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The Expected Value of a Random Variable
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Example: A Card Game (from L03)

Consider a card game that you draw ONE card from a well-shuffled
deck of cards. You win

» $1 if you draw a heart,

» $5 if you draw an ace (including the ace of hearts),
» $10 if you draw the king of spades and

» $0 for any other card you draw.

The PMF of your reward X is

Outcome | x | p(x) 35/52 ifx=0

Heart (not ace) | 1 | 12/52 12/52 ifx=1

Ace 51| 4/52 = p(x)=14/52 ifx=5

King of spades | 10 | 1/52 1/52  ifx=10

All else 0 | 35/52 0 for all other values of x
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Long-Run Average of a Random Variable

If one plays the card game 5200 times (where the cards are drawn with
replacement), then in the 5200 games, he is expected to get

> $10 about 100 times (why?)
» $5 about 400 times

» $1 about 1200 times

» $0 about 3500 times

His average reward in the 5200 games is hence about
$10 x 100 4 $5 x 400 + $1 x 1200 + $0 x 3500

5200
100 400 1200 3500
=$10 5200 +95 5200 +31x 5200 +30x 5200
1 4 42
=810 5 +35- — +3$1- —+$1o = pr = $5, ~ $0.81

The long run average reward in a game is

ZXX : p(X)7

called the expected value, denoted as E(X) or ux.
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Definition: Expected Value of a Discrete R.V.

Let X be a discrete random variable with PMF p(x). The
expected value or the expectation or the mean of X, denoted
by E[X], or uyx is a weighted average of the possible values of X,
where the weights are the probabilities of those values.

m=EX]= > x-p(x)

all values of x

provided that provided that >_, |x|p(x) < co. If the sum diverges,
the expectation is undefined.
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Expected Value of the Geometric Distribution
Recall the Geometric PMF is

p(k)=1—-p)Ip forx=1,23,....
To evaluate its expected value
o0 _
EX)=)_ x-p(x)=>_ _ x(1-p)'p,
we'll start from the geometric series
o o 1 .
szor =1 if |r] < 1.

Differentiate both sides of the identity above with respect to r, we

(o)
1
get another identity 2:xr’<_:l = - for |r| < 1.
—r
x=1
Applying the new identity with r =1 — p, we get
SN o (1—pylp= P L
E(X)_ZX:]_X(]' p) p= p2 - p

=1/(1—(1-p))?
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Example: Expected Value of Binomial
Recall the Binomial PMF is

p(x) = <n> pP(L—p)"% 0<x<n

X
The expected value of the Binomial distribution is

E(X)=>"" x w(x)zzj_ox(”)pm—p)”

X

5 o) o

see below

Key step:
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-3 n(i B 1) 51— p)™* (since XC) _ ”C - D)

=(p+1-p)"'=1
= np
where the last step comes from the Binomial expansion
NN
N _ k [, N—k
(a+b)VN=>" <k>a b
k=0
witha=p, b=1—p,and N=n-1.
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Expected Value of Negative Binomial
Recall the Negative Binomial PMF is

-1
p(x) = (i_1>pr(1—p)x_r x=rr+1,....

The expected value of the Negative Binomial is

- x—1 r X—r
EX)=>_x|" _]P1-p
x=r
see below

Key step:

X(X—].)_ x-(x=1)t x!
r—1) (x—r)(r—=1! (x—r)(r—1)

x|
- (x = r)(r—1)r - r(

X

r

).
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_ r
P =
ro= y—1
=— > ( +1 1>pr+1(1—P)y‘(r“’ (let y = x +1)
p y=r+1 r
=1, since it's the sum of PMF for NB(r+1,p)
r
p

Intuition: As it takes 1/p trials on average to get the first success,
it'll take r - (1/p) trials on average to get r successes.
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An Example Where E(X) Is Infinite

Game: You toss a fair coin repeatedly.

The longer you can keep getting heads, the more I'll reward you.
Specifically, if you get n consecutive Heads and then a Tail, I'll pay
you 2" cents. The PMF of the reward X (in cents) you get is

The expected value of X is

n n - n 1 OO]‘
I S P SE R
n=0 n=0
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Definition: Expected Value of a Continuous R.V.

