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4.3 Covariance & Correlation
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Expected Values for Functions of Several R.V.'s
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Expected Values for Functions of Several R.V's

For discrete random variables Xi, ..., X, with joint PMF
p(x1,...,Xn), the expected value for g(Xi,...,X,) is

E(g(Xla‘”u Z gxla"'a p(Xl)"'7Xn)7
provided that -, . [g(x1,.--,xa)lp(x1; ..., Xn) < 0.

For continuous random variables Xi, ..., X, with joint PDF
f(x1,...,Xn), the expected value for g(Xi,..., X,) is

E(g(X1,...,Xn / /g Xiy ooy Xn)F (X1, ..oy xn)dxy ... dXp,

provided that [ --- [|g(x1,...,xn)|[f(x1,...,xn)dx1 ... dxp < c0.
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E(aX + bY) = aE(X) + bE(Y)

If g(X,Y)=aX+ bY for two random variables (discrete or
continuous) X and Y and two constants a and b, we have

Elg(X, Y)] = E(aX + bY) = aE(X) + bE(Y).

Proof. We will prove it for continuous X and Y with joint PDF
f(x,y). The proof for the discrete case is similar.

E(aX + bY) = [[(ax+ by)f(x,y)dxdy, (by definition)

= fj axf(x,y)dxdy + jf byf (x, y)dxdy

Part | Part 1l

4/37



For Part I, we first integrate over y, and then over x.

a/(/xf(x,y)dy) dx
= //fxydydx—a/xfx()

E(X)

Part | = jf axf(x,y)dxdy

For Part Il, we first integrate over x, and then over y.

Part Il = f byf(x,y)dxdy = b/ (/yf(x,y)dx) dy

= b/y/f(x,y)dxdy= b/yfv(y)dy=
—_—— —_——
0 E(Y)

Putting Parts | & Il together, we get

E(aX + bY) = aE(X) + bE(Y).

aE(X)
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Expected Value for Linear Combination of R.V.s

The result E(aX 4 bY) = aE(X) 4+ bE(Y) can be generalized to
linear combinations of several random variables

E(aiXi+axXo+---+anX,) = a1 E(X1) + a2 E(X2) +- - -+ an E(X»),

no matter the rv's are discrete or continuous, independent or not.
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E[g(X)h(Y)] = E[g(X)]E[h(Y)] if X, Y are independent
When X and Y are independent, for any functions g and h,
Elg(X)h(Y)] = E[g(X)] E[A(Y)].

In particular, E(XY) = E(X) E(Y).

Proof. We prove the discrete case. The continuous case is similar.
Using that p(x, y) = px(x)py(y) when X, Y are indep, one has

Elg(X)h(Y)] = Z g(x .Y)
= Z Z g )PY( ) (by independence)
= ng X)Px Zy h(y
—_—
Elg(X)] E[h(Y)]

= Elg(X)] E[A(Y)]

7/37



Covariance
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Covariance

The covariance of X and Y, denoted as Cov(X, Y) or oxy, is
defined as

Cov(X,Y) = oxy = E[(X — pux)(Y — py)],
in which px = E(X), py = E(Y)

» Covariance is a generalization of variance as the variance of a
random variable X is just the covariance of X with itself.

Var(X) = Cov(X, X) = E[(X — ux)?]
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Sign of Covariance Reflects the Direction of (X, Y)
Relation

» Cov(X,Y) > 0 means a positive relation between X, Y
» When X increases, Y tends to increase

» Cov(X,Y) < 0 means a negative relation between X, Y
» When X increases, Y tends to decrease

Sign of (X — pux)(Y — py)

X—py>0 X~y <0
Y-y >0 PDF

X-pc>0

x
|
T
<
A
o

X-pe>0
Y-py <0 Y-py <0

Y-py <0
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Shortcut Formula for Covariance

Cov(X, Y) = E(XY) — E(X)E(Y)

» Similar to the Shortcut Formula for Variance

Var(X) = E(X?) — [E(X)]>.
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Shortcut Formula for Covariance

Cov(X, Y) = E(XY) — E(X)E(Y)

» Similar to the Shortcut Formula for Variance

Var(X) = E(X?) — [E(X)]>.

