
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Variance of Linear Combinations of Two Random Variables

Recall that expectation has the following linear property:

E(aX + bY ) = a E(X ) + b E(Y ).

We also have shown that Var(aX + b) = a2 Var(X ).

How about Var(aX + bY )?

Var(aX + bY ) = a2 Var(X ) + 2ab Cov(X , Y ) + b2 Var(Y )

▶ If X is independent of Y , Var(X ± Y ) = Var(X ) + Var(Y )
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Proof of Var(aX + bY )

Var(aX + bY ) = Cov(aX + bY , aX + bY )
= Cov(aX , aX + bY )︸ ︷︷ ︸ + Cov(bY , aX + bY )︸ ︷︷ ︸ (right-linearity)

↓ ↓

=
︷ ︸︸ ︷
Cov(aX , aX )+Cov(aX , bY )+

︷ ︸︸ ︷
Cov(bY , aX )+Cov(bY , bY ) (left-linearity)

= Var(aX ) + 2 Cov(aX , bY ) + Var(bY ) (symmetry)
= a2 Var(X ) + 2ab Cov(X , Y ) + b2 Var(Y ) (scaling)
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Linear Combinations of Random Variables

For any random variables X1, X2, . . . , Xn., a linear combination of
X1, X2, . . . , Xn is

a1X1 + a2X2 + · · · + anXn,

where a1, a2, . . . , an are constant numbers. For example,

▶ The sum X1 + X2 + · · · + Xn is a linear combination of
X1, . . . , Xn with all ai ’s = 1.

▶ The average
X1 + X2 + · · · + Xn

n
is a linear combination of X1, X2, . . . , Xn with all ai ’s = 1/n.

▶ The difference X − Y is a linear combination of X and Y with
a1 = 1, a2 = −1
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Variance of a Linear Combination of RV’s

Var
( n∑

i=1
aiXi

)
=

n∑
i=1

a2
i Var(Xi) + 2

∑
i<j

aiaj Cov(Xi , Xj)

▶ There is a covariance term for every pair of Xi and Xj
▶ When X1, . . . , Xn are independent, then

Var(X1 + X2 + . . . + Xn) = Var(X1) + Var(X2) + . . . + Var(Xn).

▶ When Var(Xi) = σ2 for i = 1, . . . , n,
and Cov(Xi , Xj) = ρ for 1 ≤ i ̸= j ≤ n, then

Var(X1 + . . . + Xn) = nσ2 + n(n − 1)ρ.

23 / 37



Example: Variance of the Binomial Distribution
In L08, we computed the expected value for the Binomial
distribution Bin(n, p) is E(X ) = np.

Today, we find its variance using linear combinations to be

Var(X ) = np(1 − p).

First for the special case n = 1, X ∼ Bin(n = 1, p), X only takes
value 0 and 1 with the PMF below

x 0 1
p(x) 1 − p p

Hence
E(X ) =

∑
x=0,1

xp(x) = 0 · (1 − p) + 1 · p = p ,

E(X 2) =
∑

x=0,1
x2p(x) = 02 · (1 − p) + 12 · p = p

Var(X ) = E(X 2) − (E(X ))2 = p − p2 = p(1 − p)
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For general n, recall a Binomial random variable X ∼ Bin(n, p) is
the number of successes obtained in n independent Bernoulli trials.
For each of the n trials, define

Xi =
{

1 if success in the ith trial
0 if failure in the ith trial

⇒ Xi ∼ Bin(n = 1, p).

Then X = the number of successes obtained in the n trials
= X1 + X2 + . . . + Xn,

The expected value and variance of X are thus

E(X ) = E(X1)︸ ︷︷ ︸
=p

+ · · · + E(Xn)︸ ︷︷ ︸
=p

= np

Var(X ) = Var(X1)︸ ︷︷ ︸
=p(1-p)

+ · · · + Var(Xn)︸ ︷︷ ︸
=p(1-p)

= np(1 − p)

since Xi ’s are indep. and each with mean p and variance p(1 − p)
as Xi ∼ Bin(n = 1, p).
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Example (Sample Mean)
Suppose X1, . . . , Xn are i.i.d. rv’s with mean µ and variance σ2.

