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Example: A Card Game (from L03)

Consider a card game that you draw ONE card from a well-shuffled
deck of cards. You win

▶ $1 if you draw a heart,
▶ $5 if you draw an ace (including the ace of hearts),
▶ $10 if you draw the king of spades and
▶ $0 for any other card you draw.

The PMF of your reward X is

Outcome x p(x)
Heart (not ace) 1 12/52
Ace 5 4/52
King of spades 10 1/52
All else 0 35/52

⇒ p(x) =


35/52 if x = 0
12/52 if x = 1
4/52 if x = 5
1/52 if x = 10
0 for all other values of x
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Long-Run Average of a Random Variable
If one plays the card game 5200 times (where the cards are drawn with
replacement), then in the 5200 games, he is expected to get
▶ $10 about 100 times (why?)
▶ $5 about 400 times
▶ $1 about 1200 times
▶ $0 about 3500 times

His average reward in the 5200 games is hence about
$10 × 100 + $5 × 400 + $1 × 1200 + $0 × 3500

5200
= $10 × 100

5200 + $5 × 400
5200 + $1 × 1200

5200 + $0 × 3500
5200

= $10 · 1
52 + $5 · 4

52 + $1 · 12
52 + $10 · 35

52 =
∑

x
xp(x) = $42

52 ≈ $0.81

The long run average reward in a game is∑
x

x · p(x),

called the expected value, denoted as E(X ) or µX .
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Definition: Expected Value of a Discrete R.V.

Let X be a discrete random variable with PMF p(x). The
expected value or the expectation or the mean of X , denoted
by E[X ], or µx is a weighted average of the possible values of X ,
where the weights are the probabilities of those values.

µx = E[X ] =
∑

all values of x
x · p(x)

provided that provided that
∑

x |x |p(x) < ∞. If the sum diverges,
the expectation is undefined.
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Expected Value of the Geometric Distribution
Recall the Geometric PMF is

p(k) = (1 − p)x−1p for x = 1, 2, 3, . . . .

To evaluate its expected value

E(X ) =
∑

x
x · p(x) =

∑∞
x=1

x(1 − p)x−1p,

we’ll start from the geometric series∑∞
x=0

r x = 1
1 − r if |r | < 1.

Differentiate both sides of the identity above with respect to r , we

get another identity
∞∑

x=1
xr x−1 = 1

(1 − r)2 , for |r | < 1.

Applying the new identity with r = 1 − p, we get

E(X ) =
∑∞

x=1
x(1 − p)x−1︸ ︷︷ ︸

=1/(1−(1−p))2

p = p
p2 = 1

p .
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Example: Expected Value of Binomial
Recall the Binomial PMF is

p(x) =
(

n
x

)
px (1 − p)n−x , 0 ≤ x ≤ n.

The expected value of the Binomial distribution is

E(X ) =
∑n

x=0
x · p(x) =

∑n
x=0

x
(

n
x

)
px (1 − p)n−x

=
∑n

x=1
x
(

n
x

)
︸ ︷︷ ︸

see below

px (1 − p)n−x

Key step:

x
(

n
x

)
= x n!

x !(n − x)! = n!
(x − 1)!(n − x)!

= n · (n − 1)!
(x − 1)!(n − x)! = n

(
n − 1
x − 1

)
.
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E(X ) =
n∑

x=1
x
(

n
x

)
px (1 − p)n−x

=
n∑

x=1
n
(

n − 1
x − 1

)
px (1 − p)n−x (since x

(
n
x

)
= n

(
n − 1
x − 1

)
)

= np
n∑

x=1

(
n − 1
x − 1

)
px−1(1 − p)n−x

= np
n−1∑
k=0

(
n − 1

k

)
pk(1 − p)n−1−k

︸ ︷︷ ︸
=(p+1−p)n−1=1

(let k = x − 1)

= np
where the last step comes from the Binomial expansion

(a + b)N =
N∑

k=0

(
N
k

)
akbN−k

with a = p, b = 1 − p, and N = n − 1.
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Expected Value of Negative Binomial
Recall the Negative Binomial PMF is

p(x) =
(

x − 1
r − 1

)
pr (1 − p)x−r x = r , r + 1, . . . .

The expected value of the Negative Binomial is

E(X ) =
∞∑

x=r
x
(

x − 1
r − 1

)
︸ ︷︷ ︸

see below

pr (1 − p)x−r

Key step:

x
(

x − 1
r − 1

)
= x · (x − 1)!