> If X, Y are independent,
= E(XY) =E(X)E(Y) = Cov(X,Y)=0.
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Shortcut Formula for Covariance

Cov(X, Y) = E(XY) — E(X)E(Y)

» Similar to the Shortcut Formula for Variance

Var(X) = E(X?) — [E(X)]>.

> If X, Y are independent,
= E(XY) =E(X)E(Y) = Cov(X,Y)=0.

» However, Cov(X, Y) = 0 does not imply the independence of
X and Y. In this case, we say X and Y are uncorrelated.
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Proof of the Shortcut Formula for Covariance

Cov(X, Y) = E[(X = ux)(Y — uy)]
=E(XY — uxY — py X + pxpy)
= E(XY) = ux E(Y) —py E(X) +uxpy
——

——
=Hy =KX

= E(XY) — uxpy.
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Example (Gas Station) — E(XY)

Recall the joint PMF for the Gas Station Example in LO5 is

Y (full-service)

pey) [ 01 2
X 0 0.10 0.04 0.02

self- 1 0.08 020 0.06 ]
service 2 0.06 0.14 0.30 ol

Guess Cov(X,Y) > 0or <07

LE
PMF
[ ) [ ) ® o1
@ o
 J L
1 2
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Example (Gas Station) — E(XY)
Recall the joint PMF for the Gas Station Example in LO5 is

Y (full-service)
Wl o 1 2 e @
X 0 [010 004 002 mr
sl 1 008 020 006 "]t ® ¢ o
2 006 014 030 .| o o o

p(x

service

Guess Cov(X,Y) > 0or <07 0 )1( 2

E(XY) =2 xp(x,y)
~0-0-0.10+0-1-0.04+0-2-0.02
+1-0-0.08+1-1-020+1-2-0.06
+2:0-0.06+2-1-0.14+2-2-0.30
~18
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Example (Gas Station) — Covariance

Recall in L05, we obtained the marginal PMFs for X and for Y:

x o 1 2
px(x) | 0.16 0.34 0.50

E(X) = 0:0.16+1:0.34+2.0.5 = 1.34

y o 1 2
py(y) | 024 038 038

By the shortcut formula, the covariance is

E(Y) = 0-0.24+1-0.3842:0.38 = 1.14

Cov(X,Y) = E(XY) — E(X)E(Y)
=1.8—1.34 x 1.14 = 0.2724 > 0.

When one service island is busy, the other also tends to be busy.
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Example (Mixed Nuts)

Recall in L05, the joint PDF for

X = the weight of almonds, and
Y = the weight of cashews

in a can of mixed nuts is

24xy if0<x,y <l x+y<l

0 otherwise

f(X7y) = {

Before we calculate it, guess Cov(X,Y) > 0 or < 07
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Example (Mixed Nuts) — E(XY)

E(XY) = Jf xyf(x,y)dxdy y integrate x
1-y from 0 to 1-y
= // 24x2y2dx dy 7
see below fixy — (1-yy)
> X

0 1y 1
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Example (Mixed Nuts) — E(XY)

E(XY) = ff xyf (x, y)dxdy y integrate x
1,p1l-y from O to 1-y
= // 24x°y2dx dy 17
0J0
_/_/ .
see below fixy — (1-yy)
—> X
0 1-y 1

where

1-y
=8(1-y)’y%

/:ly24x2y2 dx = {8x3y2} -
0

Putting it back to the double integral, we get

Loy 2.2 ! 3.2 2
E(XY):/O/O 24x°y dxdy:/OS(l—y)ydy:E.
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Example (Mixed Nuts) — Covariance

Recall in L05, we calculated the marginal PDF’s for X and for Y:
fx(x) =12x(1 - x)>, fy(y) =12y(1—y)? for 0 < x,y < 1.

using which we can calculate

1 1
E(X) = / xfx(x)dx = / 12x2(1 — x)%dx
0 0
b2 4 4 12 5112
= / 12x% — 24x3 + 12x*dx = {4X3 —6x* + =x°| ==,
0 5 0 5
Likewise, E(Y) = 2/5. The covariance by the shortcut formula is

2 2 2 2
Cov(X, ¥) = E(XY) —E(X)E(Y) = 7z — £ X £ = —=¢

When a can of mixed nuts has more almond, it likely has less
cashew, and vice versa.
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More Properties of Covariance

