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Continuous Random Variables
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Continuous Random Variables

A random variable X is said to have a continuous distribution if
there exists a non-negative function f such that

P(a < X ≤ b) =
∫ b

a
f (x) dx , for all − ∞ ≤ a < b ≤ ∞.

x

cu
rv

x

f(x)

a b

Here f is called the probability density function (PDF), the density
curve, or the density of X .
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Conditions of PDF

A PDF f (x) can be of any imaginable shape but must satisfy the
following:

▶ It must be nonnegative

f (x) ≥ 0 for all x

▶ The total area under the PDF must be 1∫ ∞

−∞
f (x) dx = P(−∞ < X ≤ ∞) = 1
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Which of the 3 functions below is a valid probability density
function (PDF)?

A B C

−2 0 2 −2 0 2 −2 0 2
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

x

de
ns

ity
?
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PDF is NOT a Probability

Suppose f is the PDF of X . If f is continuous at a point x , then
for small δ

P
(

x − δ

2 < X ≤ x + δ

2

)
=
∫ x+δ/2

x−δ/2
f (u) du = δf (x).

▶ Is the PDF f of a random variable always ≤ 1?

No, the PDF f (x) itself is not a probability.
It’s the area underneath f (x) that represents the probability.
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P(X = x) = 0 If X Is Continuous

For any continuous random variable X

P(X = x) =
∫ x

x
f (u)du = 0

▶ What percentage of men are 6-feet tall exactly?
Those that are 6.00001 or 5.99999 feet tall don’t count.

▶ It doesn’t matter whether the end point(s) of an interval is
included when calculating the probability of X falling the
interval if X is continuous

P(a < X < b) = P(a ≤ X ≤ b) = P(a ≤ X < b) = P(a < X ≤ b)
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A PDF f (x) May Not be Continuous

The PDF f (x) of a continuous random variable might not be
continuous.

See the example on the next page.
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Example 1
Consider a continuous random variable X with the PDF

f (x) =


cx if 0 ≤ x ≤ 1
c if 1 ≤ x ≤ 2
0 elsewhere

x

f(
x)

0 1 2
0

c

▶ Note f (x) is not continuous at x = 2

▶ What is the value of c?

Total Area = Red + Green

= 1 · c
2 + 1 · c = 3

2c = 1

⇒ c = 2
3 x

f(
x)

0 1 2
0

c
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Example 1 (Cont’d)

What is P(X ≤ 1.5)?

P(X ≤ 1.5) =

0 1 21.5
0

2/3

= Red + Green

= 1 · (2/3)
2 + (0.5)2

3 = 2
3
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Example 2
Suppose the lifetime T (in days)
of a certain type of batteries has
the PDF shown on the right.

f (t) = ce−2t t > 0

x
0 1 2

c

▶ Find the value of c so that f (t) is a legitimate PDF.

∫ ∞

−∞
f (t)dt =

∫ ∞

0
ce−2tdt = −c

2e−2t
∣∣∣∣t=∞

t=0
= c

2 − 0 = 1

So c = 2!
▶ Observe that f (0) = 2e0 = 2 > 1 !?!

Can a PDF f (x) exceed 1?
Yes, the PDF f (x) itself is not a probability.
It’s the area underneath f (x) that represents the probability.
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Example 2 (Cont’d)
What is the chance that the battery lasts 0.5 to 1 day?

P(0.5 < T < 1) =
∫ 1

0.5
f (t)dt =

∫ 1

0.5
2e−2tdt

= −e−2t
∣∣∣∣t=1

t=0.5
= e−1 − e−2.

t
0 1 20.5

2

What is the chance that the battery last over one day, P(T > 1)?

P(T > 1) =
∫ ∞

1
f (x)dx =

∫ ∞

1
2e−2xdx

= −e−2x
∣∣∣∣t=∞

t=1
= e−2.

t
0 1 2

2
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Cumulative Distribution Function (CDF)
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Cumulative Distribution Function (CDF)
For any random variable X , its cumulative distribution function
(CDF) is the function defined by

F (x) = FX (x) = P(X ≤ x).

One can get the CDF of a random variable by integrating its PDF:

F (x) =
∫ x

−∞
f (u) du

PDF

x

cu
rv

x

f(x)

a
0.0

0.1

0.2
F(a) = shaded area

CDF

x

C
D

F
cu

rv

x

F(x)

a
0

1

F(a)
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Example 1 (CDF)

f (x) =


2x/3 if 0 ≤ x ≤ 1
2/3 if 1 ≤ x ≤ 2
0 elsewhere

x

f(
x)

0 1 2
0

2/3

Let’s find the CDF F (x) for the density in Example 1 piece by
piece.