▶ i.i.d. = “independent and have an identical distribution”

Consider the sample mean

X = 1
n (X1 + · · · + Xn)

Then

E(X ) = 1
n [E(X1) + . . . + E(Xn)] = 1

n (µ + . . . + µ︸ ︷︷ ︸
n copies

) = µ.

Var(X ) = 1
n2 Var(X1 + X2 + . . . + Xn) since Var(aX ) = a2V (X )

= 1
n2 [Var(X1) + . . . + Var(Xn)] as all Xi ’s are indep.

= 1
n2 (σ2 + . . . + σ2︸ ︷︷ ︸

n copies

) = nσ2

n2 = σ2

n
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Example (Coupon Collector’s Problem, p.127, textbook)
If each box of breakfast cereals contains a coupon,

▶ there are n different types of coupons,
▶ the coupon in any box is equally likely to be any of the n

types,

let N be the number of boxes required to collect all n types of
coupons. Find E(N) and Var(N).

Sol. Let

▶ X1 the number of boxes to get the first coupon (any type).
Clearly X1 = 1.

▶ X2 = the number of additional boxes required to collect a new
type of coupons after collecting first type.

▶ Xi = the number of additional boxes required to collect i types
of coupons after collecting i − 1 types, for i = 1, 2, . . . , n.

Observe that N = X1 + X2 + · · · + Xn
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Coupon Collector’s Problem — Expected Value
What’s the distribution of Xi?

▶ For X2, the chance to get a new type of coupon in the next
box is n − 1

n . So,

X2 ∼ Geometric(p = n − 1
n ).

▶ X3 ∼ Geometric(p = n−2
n )

▶ In general, Xi ∼ Geometric(p = n−i+1
n ), i = 1, 2, . . . , n.

Recall the expected value for Geometric(p) is 1/p. We know

E(N) =
n∑

i=1
E(Xi) =

n∑
i=1

n
n − i + 1

= n
(1

n + 1
n − 1 + 1

n − 2 + · · · + 1
1

)
= n

n∑
r=1

1
r ≈ n log(n).
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Coupon Collector’s Problem — Variance

Recall the variance for Geometric(p) is 1 − p
p2 . We get

Var(N) =
n∑

i=1
Var(Xi) (since X1, · · · , Xn are indep.)

=
n∑

i=1

1 − n−i+1
n

(n − i + 1)2/n2

= n
n∑

i=1

i − 1
(n − i + 1)2

= n
(

0 + 1
(n − 1)2 + 2

(n − 2)2 + 3
(n − 3)2 + · · · + n − 1

12

)
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Correlation
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How Large the Covariance Indicates a Strong Relation?

One can prove the Cauchy Inequality for covariance

[Cov(X , Y )]2 ≤ Var(X ) Var(Y )

Moreover, the covariance reaches its maximum possible magnitude
if and only if X and Y has a perfect linear relation Y = aX + b,
a ̸= 0.

Thus, one can assess the strength of linear relation between X , Y
by comparing Cov(X , Y ) with

√
Var(X ) Var(Y ).

31 / 37



How Large the Covariance Indicates a Strong Relation?

One can prove the Cauchy Inequality for covariance

[Cov(X , Y )]2 ≤ Var(X ) Var(Y )

Moreover, the covariance reaches its maximum possible magnitude
if and only if X and Y has a perfect linear relation Y = aX + b,
a ̸= 0.

Thus, one can assess the strength of linear relation between X , Y
by comparing Cov(X , Y ) with

√
Var(X ) Var(Y ).

31 / 37



Correlation

Correlation = ρXY = Corr(X , Y ) = Cov(X , Y )√
Var(X ) Var(Y )

= σXY
σX σY

.

▶ −1 ≤ ρXY ≤ 1 since Cov(X , Y ) ≤
√

Var(X ) Var(Y )
▶ The closer ρXY is to 1 or to −1, the stronger the linear

relation between X and Y

−1 0 1

Neg. Assoc. Pos. Assoc.