Cov(X, Y) = E[(X — ECX))(Y — E(V))] = E(XY) — E(X)E(Y)
In the following, a, b are constants. X, Y, Z are random variables
» Symmetry: Cov(X,Y) = Cov(Y,X)
Scaling: Cov(aX, bY) = abCov(X,Y)
Right-linearity: Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, 2)

Left-linearity: Cov(X,Y + Z) = Cov(X, Y) + Cov(X, Z)
Cov(a, X) =0.
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Proofs for Properties of Covariance

The proofs for these propertie are all straightforward from
definition. We just prove the Right-linearity as an example.

Cov(X+VY,Z)=E((X+Y)Z)-E(X+ Y)E(2)

— E(XZ) + E(YZ) — [E(X) + E(Y)] E(Z)

= E(XZ) — E(X)E(Z)+E(YZ) — E(Y)E(2)
Cov(X,2) Cov(Y,Z)

= Cov(X, Z) + Cov(Y, 2)

Note in the proof above, we used the property of expected value
that

E(X + Y) = E(X) + E(Y)
E(XZ + YZ) = E(XZ) + E(YZ)
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Variance of Linear Combinations of Two Random Variables

Recall that expectation has the following linear property:
E(aX + bY) = aE(X) + bE(Y).

We also have shown that Var(aX + b) = a? Var(X).

How about Var(aX + bY)?

Var(aX + bY) = a2 Var(X) + 2ab Cov(X, Y) + b? Var(Y)

» If X is independent of Y, Var(X £ Y) = Var(X) + Var(Y)
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Proof of Var(aX + bY)

Var(aX 4+ bY) = Cov(aX + bY,aX + bY)
= Cov(aX,aX+bY) +  Cov(bY,aX + bY) (right-linearity)

1 1

= Cov(aX, aX)+Cov(aX, bY)+Cov(bY,aX)+Cov(bY, bY) (left-linearity)
= Var(aX) 4+ 2Cov(aX, bY) + Var(bY) (symmetry)
= a?Var(X) 4 2ab Cov(X, Y) + b*Var(Y) (scaling)
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Linear Combinations of Random Variables
For any random variables X1, Xz, ..., X,., a linear combination of
X]_,X2,. . .,Xn is
a1 X1+ axXo + -+ an X,
where aj, as, ..., a, are constant numbers. For example,

» The sum X; + Xo + -+ + X, is a linear combination of
Xi,..., X, with all a;'s = 1.

» The average
X1+ Xo+--+ X,

n
is a linear combination of X1, Xa, ..., X, with all a;'s = 1/n.
» The difference X — Y is a linear combination of X and Y with

31:1,82:—1

22/37



Variance of a Linear Combination of RV's

n n
Var (Z a,-X,-) = Z a? Var(X;) + 2 Z ajaj Cov(X;, X;)
i=1 i=1

i<j

» There is a covariance term for every pair of X; and X
» When Xi,..., X, are independent, then

Var(X1 +Xo+ ...+ X,) = Var(Xq) + Var(Xz) + ...+ Var(X,).

» When Var(X;) =02 fori=1,...,n,
and Cov(Xj, Xj) = p for 1 < # j < n, then

Var(Xy + ...+ X,) = no® + n(n—1)p.
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Example: Variance of the Binomial Distribution

In LO8, we computed the expected value for the Binomial
distribution Bin(n, p) is E(X) = np.

Today, we find its variance using linear combinations to be
Var(X) = np(1 — p).
First for the special case n =1, X ~ Bin(n =1, p), X only takes
value 0 and 1 with the PMF below
x | 0 1
p(x)[1-p p

E(X) =2 o, () =0-(1—p)+1-p=[p],
EX) =) o X°p(x)=0"(1-p)+1%-p=p
Var(X) = E(X?) - (E(X))? = p— p* =|p(1 - p)|
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For general n, recall a Binomial random variable X ~ Bin(n, p) is
the number of successes obtained in n independent Bernoulli trials.

