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Conditional Distributions of Discrete Random
Variables
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Example 1 — Gas Station (Revisit)

A gas station has both self-service and full-service islands, each
with a single regular unleaded pump with 2 hoses.

X = the # of hoses in use on the self-service island, and
Y = the # of hoses in use on the full-service island

The joint PMF of X and Y :

Y (full-service)
p(x , y) 0 1 2

X 0 0.10 0.04 0.02
self- 1 0.08 0.20 0.06

service 2 0.06 0.14 0.30

What is P(Y = 1 | X = 2)?
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Y Row Sum
p(x , y) 0 1 2 pX (x)

0 0.10 0.04 0.02 0.16
X 1 0.08 0.20 0.06 0.34

2 0.06 0.14 0.30 0.50

By the definition of conditional probability,

P(Y = 1 | X = 2) = P(X = 2, Y = 1)
P(X = 2) = p(2, 1)

pX (2) = 0.14
0.50 = 0.28.

The conditional PMF of Y given X = 2 is

pY |X (y | x = 2) = P(X = 2, Y = y)
P(X = 2) = p(2, y)

pX (2)

y 0 1 2

pY |X (y | x = 2) 0.06
0.50 = 0.12 0.14

0.50 = 0.28 0.30
0.50 = 0.60
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Y
p(x , y) 0 1 2 pX (x)

0 0.10 0.04 0.02 0.16
X 1 0.08 0.20 0.06 0.34

2 0.06 0.14 0.30 0.50

Similarly, the conditional PMF of Y given X = 0 is

pY |X (y | x = 0) = P(X = 0, Y = y)
P(X = 0) = p(0, y)

pX (0)

y 0 1 2
pY |X (y | x = 0) 0.10

0.16 = 0.625 0.04
0.16 = 0.25 0.02

0.16 = 0.125

and the conditional PMF of Y given X = 1 is

pY |X (y | x = 1) = P(X = 1, Y = y)
P(X = 1) = p(1, y)

pX (1)

y 0 1 2
pY |X (y | x = 1) 0.08

0.34 ≈ 0.235 0.20
0.34 ≈ 0.588 0.06

0.34 ≈ 0.176
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Conditional Distributions

Suppose X & Y are two discrete r.v.’s with joint PMF p(x , y) and
marginal PMF’s pX (x) and pY (y) respectively

The conditional PMF for Y given X = x is

pY |X (y | x) = P(X = x , Y = y)
P(X = x) = p(x , y)

pX (x) ,

The conditional PMF for X given Y = y is

pX |Y (x | y) = P(X = x , Y = y)
P(Y = y) = p(x , y)

pY (y) ,
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Y
p(x , y) 0 1 2 pX (x)

0 0.10 0.04 0.02 0.16
X 1 0.08 0.20 0.06 0.34

2 0.06 0.14 0.30 0.50
pY (y) 0.24 0.38 0.38

Y row
p(y | x) 0 1 2 sum

0 0.10
0.16 = 0.625 0.04

0.16 = 0.25 0.02
0.16 = 0.125 1

X 1 0.08
0.34 ≈ 0.235 0.20

0.34 ≈ 0.588 0.06
0.34 ≈ 0.176 1

2 0.06
0.50 = 0.12 0.14

0.50 = 0.28 0.30
0.50 = 0.6 1

pY (y) 0.24 0.38 0.38

▶ Each row is a PMF for Y given some x value
▶ Observed the row sums of pY |X (y | x) are all 1

7 / 18



Y
p(x , y) 0 1 2 pX (x)

0 0.10 0.04 0.02 0.16
X 1 0.08 0.20 0.06 0.34

2 0.06 0.14 0.30 0.50
pY (y) 0.24 0.38 0.38

Y row
p(y | x) 0 1 2 sum

0 0.10
0.16 = 0.625 0.04

0.16 = 0.25 0.02
0.16 = 0.125 1

X 1 0.08
0.34 ≈ 0.235 0.20

0.34 ≈ 0.588 0.06
0.34 ≈ 0.176 1

2 0.06
0.50 = 0.12 0.14

0.50 = 0.28 0.30
0.50 = 0.6 1

pY (y) 0.24 0.38 0.38

▶ Each row is a PMF for Y given some x value
▶ Observed the row sums of pY |X (y | x) are all 1

7 / 18



Y
p(x , y) 0 1 2 pX (x)

0 0.10 0.04 0.02 0.16
X 1 0.08 0.20 0.06 0.34

2 0.06 0.14 0.30 0.50
pY (y) 0.24 0.38 0.38

Y
p(x | y) 0 1 2 pX (x)

0 0.10
0.24 ≈ 0.417 0.04

0.38 ≈ 0.105 0.02
0.38 ≈ 0.053 0.16

X 1 0.08
0.24 ≈ 0.333 0.20

0.38 ≈ 0.526 0.06
0.38 ≈ 0.158 0.34

2 0.06
0.24 = 0.25 0.14

0.38 ≈ 0.368 0.30
0.38 ≈ 0.790 0.50

column sum 1 1 1

▶ Each column is a PMF for X given some y value
▶ Observed the column sums pX |Y (x | y) are all 1
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In summary,

A conditional PMF of Y given X = x is pY |X (y | x) = p(x , y)
pX (x)

which satisfies

0 ≤ pY |X (y | x) ≤ 1 and
∑

y
pY |X (y | x) = 1, for all x .

A conditional PMF of X given Y = y is pX |Y (x | y) = p(x , y)
pY (y)

which satisfies

0 ≤ pX |Y (x | y) ≤ 1 and
∑

x
pX |Y (x | y) = 1, for all y .
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Example 2 — Poisson
For independent r.v.’s X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2),
recall in L05, we show that

T = X1 + X2 ∼ Poisson(λ1 + λ2).