Let X be a continuous random variable with PDF f(x). The
expected value or the expectation or the mean of X, denoted
by E[X], or pux is defined to be

ux = E[X] = /O:Oxf(x)dx

provided that provided that [°C_ [x|f(x)dx < co. If the integral
diverges, the expectation is undefined.
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Expected Value — Gamma Distribution
Recall the PDF for Gamma(a, A) is

)\CM
f(x)= I'(a)x a=le=™ " for x > 0.

The expected value is

E(X):/ X - )\—Xa le=Mdx
o o)

0 )\O‘ @ 1 1
= <y> e’=dy (lety=Mx=dx= Xdy)

A
/ eV dy = Ma+1) aof(a)

M(a) — AM(a) A

=I( a+1)

Recall that the Gamma function '(t) is defined to be

r(e) = [y ey,

and it has the property '(t + 1) = tI(¢t).
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Expected Value — Beta Distribution
Recall the PDF for BETA(«, ) is

Mo+ p)
F(e)r'(B)

Its expected value is

x*H1=x)P"1 for0<x <1

f(x) =

F(a)l(8) ()T (5)
=Beta(a+1,3)
Recall the Beta function Beta(u, v) is defined to be
1
Mu)r
Beta(u, v) = / x“71(1 - x)""tdx, and it's equal to T)r(v)
0 Mu+v)

The expected value is thus

(@B T(a+6+1) T(a) (a+P(a+h) a+h
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Expected Value — Normal Distribution
Recall the PDF for X ~ N(u, 02) is

P<—(X_'u)2>, —00 < X < 00.

f(x) =

o2 202

Its expected value is

[ 1 (x — p)?
E(X)—/_Oox- J\/ﬂexp (—M>dx

X u+oz _p X —
= a e 7 /2dz (|etZ:7M:>dX:UdZ)
—co V2T g
S | 2 © z >
=u / — e 72z +o / — e 72z
—co V2T —o0 V2T
=1 since it's intergal of normal PMF —0 as ze—22/2 is an odd function

= p
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Digression — Odd Function

A function g(x) is called an odd function if it satisfies
g(—x) = —g(x), for all x.

A function h(x) is called an even function if it satisfies
h(—x) = —h(x), for all x.

For an odd function g(x),

/_ OOO g(x)dx = /0 T e(-y)y = - /0 ~ g(y)dy,

and hence
/_O:Og(x)dx:/_Ooog(x)der/Ooog(X)dx
— _/OOO g(x)dx+/ooog(x)dx —0.

provided that [ |g(x)|dx < co.
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If the PDF is an Even function (Symmetric About 0) ...

If the PDF f(x) of a random variable X is an even function,

f(—x) =f(x) forall x,

then
» g(x) = xf(x) is an odd function since
g(—x) = —xf(—x) = —xf(x) = —g(x)
> so E(X) = [70 xf(x)dx = 0 provided [*°_ |x|f(x)dx < ooc.

e.g., the double exponential distribution with the PDF
f(x) = e M, —0o < x < oo,

has an expected value of 0 as the PDF is even.
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Cauchy Distribution Has No Expected Value

Recall the PDF for Cauchy Distribution is

1

f(x) = m,

—00 < X < 0.

One might think E(X) = [ xf(x)dx = 0 since f(x) is an even
function. In fact, its expected value doesn't exist since

[e%s) B 0 |X| B
/_OO \x|f(x)dx—/_OO 71_(1_{_X2)dx—oo.
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Expected Values of Functions of Random
Variables
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Expected Values of Functions of Random Variables
If X is a random variable with PMF px(x) or PDF fx(x), and
Y = g(X), how to find the expected value of Y?
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Expected Values of Functions of Random Variables
If X is a random variable with PMF px(x) or PDF fx(x), and
Y = g(X), how to find the expected value of Y?

Method 1: Find the PMF py(y) or PDF fy(y) for Y and then
calculate the expected value as

E(Y) = Zog ypy(y) ?f Y is discr.ete,
2 yfy(y)dy if Y is continuous.
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Expected Values of Functions of Random Variables

If X is a random variable with PMF px(x) or PDF fx(x), and
Y = g(X), how to find the expected value of Y?

Method 1: Find the PMF py(y) or PDF fy(y) for Y and then
calculate the expected value as
E(Y) = Zog ypy(y) ?f Y is discr.ete,
oo, yfv(y)dy if Y is continuous.