For each of the n trials, define

B 1 if success in the ith trial
" 10 if failure in the ith trial

Then X = the number of successes obtained in the n trials
=X1+Xo+ ...+ X,

The expected value and variance of X are thus

E(X):E(X1)+'~+w:np

———
=p =p
Var(X) = Var(X1)+ - - - + Var(X,) = np(1 — p)
———r ——
=p(1-p) =p(1-p)

since X;'s are indep. and each with mean p and variance p(1 — p)

as X; ~ Bin(n =1, p).

= X;j ~ Bin(n =1, p).
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Example (Sample Mean)
2

Suppose Xi,..., X, are i.i.d. rv's with mean p and variance o“.
» j.id. = "independent and have an identical distribution”

Consider the sample mean

— 1
X = (X4 4+ X)

Then
— 1 1
E(X) = Z[E(X1) +... +E(X)] = =(u+ ...+ p) = p.
n n —m—m——~
- 1 n copies
Var(X) = = Var(X; + Xo + ...+ X,) since Var(aX) = a>V/(X)
1
= ?[Var(Xl) + ...+ Var(X,)] asall Xi's are indep.
1 2 2
:—(02+...+02):ni:0—
n? ——— n? n

n copies
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Example (Coupon Collector’s Problem, p.127, textbook)

If each box of breakfast cereals contains a coupon,

» there are n different types of coupons,
» the coupon in any box is equally likely to be any of the n
types,

let N be the number of boxes required to collect all n types of
coupons. Find E(N) and Var(N).

27/37



Example (Coupon Collector’s Problem, p.127, textbook)

If each box of breakfast cereals contains a coupon,

» there are n different types of coupons,
» the coupon in any box is equally likely to be any of the n

types,

let N be the number of boxes required to collect all n types of
coupons. Find E(N) and Var(N).

Sol. Let

» Xj the number of boxes to get the first coupon (any type).
Clearly X1 = 1.

> X, = the number of additional boxes required to collect a new
type of coupons after collecting first type.

> X; = the number of additional boxes required to collect i types
of coupons after collecting i — 1 types, for i =1,2,...,n.

Observe that N = X7 + Xo +--- + X,
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Coupon Collector’'s Problem — Expected Value
What's the distribution of X;?
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Coupon Collector’'s Problem — Expected Value
What's the distribution of X;?

» For X3, the chance to get a new type of coupon in the next

box is
n
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Coupon Collector’'s Problem — Expected Value
What's the distribution of X;?
» For X3, the chance to get a new type of coupon in the next
-1
. So,

n

.n
box is

n—1
n

Xo ~ Geometric(p =

).

-2
nn )

> X3 ~ Geometric(p =
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Coupon Collector’'s Problem — Expected Value
What's the distribution of X;?

» For X3, the chance to get a new type of coupon in the next

-1
box is . So,
n
—1
Xo ~ Geometric(p = n ).
n
> X3 ~ Geometric(p = "-2)
» In general, X,- ~ Geometric(p — %‘H—)v i = ]_’27 n
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Coupon Collector’'s Problem — Expected Value
What's the distribution of X;?

» For X3, the chance to get a new type of coupon in the next

-1
box is . So,
n
—1
Xp ~ Geometric(p = n ).
n
> X3 ~ Geometric(p = "-2)
» In general, X,- ~ Geometric(p — %‘H—)v i = ]_’27 n

Recall the expected value for Geometric(p) is 1/p. We know

n

E(N) =S E(X) =Y ﬁnﬂ
i=1

i=1
(1+ 1 n 1 n +1>
:n —_— ... —_
n n—1 n-2 1

1
=n E = = nlog(n).
r=1 r
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Coupon Collector’'s Problem — Variance

Recall the variance for Geometric(p) is —2p' We get

n
Var(N) = ZVar(X,-) (since Xy, -+, X, are indep.)

n 1_n—i+1
— n
7;(n—i+1)2/n2

- i—1
n—/+1)

=n
i=1

:( n—1 (n—22)2+(n—33)2+"'+n1_2‘1>
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Correlation
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How Large the Covariance Indicates a Strong Relation?

One can prove the Cauchy Inequality for covariance

[Cov(X, Y)]? < Var(X) Var(Y)
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How Large the Covariance Indicates a Strong Relation?

One can prove the Cauchy Inequality for covariance
[Cov(X, Y)]? < Var(X) Var(Y)

Moreover, the covariance reaches its maximum possible magnitude
if and only if X and Y has a perfect linear relation Y = aX + b,

a#0.