Q: Given T = X1 + X2 = t, what’s the conditional PMF of X1?

P(X1 = x | T = t) = P({X1 = x} ∩ {T = t})
P(T = t)

= P({X1 = x} ∩ {X2 = t − x})
P(T = t)

= e−λ1λx
1/x ! · e−λ2λt−x

2 /(t − x)!
e−(λ1+λ2)(λ1 + λ2)t/t!

=
(

t
x

)(
λ1

λ1 + λ2

)x ( λ2
λ1 + λ2

)t−x
, 0 ≤ x ≤ t.

i.e., given X1 + X2 = t, X1 ∼ Bin(t, λ1
λ1+λ2

).
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Conditional Distributions of Continuous
Random Variables
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Conditional Distributions of Continuous Random Variables

Suppose X & Y are two discrete r.v.’s with joint PDF f (x , y) and
marginal PMF’s fX (x) and fY (y) respectively.

The conditional PDF for Y given X = x is

fX |Y (x | y) = f (x , y)
fY (y)

The conditional PDF for X given Y = y is

fY |X (y | x) = f (x , y)
fX (x)
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Example 3 — Deluxe Mixed Nuts

Recall in Lecture 5, the joint PDF for

X = the weight of almonds, and Y = the weight of cashews

in a can of mixed nuts is

f (x , y) =
{

24xy if 0 ≤ x , y ≤ 1, x + y < 1
0 otherwise

c(−0.25, 1.35)

c(
−

0.
25

, 1
.3

5)

x

y

0 1
0

1 x + y = 1

We calculated in L05 the marginal PDF’s for X and for Y :

fX (x) = 12x(1 − x)2, fY (y) = 12y(1 − y)2, for 0 ≤ x , y ≤ 1.
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Conditional Distributions — Mixed Nuts
The conditional PDF fX |Y (x | y) of X (almond) given Y = y
(cashew) is

c(−0.15, 1.15)

c(
−

0.
45

, 1
.4

)

x

y

1
0

1 (x,1−x)
1−x

given x

fX |Y (x | y) = f (x , y)
fY (y)

= 24xy
12y(1 − y)2

= 2x
(1 − y)2 , for 0 ≤ x ≤ 1 − y .

Similarly, the conditional PDF fY |X (y | x) of Y (cashew) given
X = x (almond) is

fY |X (y | x) = f (x , y)
fX (x) = 2y

(1 − x)2 , for 0≤y ≤ 1−x .

c(−0.75, 1.3)

c(
−

0.
25

, 1
.4

)

x

y

0 1

1

(1−y,y)

1−y

given
 y
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Example 4: Uniform Disk
(X , Y ) is chosen uniformly at random from the
unit disk, {x2 + y2 ≤ 1}. The joint PDF is

f (x , y) =
{ 1

π , x2 + y2 ≤ 1,

0, otherwise

c(−L, L)

c(
−

L,
 L

)

x

y

Marginal PMF of Y

fY (y) =
∫ ∞

x=−∞
f (x , y)dx

=
∫ √

1−y2

x=−
√

1−y2

1
π

dx

= 2
π

√
1 − y2 for − 1 ≤ y ≤ 1

c(−L, L)

c(
−

L,
 L

)

x

y
(y, − 1 − y2) (y, 1 − y2)

given y

The PMF for X is the same fX (x) = 2
π

√
1 − y2 for −1 ≤ y ≤ 1.
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Example 4: Uniform Disk (2)
The Conditional PDF for X given Y = y is

fX |Y (x | y) = f (x , y)
fY (y) =

1
π

2
√

1−y2

π

= 1
2
√

1 − y2

for −
√

1 − y2 ≤ x ≤
√

1 − y2, which is constant in x .

In other words, given Y = y ,

X ∼ Uniform[−
√

1 − y2,
√

1 − y2].

Likewise, given X = x , Y is Uniform on [−
√

1 − x2,
√

1 − x2]

Note that

▶ the marginal PDF of Y (or of X ) is not uniform, but
▶ the conditional PDF of X |Y (or of Y |X ) is uniform.
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Example 5
Recall on p.40 of L05 slides, for X and Y w/ the joint PDF

f (x , y) = 6xy2, for 0 ≤ x , y ≤ 1,

We found the marginal PDF’s of X and of Y to be

fX (x) = 2x , 0 < x < 1, and fY (y) = 3y2, 0 < y < 1.

The conditional PDF of y given X = x is

fY |X (y | x) = fX ,Y (x , y)
fX (x) = 6xy2

2x = 3y2, 0 < y < 1.

which is exactly the marginal PDF of Y .

Recall in L05, we said X and Y are independent since
f (x , y) = 6xy2 = (2x)(3y2) = fX (x)fY (y) for all 0 ≤ x , y ≤ 1 and
f (x , y) = 0 = fX (x)fY (y) elsewhere.
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Conditional = Marginal, when Independent

What is the conditional distribution of Y given X = x if X and Y
are independent?

fY |X (y |X = x) = fX ,Y (x , y)
fX (x) = fX (x)fY (y)

fX (x) = fY (y).

i.e., conditional PDF Y |X is the marginal PDF of Y .

In fact, the following three are equivalent definitions of the
independence of X and Y

▶ f (x , y) = fX (x)fY (y) . . . . . . . . . . (joint = product of marginal)
▶ fY |X (y |X = x) = fY (y) . . (conditional Y |X = marginal of Y )
▶ fX |Y (x |Y = y) = fX (x) . . (conditional X |Y = marginal of X )

All the things above apply to joint/conditional/marginal PMF for
discrete X , Y ., too.
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