Method 2: One can calculate E(Y) directly using the PMF or
PDF of X as

E(Y) = E(g(X)) = {Zx g(x)px(x) if X is discrete,

20, g(x)fx(x)dx if X is continuous.
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Expected Values of Functions of Random Variables
If X is a random variable with PMF px(x) or PDF fx(x), and
Y = g(X), how to find the expected value of Y?

Method 1: Find the PMF py(y) or PDF fy(y) for Y and then
calculate the expected value as

E(Y) = Zog ypy(y) ?f Y is discr.ete,
2 yfy(y)dy if Y is continuous.

Method 2: One can calculate E(Y) directly using the PMF or
PDF of X as
> 8(x)px(x) if X is discrete,
E(Y) = E(g(X)) = {

20, g(x)fx(x)dx if X is continuous.

> Method 2 is easier since one doesn't have to find the
distribution of Y = g(X), which is sometimes not easy
» Proof of the equivalence of the two methods requires

advanced theory of integration
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» Proof of the equivalence of the two methods for the discrete
case is given on p.122 of the textbook

» For the continuous case, we will only prove the case that g()
is differentiable & strictly increasing. Recall in L04, we
showed the PDF of Y = g(X) in this case is

Fe(y) = fx(g () - jyg-l(y).

>0 E(Y) = / iy (y)dy

—00

[o¢] _ d _
= [ o e ) e )y

J—o0 =~~~ N—— y
=g(x) =x —_—

_ / 7 (%) - Fx(x)dx

— 0
where the last equality comes from a change of variables
y = g(x), which implies

_ d _
x=gy), and dx= &% Y(y)dy.
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Expected Value of aX + b

If X is a random variable (discrete or continuous), the expected
value for its Linear transformation Y = g(X) = aX + b is

E(aX + b) = aE(X) + b.

Proof. We prove it for discrete X with PMF p(x).
The proof for the continuous case is similar.

E(aX + b) = Z(ax—i—b
=Y (axp(x) +bp(><))
:Z axp(x) +Z bp(x)
—az xp(x +bz p(x)

—E(X) =1
=aE(X)+ b
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Variance & Standard Deviation (SD)

One measure of spread of a random variable (or its probability
distribution) is the variance.

The variance of a random variable X, denoted as Var(X) or 0% is

defined as the average squared distance from the expected value
pux = E(x).

Var(X) = 02 = "sigma squared"
= E|(X — px)?]

= 11x)?px(x) if X is discrete,
B oo (x— px)?fx(x)dx if X is continuous.

provided that the variance is < oc.

Square root of the variance is the standard deviation (SD).
SD(X) = o = y/Var(X)
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Variance — Normal Distribution
The variance for X ~ N(u, o?) is

00 x — 1)
Var(X) = / (x — ,u)20127T exp <—(202M)>dx

—0o0

0o 2
—0 V2

It remains to find [0 22e7/24z. Using integration by part and

7

=0 e_22/2dz (let z= Xl ax = odz)
o

observe z2e7%/2 = 7. d%( e 2'/2), we get

o0

/ 2e 724z = [—26_22/2}?) —/ (_6_22/2)(12
—00 ~ . —00
:0—o+/ e #/2dz = Vor.
Plugging the above back to Var(X), we get
Var(X) = I, —
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Variance of aX + b

For Y = aX + b, we have proved that
E(Y) = E(aX + b) = ap + b, where u = E(X) and hence

[Y—E(Y)]? = [(aX+b)—E(aX+b)]? = [aX+b—(au+b)]> = 2*(X—p)>.
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Variance of aX + b

For Y = aX + b, we have proved that
E(Y) = E(aX + b) = ap + b, where u = E(X) and hence

[Y—E(Y)]? = [(aX+b)—E(aX+b)]? = [aX+b—(au+b)]> = 2*(X—p)>.

