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Sum of Two Discrete Random Variables

If X and Y are discrete random variables with joint PMF p(x , y),
the PMF for Z = X + Y is

pZ (z) = P(X + Y = z) =
∑

{(x ,y):x+y=z}
p(x , y) =

∑
x

p(x , z − x).
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Example 1: Sum of Independent Binomial R.V.’s
Suppose X ∼ Bin(m, p) and Y ∼ Bin(n, p) are independent. Their
joint PMF is thus

p(x , y) =
(

m
x

)
px (1 − p)m−x ·

(
n
y

)
py (1 − p)n−y

=
(

m
x

)(
n
y

)
px+y (1 − p)m+n−(x+y),

0 ≤ x ≤ m,
0 ≤ y ≤ n.

The PMF for Z = X + Y is thus

pZ (z) =
∑

x
p(x , z − x) =

z∑
x=0

(
m
x

)(
n

z − x

)
pz(1 − p)m+n−z

=
(

m + n
z

)
pz(1 − p)m+n−z ,

where
(m+n

z
)

=
∑z

x=0
(m

x
)( n

z−x
)

is the Vandermonde identity.

This shows X + Y ∼ Bin(m + n, p).
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Sum of Two Continuous Random Variables
Suppose X and Y are continuous random
variables with joint PDF f (x , y). The CDF
for Z = X + Y is the integration of f (x , y)
over the shaded region {(x , y) : x + y ≤ z}

c(−L * 0.6, L) * 0.95

c(
−

L 
* 

0.
6,

 L
) 

* 
0.

95

x

y

(z, 0)

(0, z) x + y = z

FZ (z) = P(Z ≤ z) =
x

{(x ,y):x+y≤z}

f (x , y)dxdy

=
∫ ∞

−∞

∫ z−x

−∞
f (x , y)dydx

=
∫ ∞

−∞

∫ z

−∞
f (x , v − x)dvdx let y = v − x

=
∫ z

−∞

∫ ∞

−∞
f (x , v − x)dxdv

(
swapping order
of integration

)
The PDF is thus

fZ (z) = d
dz FZ (z) =

∫ ∞

−∞
f (x , z − x)dx .
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Example 2: Sum of Two Independent Gamma R.V.’s
Suppose X ∼ Gamma(α, λ) and Y ∼ Gamma(β, λ) are independent.
Their joint PDF is thus

f (x , y) = λα

Γ(α)xα−1e−λx · λβ

Γ(β)yβ−1e−λy

= λα+β

Γ(α)Γ(β)xα−1yβ−1e−λ(x+y), x > 0, y > 0.

Thus, f (x , z − x) = λα+β

Γ(α)Γ(β)xα−1(z − x)β−1e−λz for x > 0 and
z − x > 0, i.e., 0 ≤ x ≤ z . The PDF for Z = X + Y is

fZ (z) =
∫ ∞

−∞
f (x , z − x)dx = λα+βe−λz

Γ(α)Γ(β)

∫ z

x=0
xα−1(z − x)β−1dx .

Letting u = x/z , and note that dx = zdu, we get∫ z

x=0
xα−1(z − x)β−1dx =

∫ 1

0
(uz)α−1(z − uz)β−1zdu

= zα+β−1
∫ 1

0
uα(1 − u)β−1du = zα+β−1 Γ(α)Γ(β)

Γ(α + β) .
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Plugging
∫ z

x=0 xα−1(z − x)β−1dx = zα+β−1 Γ(α)Γ(β)
Γ(α+β) back to fZ (z),

we get

fZ (z) =
∫ ∞

−∞
f (x , z − x)dx = λα+β

Γ(α + β)zα+β−1e−λz , z > 0,

which is exactly the PDF for Gamma(α + β, λ).
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Example 3: Sum of Two Independent Cauchy R.V.’s
Suppose X and Y are indep. Cauchy with the PDF

f (x) = 1
π(1 + x2) , −∞ ≤ x < ∞.

What the distribution of T = X + Y ?