(x − r)!(r − 1)! = x !
(x − r)!(r − 1)!

= r · x !
(x − r)!(r − 1)!r = r

(
x
r

)
.
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E(X ) =
∞∑

x=r
x
(

x − 1
r − 1

)
pr (1 − p)x−r

=
∞∑

x=r
r
(

x
r

)
pr (1 − p)x−r (since x

(
x − 1
r − 1

)
= r

(
x
r

)
)

= r
p

∞∑
x=r

(
x
r

)
pr+1(1 − p)x−r

= r
p

∞∑
y=r+1

(
y − 1

r + 1 − 1

)
pr+1(1 − p)y−(r+1)

︸ ︷︷ ︸
=1, since it’s the sum of PMF for NB(r+1,p)

(let y = x + 1)

= r
p .

Intuition: As it takes 1/p trials on average to get the first success,
it’ll take r · (1/p) trials on average to get r successes.

10 / 29



E(X ) =
∞∑

x=r
x
(

x − 1
r − 1

)
pr (1 − p)x−r

=
∞∑

x=r
r
(

x
r

)
pr (1 − p)x−r (since x

(
x − 1
r − 1

)
= r

(
x
r

)
)

= r
p

∞∑
x=r

(
x
r

)
pr+1(1 − p)x−r

= r
p

∞∑
y=r+1

(
y − 1

r + 1 − 1

)
pr+1(1 − p)y−(r+1)

︸ ︷︷ ︸
=1, since it’s the sum of PMF for NB(r+1,p)

(let y = x + 1)

= r
p .

Intuition: As it takes 1/p trials on average to get the first success,
it’ll take r · (1/p) trials on average to get r successes.

10 / 29



An Example Where E(X ) Is Infinite

Game: You toss a fair coin repeatedly.
The longer you can keep getting heads, the more I’ll reward you.
Specifically, if you get n consecutive Heads and then a Tail, I’ll pay
you 2n cents. The PMF of the reward X (in cents) you get is

P(X = 2n) = 1
2n+1 , n = 0, 1, 2, . . . .

The expected value of X is

E(X ) =
∞∑

n=0
2nP(X = 2n) =

∞∑
n=0

2n · 1
2n+1 =

∞∑
n=0

1
2 = ∞.
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Definition: Expected Value of a Continuous R.V.

Let X be a continuous random variable with PDF f (x). The
expected value or the expectation or the mean of X , denoted
by E[X ], or µx is defined to be

µx = E[X ] =
∫ ∞

−∞
x f (x)dx

provided that provided that
∫∞

−∞ |x |f (x)dx < ∞. If the integral
diverges, the expectation is undefined.
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Expected Value — Gamma Distribution
Recall the PDF for Gamma(α, λ) is

f (x) = λα

Γ(α)xα−1e−λx , for x ≥ 0.

The expected value is

E(X ) =
∫ ∞

0
x · λα

Γ(α)xα−1e−λxdx

=
∫ ∞

0

λα

Γ(α)

(y
λ

)α

e−y 1
λ

dy (let y = λx ⇒ dx = 1
λ

dy)

= 1
λΓ(α)

∫ ∞

0
yαe−y dy︸ ︷︷ ︸

=Γ(α+1)

= Γ(α + 1)
λΓ(α) = αΓ(α)

λΓ(α) = α

λ
.

Recall that the Gamma function Γ(t) is defined to be

Γ(t) =
∫ ∞

0
y t−1e−y dy ,

and it has the property Γ(t + 1) = tΓ(t).
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Expected Value — Beta Distribution
Recall the PDF for BETA(α, β) is

f (x) = Γ(α + β)
Γ(α)Γ(β)xα−1(1 − x)β−1, for 0 ≤ x ≤ 1.

Its expected value is

E(X ) =
∫ 1

0
x · Γ(α + β)

Γ(α)Γ(β)xα−1(1−x)β−1dx = Γ(α + β)
Γ(α)Γ(β)

∫ 1

0
xα(1 − x)β−1dx︸ ︷︷ ︸
=Beta(α+1,β)

.

Recall the Beta function Beta(u, v) is defined to be

Beta(u, v) =
∫ 1

0
xu−1(1 − x)v−1dx , and it’s equal to Γ(u)Γ(v)

Γ(u + v) .