Strong Weak No Assoc Weak Strong

Perfect Perfect

▶ ρXY = 1 or −1 if and only if Y = aX + b and a ̸= 0,
i.e., X and Y has an perfect linear relation
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Covariance Is NOT Scale Invariant but Correlation Is!
Example. Let

▶ X = amount of time studying STAT 244 per week, and
▶ Y = final grade in STAT 244

If X is measured in minutes rather than in hours, Cov(X , Y ) would
be 60 times as large.

The strength of XY relation should be the same no matter X is
measured in minutes or in hours.

Correlation ρXY is scale invariant and has no unit.

Corr(aX + c, bY + d) = Cov(aX + c, bY + d)√
Var(aX + c) Var(bY + d)

= ab Cov(X , Y )√
a2 Var(X )b2 Var(Y )

= (sign of ab) Corr(X , Y )
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Example (Gas Station) — Correlation

Recall in L05, we obtained the marginal PMFs for X and Y :

x 0 1 2
pX (x) 0.16 0.34 0.50 ,

y 0 1 2
pY (y) 0.24 0.38 0.38

E(X 2) = 02 · 0.16 + 12 · 0.34 + 22 · 0.5 = 2.34
Var(X ) = E(X 2) − (E(X ))2 = 2.34 − 1.342 = 0.5444
E(Y 2) = 02 · 0.24 + 12 · 0.38 + 22 · 0.38 = 1.9

Var(Y ) = E(Y 2) − (E(Y ))2 = 1.9 − 1.142 = 0.6004

Corr(X , Y ) = Cov(X , Y )√
Var(X ) Var(Y )

= 0.2724√
0.5444 × 0.6004

≈ 0.476.
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Example (Mixed Nuts) — Correlation
Recall in L05, we calculated the marginal pdf’s for X and for Y :

fX (x) = 12x(1 − x)2, fY (y) = 12y(1 − y)2, for 0 ≤ x , y ≤ 1.

using which we can calculate

E(X 2) =
∫ 1

0
x2fX (x)dx =

∫ 1

0
12x3(1 − x)2dx

=
∫ 1

0
12x3 − 24x4 + 12x5dx = 3x4 − 24x5

5 + 2x6
∣∣∣∣1
0

= 1
5

Var(X ) = E(X 2) − (E(X ))2 = 1
5 − (2

5)2 = 1
25

Similar, one can calculate Var(Y ) = 1/25

Corr(X , Y ) = Cov(X , Y )√
Var(X ) Var(Y )

= −2/75√
(1/25)(1/25)

= −2
3 ≈ −0.667.
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Proof of [Cov(X , Y )]2 ≤ Var(X ) Var(Y )
Since the variance of a random variable is always nonnegative,

0 ≤ Var
( X

σX
+ Y

σY

)
= Var

( X
σX

)
+ Var

( Y
σY

)
+ 2 Cov

( X
σX

,
Y
σY

)
= Var(X )

σ2
X

+ Var(Y )
σ2

Y
+ 2 Cov(X , Y )

σX σY︸ ︷︷ ︸
=ρ

= σ2
X

σ2
X

+ σ2
Y

σ2
Y

+ 2ρ

= 2(1 + ρ), which implies ρ ≥ −1.

Similarly, one can show that

0 ≤ Var
( X

σX
− Y

σY

)
= 2(1 − ρ), which implies ρ ≤ 1.

This proves that −1 ≤ ρ ≤ 1 ⇐⇒ 1 ≥ ρ2 = [Cov(X , Y )]2
Var(X ) Var(Y ) .
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Proof that ρ2 = 1 ⇐⇒ P(Y = aX + b) = 1
From

Var
( X

σX
− Y

σY

)
= 2(1 − ρ)

we see that ρ = 1 ⇐⇒ Var
( X

σX
− Y

σY

)
= 0.

The variance of a random variable W is 0 only if

P(W = c) = 1, for some constant c.

Thus ρ = 1 if and only if

P
( X

σX
− Y

σY
= c

)
= 1, for some constant c.

Similarly, we can show ρ = −1 if and only if

P
( X

σX
+ Y

σY
= c

)
= 1, for some constant c.
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