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Section 3.5 Conditional Distributions
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Conditional Distributions of Discrete Random
Variables
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Example 1 — Gas Station (Revisit)

A gas station has both self-service and full-service islands, each

with a single regular unleaded pump with 2 hoses.

X = the # of hoses in use on the self-service island, and

Y = the # of hoses in use on the full-service island

The joint PMF of X and Y:

Y (full-service)

p,y)| 0O 1 2

X 0 0.10 0.04 0.02
selff- 1 0.08 0.20 0.06
2 0.06 0.14 0.30

service

Whatis P(Y =1| X =2)?
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Y Row Sum
plx,y)| 0 1 2 px(x)
0 0.10 0.04 0.02 0.16
1 0.08 0.20 0.06 0.34
2 0.06 0.14 0.30 0.50

4/18



Row Sum

Y
p(x,y) | 0 1 2 px(x)
0 [010 004 002] 016
X 1 |008 020 006| 034
2 006 014 030| 050

By the definition of conditional probability,

P(X=2,Y=1) p(2,1) 014
P(X=2)  px(2) 050

P(Y=1|X=2)= 0.28.
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Y Row Sum
p(x,y) | 0 1 2 px(x)
0 0.10 0.04 0.02 0.16
X 1 0.08 0.20 0.06 0.34
2 0.06 0.14 0.30 0.50

By the definition of conditional probability,

P(X=2,Y=1) p(2,1) 0.14

Ply=1|X=2)= = = = 0.28.
( | ) P(X =2) px(2)  0.50
The conditional PMF of Y given X =2 is
P(X=2,Y=y) p2y)
P x=2)= =
G I C)
y ‘ 0 1 2
. 14 :
pyix(y | x =2) ‘ 0.06 =0.12 0—:O.28 0.50 = 0.60
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Y
p(x,y) | 0 1 2 | px(x)
0 0.10 0.04 0.02| 0.16

2 0.06 0.14 030 | 0.50

Similarly, the conditional PMF of Y given X =0 is
P(X=0,Y =y) _ p(0,y)
P(X =0) px(0)

1

PY|X(y | x=0) =

y | 0

[

0
1

N

pyix(y | x=0) | g1g = 0.625 =025 2920125

©
o
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Y
p(x,y) | 0 1 2 | px(x)
0 0.10 0.04 0.02| 0.16

2 0.06 0.14 030 | 0.50

Similarly, the conditional PMF of Y given X =0 is
P(X=0,Y=y) p(0,y)

x=0)= =
PY|X(y | ) P(X = 0) px(0)
y | 0 1 2
pyix(y [x=0) |32 =0625 3% =025 3920125

and the conditional PMF of Y given X =1 is
PIX=1,Y=y) p(ly)

x=1)= =
y | 0 1 2
pyix(y [ x=1)| g3 ~ 0235 20 ~0.588 §52 ~ 0.176
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Conditional Distributions

Suppose X & Y are two discrete r.v.'s with joint PMF p(x, y) and
marginal PMF's px(x) and py(y) respectively

The conditional PMF for Y given X = x is

P(X=x,Y = X
pyix(y | x) = ( P(X = x) 28 ﬁ;(x(;/))’

The conditional PMF for X given Y =y is

_ PX=x,Y=y) p(xy)
pxiy(x|y)= P(Y=y)  py(y)’
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%
px,y)| 0 1 2 |px(x)
0 |010 004 002 016
X 1 |008 020 006 034

py(y) | 0.24 038 0.38
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)| 0 1 2 | px(x)

0 0.10 0.04 0.02 | 0.16
X 1 0.08 0.20 0.06 | 0.34

» Each row is a PMF for Y given some x value
> Observed the row sums of py|x(y | x) are all 1
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p(x,y) | 0 1 px(x)
0 0.10 0.04 0.16
X 1 0.08 0.20 0.34
2 0.06 0.14 0.50
py(y) | 0.24 0.38
Y
p(x | y) 0 1
0 2~ 0417 %~
X 1 098 ~0.333 220 ~0.526
2 e =02 I~
column sum 1 1

» Each column is a PMF for X given some y value
> Observed the column sums px|y(x | y) are all 1
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In summary,

p(x,y)

A conditional PMF of Y given X = x is py|x(y | x) =
px(x)

which satisfies

0<pyix(y [ x) <1 and > pyx(y|x)=1, forall x.
y

p(x,y)
py(y)

A conditional PMF of X given Y =y is px|y(x | y) =

which satisfies

0< pxy(x|y) <1 and > pxy(x|y)=1 forally.
X
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Example 2 — Poisson
For independent r.v.'s X ~ Poisson(A1) and X, ~ Poisson(Az),
recall in LO5, we show that

T = Xi + Xo ~ Poisson(A1 + A2).

Q: Given T = X; + X5 = t, what's the conditional PMF of X;7?
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Example 2 — Poisson
For independent r.v.'s X ~ Poisson(A1) and X, ~ Poisson(Az),
recall in LO5, we show that

T=X1+Xo~ Poisson()\l + )\2).

Q: Given T = X; + X5 = t, what's the conditional PMF of X;7?

_ P{Xi=x}n{T =1t})
B P(T =t)
P({Xl :X}Q{XQ = t—X})
P(T =1t)
e NN /x| e TN /(¢ — x)!
e*(Al+’\2)()\1 + A2)t/t!

t )\1 X )\2 t—x
= < x <t
<X><)\1+)\2> ()\1+)\2> Osxst

i.e., given X1 + Xo = t, X; ~ Bin(t, ﬁ)

P(X,=x|T=t)
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Conditional Distributions of Continuous
Random Variables
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Conditional Distributions of Continuous Random Variables

Suppose X & Y are two discrete r.v.'s with joint PDF f(x,y) and
marginal PMF's fx(x) and fy(y) respectively.