The expected value is thus

E(X ) = Γ(α + β)
Γ(α)���Γ(β)

Γ(α + 1)���Γ(β)
Γ(α + β + 1) = Γ(α + β)

Γ(α)
αΓ(α)

(α + β)Γ(α + β) = α

α + β
.
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Expected Value — Normal Distribution
Recall the PDF for X ∼ N(µ, σ2) is

f (x) = 1
σ

√
2π

exp
(

−(x − µ)2

2σ2

)
, −∞ < x < ∞.

Its expected value is

E(X ) =
∫ ∞

−∞
x · 1

σ
√

2π
exp

(
−(x − µ)2

2σ2

)
dx

=
∫ ∞

−∞

µ + σz√
2π

e−z2/2dz (let z = x − µ

σ
⇒ dx = σdz)

= µ

∫ ∞

−∞

1√
2π

e−z2/2dz︸ ︷︷ ︸
=1 since it’s intergal of normal PMF

+σ

∫ ∞

−∞

z√
2π

e−z2/2dz︸ ︷︷ ︸
=0 as ze−z2/2 is an odd function

= µ
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Digression — Odd Function
A function g(x) is called an odd function if it satisfies

g(−x) = −g(x), for all x .

A function h(x) is called an even function if it satisfies

h(−x) = −h(x), for all x .

For an odd function g(x),∫ 0

−∞
g(x)dx letx=−y=

∫ ∞

0
g(−y)dy = −

∫ ∞

0
g(y)dy ,

and hence∫ ∞

−∞
g(x)dx =

∫ 0

−∞
g(x)dx +

∫ ∞

0
g(x)dx

= −
∫ ∞

0
g(x)dx +

∫ ∞

0
g(x)dx = 0.

provided that
∫∞

−∞ |g(x)|dx < ∞.
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If the PDF is an Even function (Symmetric About 0) . . .

If the PDF f (x) of a random variable X is an even function,

f (−x) = f (x) for all x ,

then

▶ g(x) = xf (x) is an odd function since
g(−x) = −xf (−x) = −xf (x) = −g(x)

▶ so E(X ) =
∫∞

−∞ xf (x)dx = 0 provided
∫∞

−∞ |x |f (x)dx < ∞.

e.g., the double exponential distribution with the PDF

f (x) = 1
2e−|x |, −∞ < x < ∞,

has an expected value of 0 as the PDF is even.
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Cauchy Distribution Has No Expected Value

Recall the PDF for Cauchy Distribution is

f (x) = 1
π(1 + x2) , −∞ < x < ∞.

One might think E(X ) =
∫∞

−∞ xf (x)dx = 0 since f (x) is an even
function. In fact, its expected value doesn’t exist since∫ ∞

−∞
|x |f (x)dx =

∫ ∞

−∞

|x |
π(1 + x2)dx = ∞.
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Expected Values of Functions of Random
Variables
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Expected Values of Functions of Random Variables
If X is a random variable with PMF pX (x) or PDF fX (x), and
Y = g(X ), how to find the expected value of Y ?

Method 1: Find the PMF pY (y) or PDF fY (y) for Y and then
calculate the expected value as

E(Y ) =
{∑

y ypY (y) if Y is discrete,∫∞
−∞ yfY (y)dy if Y is continuous.

Method 2: One can calculate E(Y ) directly using the PMF or
PDF of X as

E(Y ) = E(g(X )) =
{∑

x g(x)pX (x) if X is discrete,∫∞
−∞ g(x)fX (x)dx if X is continuous.

▶ Method 2 is easier since one doesn’t have to find the
distribution of Y = g(X ), which is sometimes not easy

▶ Proof of the equivalence of the two methods requires
advanced theory of integration

20 / 29



Expected Values of Functions of Random Variables
If X is a random variable with PMF pX (x) or PDF fX (x), and
Y = g(X ), how to find the expected value of Y ?
Method 1: Find the PMF pY (y) or PDF fY (y) for Y and then
calculate the expected value as

E(Y ) =
{∑

y ypY (y) if Y is discrete,∫∞
−∞ yfY (y)dy if Y is continuous.

Method 2: One can calculate E(Y ) directly using the PMF or
PDF of X as

E(Y ) = E(g(X )) =
{∑

x g(x)pX (x) if X is discrete,∫∞
−∞ g(x)fX (x)dx if X is continuous.