Ans. One could find the PDF of T = X + Y by integrating

fT (t) =
∫ ∞

−∞
f (x)f (t − x)dx =

∫ ∞

−∞

1
π2(1 + x2)(1 + (t − x)2)dx

= 2
π(4 + t2) , −∞ < t < ∞.

The calculation is shown in the next 4 pages.
This implies that Z = (X + Y )/2 = T/2 has identical distribution
as X and Y .

fZ (z) = 2fT (2z) = 1
π(1 + z2) , −∞ < z < ∞.
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The first step is to find constants A, B, C , and D that satisfy
1

(1 + x2)(1 + (t − x)2) = Ax + B
1 + x2 + Cx + D

1 + (t − x)2 ,

where A, B, C , and D may depend on t but not on x .
Multiplying both sides by (1 + x2)(1 + (t − x)2) we get

1 = (Ax + B)(1 + (t − x)2) + (Cx + D)(1 + x2)
= (Ax + B)(1 + t2 − 2tx + x2) + (Cx + D)(1 + x2)
= (A + C)x3 + (−2tA + B + D)x2 + (A(1 + t2) − 2tB + C)x

+ B(1 + t2) + D.

For two polynomials to be equal, their coefficients for x3, x2, x
and 1 must match. We thus get the 4 equations

0 = A + C
0 = −2tA + B + D
0 = A(1 + t2) − 2tB + C
1 = B(1 + t2) + D
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0 = A + C (1)
0 = −2tA + B + D (2)
0 = A(1 + t2) − 2tB + C (3)
1 = B(1 + t2) + D (4)

From (1), we know C = −A.
Plugging in C = −A into (3), we get

0 = At2 − 2Bt = t(At − 2B) ⇒ At = 2B

Plugging in At = 2B into (2), we get

0 = −4B + B + D = −3B + D ⇒ D = 3B.

Plugging in D = 3B into (4), we get 1 = B(1 + t2) + 3B, and thus

B = 1
4 + t2 , D = 3B = 3

4 + t2 , A = 2B
t = 2

t(4 + t2) = −C .
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Putting everything together, we have

1
(1 + x2)(1 + (t − x)2) = Ax + B

1 + x2 + Cx + D
1 + (t − x)2

= 2x + t
t(4 + t2)(1 + x2) + 3t − 2x

t(4 + t2)(1 + (t − x)2)

= 2x + t
t(4 + t2)(1 + x2) + t + 2(t − x)

t(4 + t2)(1 + (t − x)2)

= 1
(4 + t2)

( 1
1 + x2 + 1

1 + (t − x)2

)
+ 1

t(4 + t2)

( 2x
1 + x2 + 2(t − x)

1 + (t − x)2

)
.

The PDF for T = X + Y is thus

fT (t) =
∫ ∞

−∞

1
π2(1 + x2)(1 + (t − x)2)dx = I + II,

(continued next page)
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where

I = 1
π2(4 + t2)

∫ ∞

−∞

1
1 + x2 + 1

1 + (t − x)2 dx

= 1
π2(4 + t2)

[
arctan(x) + arctan(x − t)

]x=∞

x=−∞

= 1
π2(4 + t2)

(
π

2 + π

2 − (−π

2 ) − (−π

2 )
)

= 2
π(4 + t2)

II = 1
π2t(4 + t2)

∫ ∞

−∞

2x
1 + x2 + 2(t − x)

1 + (t − x)2 dx

= 1
π2t(4 + t2)

[
log(1 + x2) − log(1 + (t − x)2)

]x=∞

x=−∞

= 1
π2t(4 + t2) log

[
1 + x2

1 + (t − x)2

]x=∞

x=−∞
= 0

Thus

fT (t) = I + II = 2
π(4 + t2) for − ∞ < t < ∞.
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Summary: Sum of Two Independent R.V.’s
Suppose all X and Y below are independent.