Thus, one can assess the strength of linear relation between X, Y

by comparing Cov(X, Y) with \/Var(X) Var(Y).
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Correlation

COV(X, Y) N oxy

Correlation = pxy = Corr(X,Y) =

» —1 < pxy < 1since Cov(X,Y) < /Var(X) Var(Y)
» The closer pxy is to 1 or to —1, the stronger the linear
relation between X and Y

Neg. Assoc. Pos. Assoc.

Strong Weak No Assoc Weak Strong

[ I ]
-1 0 1
Perfect Perfect

» pxy =1lor —lifand only if Y =aX + b and a # 0,
i.e., X and Y has an perfect linear relation

Var(X)Var(Y) oxoy’
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Covariance Is NOT Scale Invariant but Correlation Is!
Example. Let

> X = amount of time studying STAT 244 per week, and
> Y = final grade in STAT 244

If X is measured in minutes rather than in hours, Cov(X, Y) would
be 60 times as large.

The strength of XY relation should be the same no matter X is
measured in minutes or in hours.

Correlation pxy is scale invariant and has no unit.

Corr(aX + ¢, bY + d) = Cov(aX + ¢, bY + d)
’ ~ /Var(aX + ¢) Var(bY + d)

abCov(X,Y)
\/22 Var(X)b2 Var(Y)
= (sign of ab) Corr(X,Y)
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Example (Gas Station) — Correlation

Recall in LO5, we obtained the marginal PMFs for X and Y:

x | 0o 1 2 y | o 1 2
px(x) [0.16 0.34 050  py(y)|0.24 038 0.38

E(X?)=02-0.16 +12-0.34 +22.0.5 = 2.34
Var(X) = E(X?) — (E(X))? = 2.34 — 1.342 = 0.5444
E(Y?)=0%-024+1%-0.38+22-0.38=19
Var(Y) = E(Y?) — (E(Y))? = 1.9 — 1.14%> = 0.6004
Cov(X,Y 2724
Corr(X,Y) = ov( ) _ 0 ~ 0.476.

VVar(X)Var(Y)  /0.5444 x 0.6004

34/37



Example (Mixed Nuts) — Correlation
Recall in L05, we calculated the marginal pdf's for X and for Y:

fx(x) = 12x(1 — x)?,  fy(y) =12y(1 —y)? for 0 < x,y < L.

using which we can calculate

E(X?) = /1 x2fx(x)dx = /01 12x3(1 — x)%dx

0

1 24x5 |

- / 12x3 — 24x* + 12x5dx = 3x* — S5 4 0x8] = =

0 5 o 5
1 2 1
Var(X) = E(X?) — (E(X))? = = — (2)2 = —
ar(X) = E(X?) — (E(X)) 5(5) G

Similar, one can calculate Var(Y) = 1/25

Cov(X,Y) —2/75

Corr(X,Y) = =

v/Var(X) Var(Y) \/(1/25)(1/25) 0007

ZZ

oo\r\.)
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Proof of [Cov(X, Y)]? < Var(X) Var(Y)

Since the variance of a random variable is always nonnegative,

0 < Var <X+Y)
ox Oy

= Var <X> + Var <Y> +2Cov<X Y>
ox oy oxX Oy

_ Var(X) . Var(Y) 4o Cov(X,Y)

0')2< O'%, oxXOoy
2 2 =p
g g
=X+ X+2
g g
X Y

=2(1+p), which implies p > —1.

Similarly, one can show that

X Y
0 < Var ( — ) =2(1—p), which implies p < 1.
ox Oy
Cov(X, Y)J?
Thi that -1 <p<1 1>p%= [—’.
is proves tha p = Var(X) Var(Y)
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Proof that p? =1 < P(Y =aX+b)=1

From X v
Var (2. D) =201~ p)
ox Oy
X Y
we see that p =1 <— Var<—> =0
ox Oy

The variance of a random variable W is 0 only if
P(W =c¢) =1, for some constant c.

Thus p =1 if and only if
X Y
P ( - — = c) =1, for some constant c.
ox Oy
Similarly, we can show p = —1 if and only if

X Y
P ( 4+ — = c) =1, for some constant c.
ox Oy
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