▶ Method 2 is easier since one doesn’t have to find the
distribution of Y = g(X ), which is sometimes not easy

▶ Proof of the equivalence of the two methods requires
advanced theory of integration

20 / 29



Expected Values of Functions of Random Variables
If X is a random variable with PMF pX (x) or PDF fX (x), and
Y = g(X ), how to find the expected value of Y ?
Method 1: Find the PMF pY (y) or PDF fY (y) for Y and then
calculate the expected value as

E(Y ) =
{∑

y ypY (y) if Y is discrete,∫∞
−∞ yfY (y)dy if Y is continuous.

Method 2: One can calculate E(Y ) directly using the PMF or
PDF of X as

E(Y ) = E(g(X )) =
{∑

x g(x)pX (x) if X is discrete,∫∞
−∞ g(x)fX (x)dx if X is continuous.

▶ Method 2 is easier since one doesn’t have to find the
distribution of Y = g(X ), which is sometimes not easy

▶ Proof of the equivalence of the two methods requires
advanced theory of integration

20 / 29



Expected Values of Functions of Random Variables
If X is a random variable with PMF pX (x) or PDF fX (x), and
Y = g(X ), how to find the expected value of Y ?
Method 1: Find the PMF pY (y) or PDF fY (y) for Y and then
calculate the expected value as

E(Y ) =
{∑

y ypY (y) if Y is discrete,∫∞
−∞ yfY (y)dy if Y is continuous.

Method 2: One can calculate E(Y ) directly using the PMF or
PDF of X as

E(Y ) = E(g(X )) =
{∑

x g(x)pX (x) if X is discrete,∫∞
−∞ g(x)fX (x)dx if X is continuous.

▶ Method 2 is easier since one doesn’t have to find the
distribution of Y = g(X ), which is sometimes not easy

▶ Proof of the equivalence of the two methods requires
advanced theory of integration

20 / 29



▶ Proof of the equivalence of the two methods for the discrete
case is given on p.122 of the textbook

▶ For the continuous case, we will only prove the case that g()
is differentiable & strictly increasing. Recall in L04, we
showed the PDF of Y = g(X ) in this case is

fY (y) = fX (g−1(y)) · d
dy g−1(y).

So E(Y ) =
∫ ∞

−∞
yfY (y)dy

=
∫ ∞

−∞
y︸︷︷︸

=g(x)

·fX (g−1(y)︸ ︷︷ ︸
=x

) · d
dy g−1(y)dy︸ ︷︷ ︸

=dx

=
∫ ∞

−∞
g(x) · fX (x)dx

where the last equality comes from a change of variables
y = g(x), which implies

x = g−1(y), and dx = d
dy g−1(y)dy .
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Expected Value of aX + b
If X is a random variable (discrete or continuous), the expected
value for its Linear transformation Y = g(X ) = aX + b is

E(aX + b) = a E(X ) + b.

Proof. We prove it for discrete X with PMF p(x).
The proof for the continuous case is similar.

E(aX + b) =
∑

x
(ax + b)p(x)

=
∑

x
(ax p(x) + bp(x))

=
∑

x
axp(x) +

∑
x

bp(x)

= a
∑

x
xp(x)︸ ︷︷ ︸

=E(X)

+b
∑

x
p(x)︸ ︷︷ ︸

=1

= a E(X ) + b
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Variance & Standard Deviation (SD)
One measure of spread of a random variable (or its probability
distribution) is the variance.

The variance of a random variable X , denoted as Var(X ) or σ2
X is

defined as the average squared distance from the expected value
µX = E(x).

Var(X ) = σ2 = "sigma squared"

= E
[
(X − µX )2

]
=
{∑

x (x − µX )2pX (x) if X is discrete,∫∞
−∞(x − µX )2fX (x)dx if X is continuous.

provided that the variance is < ∞.

Square root of the variance is the standard deviation (SD).