▶ For x < 0, F (x) =
∫ x

−∞ f (u)du = 0 since f (u) = 0 for u < 0.
▶ For 0 ≤ x < 1,

F (x) = P(X ≤ x) =
∫ x

−∞
f (u)du

= shaded area of

= x · (2x/3)
2 = x2

3

f(
x)

0 1 2x
0

2x/3

2/3
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For 1 ≤ x ≤ 2,

f(
x)

0 1 2x
0

2/3F (x) = P(X ≤ x) =
∫ x

−∞
f (u)du

= shaded area of

= Red + Green

= 1 · (2/3)
2 + 2

3 · (x − 1) = 1
3 + 2

3(x − 1)

For x > 2, F (x) =
∫ x

−∞ f (u)du = 1 since the entire area is
included.

To sum up, the CDF is

F (x) =


0 if x < 0
1
3x2 if 0 ≤ x ≤ 1
1
3 + 2

3(x − 1) if 1 ≤ x ≤ 2
1 if x > 2

x

C
D

F
 F

(x
)

0 1 2
0

1/3

1
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Example 2 (CDF)
Recall the PDF for the lifetime T
(in days) of a certain type of bat-
teries is f (t) = 2e−2t , t > 0

f (t) = 2e−2t t > 0

x
0 1 2

2

The CDF F (t) is

F (t) =
{

0 if t < 0∫ t
−∞ f (x)dx =

∫ t
0 2e−2udu = −e−2u∣∣t

0 = 1 − e−2t for t ≥ 0

t

C
D

F
  F

(t
)

0 1 2 3
0

1
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Obtaining the PDF from the CDF
The PDF can be obtained from the CDF by differentiation.

f (x) = d
dx F (x).

Example 1

F (x) =


0 if x < 0
1
3 x2 if 0 ≤ x ≤ 1
1
3 + 2

3 (x − 1) if 1 ≤ x ≤ 2
1 if x > 2

⇒ d
dx F (x) =


0 if x < 0
2
3 x if 0 ≤ x ≤ 1
2
3 if 1 ≤ x ≤ 2
0 if x > 2

Observe d
dx F (x) is exactly the PDF f (x).

Example 2. For the CDF of the battery life distribution

F (t) =
{

0 if t < 0
1 − e−2t if t ≥ 0

⇒ d
dx F (x) =

{
0 if t < 0
2e−2t if t ≥ 0
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Computing Probabilities Using the CDF
Let X be a continuous rv with PDF f (x) and CDF F (x). Then for
any number a,

P(X > a) = 1 − F (a)
and for any two numbers a and b with a < b,

P(a ≤ X ≤ b) = F (b) − F (a)

x

cu
rv

f(x)

ba b a

= −

Recall in Example 2, we computed P(0.5 < T < 1) by integrating
the PDF. We can also compute it using the CDF, F (t) = 1 − e−2t ,
t > 0.

P(0.5 < T < 1) = F (1)−F (0.5) = (1−e−2)−(1−e−1) = e−1−e−2

which agrees with our prior calculation.
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CDFs for Discrete Random Variables
CDFs F (x) = P(X ≤ x) are also defined for discrete random
variables. Below are the PMF and CDF for
Binomial(n = 10, p = 0.3).

0.
00

0.
15

x

P
M

F
 p

(x
)

−2 0 2 4 6 8 10

p(x) = P(X = x)

=
(

n
x

)
px (1 − p)n−x

for x = 1, 2, . . . , n

−2 0 2 4 6 8 10

0.
0

0.
4

0.
8

x

C
D

F
 F

(x
)

F (x) = P(X ≤ x)

=
∑

i :0≤i≤x

(
n
i

)
pi(1 − p)n−i

for − ∞ < x < ∞
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CDFs for Geometric Random Variables
Below are the pmf and CDF for Geometric(p = 0.3):

0.
00

0.
20

x

P
M

F
 p

(x
)

−5 0 5 10 15

p(x) = P(X = x)
= (1 − p)x−1p
for x = 1, 2, . . .

−5 0 5 10 15

0.
0

0.
4

0.
8

x

C
D

F
 F

(x
) F (x) =

{
0 if x < 1
1 − (1 − p)⌊x⌋ if x > 1

where ⌊x⌋ is the integer part of x .

Note that the CDF of a discrete r.v. is a discontinuous but
right-continuous step function.
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Summary: Properties of CDFs

▶ The CDF F (x) = P(X ≤ x) is a probability, and hence it
must be between 0 and 1.