Taking expected value of the above we get

E[Y —E(Y)? = E[&*(X - u)’]
I I
V) EX ]
Var(aX + b) a®Var(X)

This shows that

Var(aX 4 b) = a° Var(X).
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Moment and Central Moment

Given a random variable X with mean p (discrete or continuous),

> its kth moment is defined to be E[X*], and
> its kth centeral moment is defined to be E[(X — )],

provided that E[|X|¥] < co and E[|X — u|¥] < oo.
Note that

» the 1st moment E(X) is the mean = expected value
» the 1st central moment E(X — p) is always 0
» the 2nd central moment E[(X — 1£)?] is the variance.
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Moments of the Gamma Distribution

Recall the PDF for Gamma(a, A) is f(x) = I_)(‘Z)xo‘*le*)‘x, for
x > 0. Its kth moment is

E(Xk):/ Xk' A Xaflef)\deZ A / on+k71ef)\xdx
0 (o) M(a) Jo

PR 00 y a+k—1 o 1 1
= = —d I = ==
F(a)/o ()\> e ydy (let y = Ax = dx )\dy)

1 o Mo+ k)
_ at+k—1_—y —
)\kr(a)/o ey = oy

=I(a+k)
Using the property ['(t+ 1) = tI'(t) of the Gamma function, we get
a/A if k =1
E(Xk)_r(a+k)_ ala+1)/X2 if k=2
TOAMT(@)  Ja(a+1)(a+2)/Ak ifk=3
[T (a4 k—1)/Ak in general.
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A Shortcut Formula for Calculating Variance

Var(X) = E[(X — u)’] = E(X?) — pi?

Proof. We'll prove the discrete case. The continuous case is
similar.

E[X — 1)’ = 3 (x — 1) p(x)
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A Shortcut Formula for Calculating Variance

Var(X) = E[(X — u)’] = E(X?) — pi?

Proof. We'll prove the discrete case. The continuous case is
similar.

E[X — 1] = Y (x — )2 plx)
= > (= 2ux+ p?) p(x)

| G S —
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A Shortcut Formula for Calculating Variance

Var(X) = E[(X — u)’] = E(X?) — pi?

Proof. We'll prove the discrete case. The continuous case is
similar.

E[X — 1] = Y (x — )2 plx)
= > (= 2ux+ p?) p(x)

=D p(x) —2u D7 xp(x) +p* Y plx)
—_———— ——
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A Shortcut Formula for Calculating Variance

Var(X) = E[(X — u)’] = E(X?) — pi?

Proof. We'll prove the discrete case. The continuous case is
similar.

E[X — 1] = Y (x — )2 plx)
= > (= 2ux+ p?) p(x)

=D p(x) —2u D7 xp(x) +p* Y plx)
—_———— ——

=E(X2)
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A Shortcut Formula for Calculating Variance

Var(X) = E[(X — )] = E(X?)

Proof. We'll prove the discrete case. The continuous case is
similar.

EI((X = )] =Y (x — 1) p(x)
= > (= 2ux+ p?) p(x)
= x*p(x) —2MZ x p(x) + 1 Z p(x

—E(X2) -

28/29



A Shortcut Formula for Calculating Variance

Var(X) = E[(X — )] = E(X?)

Proof. We'll prove the discrete case. The continuous case is
similar.

EI((X = )] =Y (x — 1) p(x)
= > (= 2ux+ p?) p(x)
= x*p(x) —2MZ xp(x) +p2 Y p(x

E/—/
=E(X?) - =1
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A Shortcut Formula for Calculating Variance

Var(X) = E[(X — )] = E(X?)

Proof. We'll prove the discrete case. The continuous case is
similar.

EI((X = )] =Y (x — 1) p(x)
= > (= 2ux+ p?) p(x)
= x*p(x) —2MZ xp(x) +p2 Y p(x
E/—/
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= E(X?) = 24° + pi* =
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A Shortcut Formula for Calculating Variance

Var(X) = E[(X — )] = E(X?)

Proof. We'll prove the discrete case. The continuous case is
similar.

EI((X = )] =Y (x — 1) p(x)
= > (= 2ux+ p?) p(x)
= x*p(x) —2MZ xp(x) +p2 Y p(x

E/—/
=E(X?) - =1

= E(X?) — 24 + pi* = E(X?) — 12
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Variance — Gamma Distribution

To find the variance for the Gamma distribution, we've obtained
E(X?) = a(a + 1)/)? earlier, and so

Var(X) = E(X?) — (E(X))? = 0‘(0‘;1) - (i‘) =2

It takes more work to calculate E(X — u)? = E(X — a /).
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