SD(X ) = σ =
√

Var(X )
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Variance — Normal Distribution
The variance for X ∼ N(µ, σ2) is

Var(X ) =
∫ ∞

−∞
(x − µ)2 1

σ
√

2π
exp

(
−(x − µ)2

2σ2

)
dx

= σ2
∫ ∞

−∞

z2
√

2π
e−z2/2dz (let z = x − µ

σ
⇒ dx = σdz)

It remains to find
∫∞

−∞ z2e−z2/2dz . Using integration by part and
observe z2e−z2/2 = z · d

dz (−e−z2/2), we get∫ ∞

−∞
z2e−z2/2dz =

[
−ze−z2/2

]∞
−∞

−
∫ ∞

−∞
(−e−z2/2)dz

= 0 − 0 +
∫ ∞

−∞
e−z2/2dz =

√
2π.

Plugging the above back to Var(X ), we get

Var(X ) = σ2
√

2π

√
2π = σ2.
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Variance of aX + b
For Y = aX + b, we have proved that
E(Y ) = E(aX + b) = aµ + b, where µ = E(X ) and hence

[Y −E(Y )]2 = [(aX+b)−E(aX+b)]2 = [aX+b−(aµ+b)]2 = a2(X−µ)2.

Taking expected value of the above we get

E[Y − E(Y )]2 = E[a2(X − µ)2]
∥ ∥

Var(Y ) a2 E[(X − µ)2]
∥ ∥

Var(aX + b) a2 Var(X )

This shows that

Var(aX + b) = a2 Var(X ).

25 / 29



Variance of aX + b
For Y = aX + b, we have proved that
E(Y ) = E(aX + b) = aµ + b, where µ = E(X ) and hence

[Y −E(Y )]2 = [(aX+b)−E(aX+b)]2 = [aX+b−(aµ+b)]2 = a2(X−µ)2.

Taking expected value of the above we get

E[Y − E(Y )]2 = E[a2(X − µ)2]
∥ ∥

Var(Y ) a2 E[(X − µ)2]
∥ ∥

Var(aX + b) a2 Var(X )

This shows that

Var(aX + b) = a2 Var(X ).

25 / 29



Moment and Central Moment

Given a random variable X with mean µ (discrete or continuous),

▶ its kth moment is defined to be E[X k ], and
▶ its kth centeral moment is defined to be E[(X − µ)k ],

provided that E[|X |k ] < ∞ and E[|X − µ|k ] < ∞.

Note that

▶ the 1st moment E(X ) is the mean = expected value
▶ the 1st central moment E(X − µ) is always 0
▶ the 2nd central moment E[(X − µ)2] is the variance.
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Moments of the Gamma Distribution
Recall the PDF for Gamma(α, λ) is f (x) = λα

Γ(α)xα−1e−λx , for
x ≥ 0. Its kth moment is

E(X k) =
∫ ∞

0
xk · λα

Γ(α)xα−1e−λxdx = λα

Γ(α)

∫ ∞

0
xα+k−1e−λxdx

= λα

Γ(α)

∫ ∞

0

(y
λ

)α+k−1
e−y 1

λ
dy (let y = λx ⇒ dx = 1

λ
dy)

= 1
λkΓ(α)

∫ ∞

0
yα+k−1e−y dy︸ ︷︷ ︸
=Γ(α+k)

= Γ(α + k)
λkΓ(α) .

Using the property Γ(t + 1) = tΓ(t) of the Gamma function, we get

E(X k) = Γ(α + k)
λkΓ(α) =


α/λ if k = 1
α(α + 1)/λ2 if k = 2
α(α + 1)(α + 2)/λk if k = 3∏k

i=1(α + k − 1)/λk in general.
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A Shortcut Formula for Calculating Variance

Var(X ) = E[(X − µ)2] = E(X 2) − µ2

Proof. We’ll prove the discrete case. The continuous case is
similar.

E[(X − µ)2] =
∑

x
(x − µ)2 p(x)

=

∑
x
(x2 − 2µx + µ2) p(x)

=

∑
x

x2 p(x)

︸ ︷︷ ︸

=E(X2)

− 2µ
∑

x
x p(x)

︸ ︷︷ ︸

=µ

+ µ2 ∑
x

p(x)

︸ ︷︷ ︸

=1

=

E(X 2) − 2µ2 + µ2

=

E(X 2) − µ2
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Variance — Gamma Distribution

To find the variance for the Gamma distribution, we’ve obtained
E(X 2) = α(α + 1)/λ2 earlier, and so

Var(X ) = E(X 2) − (E(X ))2 = α(α + 1)
λ2 −

(
α

λ

)2
= α

λ2 .

It takes more work to calculate E(X − µ)2 = E(X − α/λ)2.
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