▶ If X ∼ Poisson(λ1) and Y ∼ Poisson(λ2), then
X + Y ∼ Poisson(λ1 + λ2)

▶ If X ∼ Bin(m, p) and Y ∼ Bin(n, p), then
X + Y ∼ Bin(m + n, p)

▶ If X and Y are both ∼ Geometric(p), then
X + Y ∼ NegBin(2, p)

▶ If X ∼ NegBin(m, p) and Y ∼ NegBin(n, p), then
X + Y ∼ NegBin(m + n, p)

▶ If X ∼ EXP(λ) and Y ∼ EXP(λ), then X + Y ∼ Gamma(2, λ)
▶ If X ∼ Gamma(α, λ) and Y ∼ Gamma(β, λ), then

X + Y ∼ Gamma(α + β, λ)
▶ If X ∼ N(µ1, σ2

1) and Y ∼ N(µ2, σ2
2), then

X + Y ∼ N(µ1 + µ2, σ2
1 + σ2

2)
▶ If X and Y are both Cauchy, then (X + Y )/2 is also Cauchy.
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Bivariate Transformation
Suppose X and Y are continuous r.v. with joint PDF fXY (x , y),
They are mapped onto U and V by a 1-to-1 transformation

u = g1(x , y)
v = g2(x , y)

and the transformation can be inverted to obtain
x = h1(u, v)
y = h2(u, v).

The joint PDF fUV (u, v) is given by

fUV (u, v) = fXY (h1(u, v), h2(u, v))
∣∣∣∣∂(x , y)
∂(u, v)

∣∣∣∣ ,
where

∣∣∣∂(x ,y)
∂(u,v)

∣∣∣ is absolute value of the Jacobian of the
transformation, defined as∣∣∣∣∂(x , y)

∂(u, v)

∣∣∣∣ =
∣∣∣∣∣∂x

∂u
∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣∂x
∂u

∂y
∂v − ∂x

∂v
∂y
∂u

∣∣∣∣ .
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To memorize the formula, keep in mind that

fUV (u, v)dudv = fXY (x , y)dxdy ,

so informally

fUV (u, v)dudv = fXY (x , y)
∣∣∣∣∂(x , y)
∂(u, v)

∣∣∣∣︸ ︷︷ ︸dudv

↓
dxdy
dudv
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Example 4 — Gamma Again

Suppose X ∼ Gamma(α, λ) and Y ∼ Gamma(β, λ) are
independent. Find the joint and marginal PDF’s for

U = X + Y and V = X
X + Y .

The inverse transformation is

X = UV
Y = U − X = U − UV = U(1 − V )

The Jacobian is∣∣∣∣∂(x , y)
∂(u, v)

∣∣∣∣ =
∣∣∣∣∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣∣ v u
1 − v −u

∣∣∣∣∣ = | − uv − u(1 − v)| = u
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The joint PDF for (X , Y ) (from Example 2) is

fXY (x , y) = λα+β

Γ(α)Γ(β)xα−1yβ−1e−λ(x+y), x > 0, y > 0.

The joint PDF for (U, V ) is
fUV (u, v) = fXY (uv , u(1 − v)) · u

= λα+β

Γ(α)Γ(β)(uv)α−1(u(1 − v))β−1e−λuu

= λα+β

Γ(α)Γ(β)uα+β−1vα−1(1 − v)β−1e−λu

= λα+β

Γ(α + β)uα+β−1e−λu

︸ ︷︷ ︸
PDF for Gamma(α+β,λ)

· Γ(α + β)
Γ(α)Γ(β)vα−1(1 − v)β−1

︸ ︷︷ ︸
PDF for BETA(α,β)

This shows
▶ U = X + Y ∼ Gamma(α + β, λ)
▶ V = X

X+Y ∼ BETA(α, β)
▶ U and V are independent
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Example 5 — Normal
Suppose X ∼ N(0, 1) and Y ∼ N(0, 1)
are independent. Find the joint and
marginal PDF’s for

R =
√

X 2 + Y 2 and
Θ = tan−1(Y /X )

so that −π < Θ ≤ π.

c(−L, L)
c(

−
L,

 L
)

x

y

(x, y)

ΘR =
x2 + y2

The inverse transformation is

X = R cos Θ, Y = R sin Θ

The Jacobian is∣∣∣∣∂(x , y)
∂(r , θ)

∣∣∣∣ =
∣∣∣∣∣

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣∣ =
∣∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣∣ = r cos2 θ + r sin2 θ = r .
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The joint PDF for (X , Y ) is

fXY (x , y) = 1
2π

e−(x2+y2)/2, −∞ < x , y < ∞.