The conditional PDF for Y given X = x is

f(x,y)
fy(y)

The conditional PDF for X given Y =y is

fxiy(x | y) =

fyix(y | x) =
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Example 3 — Deluxe Mixed Nuts

Recall in Lecture 5, the joint PDF for
X = the weight of almonds, and Y = the weight of cashews

in a can of mixed nuts is

f( 24xy if0<x,y<l x4+y<l
X,y) =
Y 0 otherwise

We calculated in LO5 the marginal PDF's for X and for Y:

fx(x) = 12x(1 = x)?, Ff(y) =12y(1 —y)? for 0 < x,y < L.
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Conditional Distributions — Mixed Nuts

The conditional PDF fx|y(x | y) of X (almond) given Y =y
(cashew) is

fxiy(x |y) =

given x
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Conditional Distributions — Mixed Nuts
The conditional PDF fx|y(x | y) of X (almond) given Y =y

(cashew) is
f(x,y) A
f, =
X|Y(X | ¥) fr(y) 1_i X,1-X)
B 24xy
12y(1 - y)? X

given x
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Conditional Distributions — Mixed Nuts
The conditional PDF fx|y(x | y) of X (almond) given Y =y

(cashew) is
y
f(x,y)
fxy (x =
X|Y( | ¥) fr(y) O X,1-X)
B 24xy
12y(1 - y)? X
= 2x for0<x<1l-—y. given x

(1-y)?
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Conditional Distributions — Mixed Nuts
The conditional PDF fx|y(x | y) of X (almond) given Y =y

(cashew) is
f(x.y) 1
fx|Y(X ly) = v (y) - X,1-X)
B 24xy
- 12y(1—y)? y
2x
= , for0<x<1-—y. given x
(1-y)?
Similarly, the conditional PDF fyx(y | x) of Y (cashew) given
X = x (almond) is y
17
f(X y) 2y given ~
f = = for 0<y < 1—x \(1-)
yix(y [ %) (%) (1—x) or 0<y < l-—xy : )
0 1‘—y ::.
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Example 4: Uniform Disk

(X, Y) is chosen uniformly at random from the
unit disk, {x? + y? < 1}. The joint PDF is

x?+y? <1,

otherwise

1
f(X,y)Z{g’
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Example 4: Uniform Disk

(X, Y) is chosen uniformly at random from the
unit disk, {x? + y? < 1}. The joint PDF is

T Xy <l

f(X,y) = {ﬂ-’

0, otherwise

Marginal PMF of Y y

[e.e]
fr) = [ Flxy)ax
V1-y2 1
—dx
= IR T
2

=—y/1—y2 for —1<y<1
T

The PMF for X is the same fx(x) = %\/1 —y2for -1<y<1.
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Example 4: Uniform Disk (2)
The Conditional PDF for X given Y =y is
1

2¢/1—y2
for —/1 — y2 < x < /1 — y2, which is constant in x.

In other words, given Y =y,

By () = L)

1
— s

v(y)  2/1-y?
s

X ~ Uniform[—\/l —y2, \/1 —y?].

Likewise, given X = x, Y is Uniform on [—v/1 — x2,V/1 — x2]
Note that

» the marginal PDF of Y (or of X) is not uniform, but
» the conditional PDF of X|Y (or of Y|X) is uniform.
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Example 5
Recall on p.40 of LO5 slides, for X and Y w/ the joint PDF
f(x,y)= 6xy2, for0<x,y <1,
We found the marginal PDF’s of X and of Y to be
fx(x) =2x, 0<x <1, and fy(y)=3y? 0<y<1.
The conditional PDF of y given X = x is

fx.y(x,y 6xy
fyix(y | x) = fx((X) ) _ o 3y, 0<y<1.

which is exactly the marginal PDF of Y.

Recall in L05, we said X and Y are independent since
f(X’y) = 6Xy2 = (2X)(3y2) = fX(X)fY(y) for all 0 S X,y S 1 and
f(x,y) =0 = fx(x)fy(y) elsewhere.
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Conditional = Marginal, when Independent

What is the conditional distribution of Y given X = x if X and Y
are independent?

fX,Y(Xa.y) _ fX(X)fY(y) - f ( )
fx (x) fx (%) Y

i.e., conditional PDF Y |X is the marginal PDF of Y.

fyix(y|X = x) =
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Conditional = Marginal, when Independent

What is the conditional distribution of Y given X = x if X and Y
are independent?

fyix(y|X = x) = fx};((i’)y) = fx(;)(()(iy)(y ) fv(y).

i.e., conditional PDF Y |X is the marginal PDF of Y.

In fact, the following three are equivalent definitions of the
independence of X and Y

> f(x,y)=fx(xX)fy(y) .......... (joint = product of marginal)
> fyix(y|X =x) = fy(y) ..(conditional Y|[X = marginal of Y)
> fxy(x|Y = y) = fx(x) ..(conditional X|Y = marginal of X)
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Conditional = Marginal, when Independent

What is the conditional distribution of Y given X = x if X and Y
are independent?

fxy(x,y)  &x()fv(y)
) AK(x) Fr(y)-

i.e., conditional PDF Y |X is the marginal PDF of Y.

fyix(y|X = x) =

In fact, the following three are equivalent definitions of the
independence of X and Y

> f(x,y)=fx(xX)fy(y) .......... (joint = product of marginal)
> fyix(y|X =x) = fy(y) ..(conditional Y|[X = marginal of Y)
> fxy(x|Y = y) = fx(x) ..(conditional X|Y = marginal of X)

All the things above apply to joint/conditional/marginal PMF for
discrete X, Y., too.
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