The joint PDF for (R, Θ) is

fRΘ(r , θ) = fXY (r cos θ, r sin θ) · r

= 1
2π

· re−r2/2,
−π < Θ ≤ π
0 ≤ r < ∞

This shows

▶ Θ is Uniform on (−π, π)
▶ R =

√
X 2 + Y 2 has the PDF fR(r) = re−r2/2 for r ≥ 0

▶ Θ and R are independent
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Example 6 — Quotient of Two Standard Normal
Suppose X ∼ N(0, 1) and Y ∼ N(0, 1) are independent.

a. Find the joint PDF for U = X/Y and V = Y .
b. Find the marginal PDF for U = X/Y .

The inverse transformation is

X = UV , Y = V

The Jacobian is∣∣∣∣∂(x , y)
∂(u, v)

∣∣∣∣ =
∣∣∣∣∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣∣v u
0 1

∣∣∣∣∣ = |v |.

As the joint PDF for (X , Y ) is fXY (x , y) = 1
2π

e−(x2+y2)/2 for
−∞ < x , y < ∞, the joint PDF for (U, V ) is

fUV (u, v) = fXY (uv , v) · |v | = 1
2π

|v |e−v2(1+u2)/2, −∞ < u, v < ∞.
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We can obtain the marginal PDF of U by integrating the joint
PDF over v .

fU(u) =
∫ ∞

−∞
fUV (u, v)dv

=
∫ 0

−∞
fUV (u, v)dv +

∫ ∞

0
fUV (u, v)dv

= 2
∫ ∞

0
fUV (u, v)dv (since fUV (u, v) = fUV (u, −v))

= 1
π

∫ ∞

0
ve−v2(1+u2)/2dv

= 1
π(1 + u2)

∫ ∞

0
ze−z2/2dz (letting v = z√

1+u2
⇒ dv = dz√

1+u2
)

= 1
π(1 + u2) , −∞ < u < ∞.

Observe that U = X/Y has the Cauchy distribution in L04.
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Order Statistics
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i.i.d. Random Sample

Suppose X1, . . . , Xn are independent and identically distributed
("i.i.d."), from a distribution with CDF F

▶ Independence ⇒ FX1,...,Xn(x1, . . . , xn) =
∏n

i=1 F (xi)
▶ If Xi ’s are discrete, then the joint PMF is a product of the

individual PMF

p(x1, x2, . . . , xn) = p(x1)p(x2) . . . p(xn).

▶ If Xi ’s are continuous, then the joint PDF is a product of the
PDF f () for an individual Xi :

f (x1, x2, . . . , xn) = f (x1)f (x2) . . . f (xn).
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Order statistics
The order statistics of a random sample X1, . . . , Xn are the sample
values placed in ascending order. They are denoted by
X(1), . . . , X(n) and they satisfy

X(1) ≤ . . . , ≤ X(n).

In other words, X(1) = min
1≤i≤n

Xi ,

X(2) = second smallest Xi ,

...
X(k) = kth smallest Xi ,

...
X(n) = max

1≤i≤n
Xi

Note: if there are ties, the same value appears multiple times.
e.g., if (X1, X2, X3) = (3, 5, 3), then X(1) = X(2) = 3 and X(3) = 5.
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Why Study Order Statistics?

▶ Extreme observations can be rare but catastrophic.
Good to know their behaviors

▶ Sample median is less sensitive to outliers than the sample
mean
▶ If n = 2m + 1, then X(m+1) is the median

▶ Quartiles and Percentiles are also order statistics
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Distribution of X(1) = Minimum

Suppose X1, . . . , Xn are i.i.d. observations from a distribution with
CDF F .

What is the distribution of X(1)?

FX(1)(x) = P(X(1) ≤ x) = 1 − P(X(1) > x)
= 1 − P(Xi > x for all i = 1, . . . , n)
= 1 − (1 − F (x))n

If the original distribution is continuous with density f = F ′:

fX(1)(x) = d
dx FX(1)(x) = n(1 − F (x))n−1 · d

dx F (x)

= n(1 − F (x))n−1 · f (x).
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Distribution of X(m) = Maximum

Suppose X1, . . . , Xn are i.i.d. observations from a distribution with
CDF F .

The CDF for X(n) is

FX(n)(x) = P(X(n) ≤ x)
= P(Xi ≤ x for all i = 1, . . . , n)
= (F (x))n

If the original distribution is continuous with density f = F ′:

fX(n)(x) = d
dx FX(n)(x) = n(F (x))n−1 · d

dx F (x) = n(F (x))n−1 · f (x).
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Example — Order Statistics for Exponential

Suppose X1, . . . , Xn are i.i.d. Exponential(λ).

The PDF for X(n) is

fX(n)(x) = nF (x)n−1 · f (x) = n(1− e−λx )n−1 ·λe−λx , 0 ≤ x ≤ ∞.

The PDF for X(1) is

fX(1)(x) = n(1 − F (x))n−1 · f (x)

= n
(
1 − (1 − e−λx )

)n−1 · λe−λx

= (nλ)e−(nλ)x , 0 ≤ x ≤ ∞.

Observe that X(1) ∼ Exponential(nλ)
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Joint Distribution of X(1) and X(n)
Suppose X1, . . . , Xn are i.i.d. observations from a distribution with
CDF F

The joint CDF of X(1) and X(n) is

FX(1),X(n)(x , y) = P(X(1) ≤ x , X(n) ≤ y)
= P(X(n) ≤ y) − P(X(1) > x , X(n) ≤ y)
= P(X(n) ≤ y) − P(x < Xi ≤ y for all i = 1, . . . , n)
= F (y)n − (F (y) − F (x))n

If continuous, we can differentiate the joint CDF to obtain the
joint PDF.

fX(1),X(n)(x , y) = ∂2

∂x∂y FX(1),X(n)(x , y)

= n(n − 1)f (x)f (y)(F (y) − F (x))n−2, x < y .
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Example: Order Statistics for Uniform(0,1)

If X1, . . . , Xn are i.i.d. Uniform(0,1),

f (x) = 1, F (x) = x , 0 ≤ x ≤ 1.

The joint PDF for (X(1), X(n)) is

fX(1),X(n)(x , y) = n(n − 1)(y − x)n−2, 0 ≤ x ≤ y ≤ 1.
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PDF for X(k)

Suppose X1, . . . , Xn are i.i.d. observations from a continuous
distribution with CDF F and PDF f .

The density of X(k), the kth-order statistic, is

fk(x) = n!
(k − 1)!(n − k)!(F (x))k−1[1 − F (x)]n−k f (x).

Heuristic Proof. P(x ≤ X(k) ≤ x + dx) is the probability that

▶ k − 1 observations are ≤ x , each occurs w/ prob. F (x)
▶ 1 observation is in [x , x + dx ], which occurs w/ prob. f (x)dx
▶ n − k observations are ≥ x + dx , each occurs w/ prob.

1 − F (x + dx) ≈ 1 − F (x)

There are n!
(k−1)!1!(n−k)! such arrangements,

each occur with prob. (F (x))k−1[1 − F (x)]n−k f (x)dx .
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Example: Order Statistics for Uniform(0,1)

If X1, . . . , Xn are i.i.d. Uniform(0,1),

f (x) = 1, F (x) = x , 0 ≤ x ≤ 1.

The PDF for X(k) is

fk(x) = n!
(k − 1)!(n − k)!xk−1(1 − x)n−k , 0 ≤ x ≤ 1,

which is the PDF for BETA(α = k, β = n − k + 1).
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