0 ≤ F (x) ≤ 1

▶ CDFs are always non-decreasing. For a < b

F (b) − F (a) = P(X ≤ b) − P(X ≤ a) = P(a < X ≤ b) ≥ 0

▶ The CDF of a continuous r.v. must be continuous. As δ → 0

F (x + δ) − F (x) =
∫ x+δ

x
f (u)du → 0

▶ The CDF of a discrete r.v. is discontinuous but
right-continuous step function.
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Common Continuous Distributions
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Uniform Distribution
A random variable is said to be uniform over the interval [a, b] if
its density is constant over the interval [a, b],

f (x) =
{ 1

b−a if a ≤ x ≤ b,

0 otherwise.

x

f(
x)

a b
0

1

b − a

Its CDF is thus

F (x) =


0 if x < a,

x
b−a if a ≤ x ≤ b,

1 if x > b.

x

F
(x

)

a b
0

1
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Exponential Distribution
A random variable X is said have
an exponential distribution with
rate λ, denoted as X ∼ Exp(λ),
if its PDF is

f (x) = λe−λx , for x ≥ 0.

x
0 1 2

λ

Its CDF is

F (x) =
∫ x

t=∞
f (t) dt =

∫ x

t=0
λe−λt dt =

[
−e−λt

]x
t=0

= 1 − e−λx .

t

C
D

F
  F

(t
)

0 1 2 3
0

1
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The Exponential Distribution is Memoryless

P(X > t + s | X > t) = P(X > s)

Proof.

P(X > t + s | X > t) = P(X > t + s ∩ X > t)
P(X > t)

= P(X > t + s)
P(X > t)

= e−λ(t+s)

e−λt = e−λs = P(X > s)

Implication. If the lifetime of batteries has an Exponential
distribution, then a used battery is as good as a new one, as long
as it’s not dead!
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Gamma Distribution

Gamma(α, λ) distribution with the “shape” parameter α > 0 and
“rate” parameter λ > 0 has the PDF:

f (x) = λα

Γ(α)xα−1e−λx for x ≥ 0

where
Γ(α) =

∫ ∞

z=0
zα−1e−zdz

is a normalizing constant (so that density integrates to 1).
Note:Γ(k) = (k − 1)! for integers k ≥ 1.

▶ Gamma(α = 1, λ) = Exp(λ)
▶ Note: the textbook calls λ the “scale” but this does not agree

with standard terminology.
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Normal Distributions

A random variable X is said to have a normal distribution (aka.
Gaussian distributions) with a mean µ, and an standard deviation
(SD) σ denoted as

X ∼ N(µ, σ2)

if its PDF is
f (x ; µ, σ) = 1

σ
√

2π
e− 1

2( x−µ
σ )2

.

µ

σ

µ

σ

The density curve is bell-shaped and symmetric about its mean µ.

A normal distribution with µ = 0, and σ = 1 is called the standard
normal distribution, denoted as N(0, 1)
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PDF & CDF of the Standard Normal Distribution
The PDF & CDF of the standard normal N(0, 1) are respectively

PDF: ϕ(z) = 1√
2π

e−z2/2, −∞ < z < ∞,

CDF: Φ(z) =
∫ z

−∞

1√
2π

e− u2
2 du, −∞ < z < ∞.

0.
0

0.
2

0.
4

−4 −2 0 2 4z
z

φ(
z)

Shaded
Area

=            Φ(z)

−4 −2 0 2 4
0.

0
0.

5
1.

0
z

Φ
(z

)

▶ The CDF Φ(z) has no close-form formula
▶ The normal probability table (on p.A7 in Textbook) gives the

values of the CDF Φ(z) for different z ’s
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Beta Distributions

The random variable U is said to have a beta distribution with
parameters α, β if its density is given by

f (u) = Γ(α + β)
Γ(α)Γ(β)uα−1(1 − u)β−1, for 0 ≤ u ≤ 1,

denoted as U ∼ BETA(α, β).

▶ BETA(α = 1, β = 1) is Uniform(0, 1)
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Functions/Transformation of a Random Variable
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Functions/Transformation of a Random Variable
If X is a continuous random variable with density fX (x), and
Y = g(X ), what is the distribution of Y ?
The general method is to find the CDF for Y = g(X ) first.
Ex1. Suppose X ∼ Exp(λ). Find the PDF for Y = eX .

Sol. First, recall the CDF for Exp(λ) is

FX (x) = 1 − e−λx for x > 0, and 0 otherwise.

We can find the CDF for Y = eX as follows.

FY (y) = P(Y ≤ y) = P(eX ≤ y) = P(X ≤ log(y))
= FX (log(y)) = 1 − e−λ log(y) = 1 − y−λ for y ≥ 1.

We then differentiate the CDF to obtain the PDF.

fY (y) = d
dy FY (y) = λy−λ−1, for y ≥ 1,

and fY (y) = 0 otherwise.
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Ex2. Suppose X ∼ N(0, 1). Find the PDF for Y = X 2.

Sol. We can find the CDF for Y = X 2 as follows.

FY (y) = P(Y ≤ y) = P(X 2 ≤ y) = P(−√y ≤ X ≤ √y)
= Φ(√y) − Φ(−√y)

We then differentiate the CDF to obtain the PDF using the chain
rule. Recall the CDF for N(0,1) is Φ(x), and
Φ′(x) = ϕ(x) = 1√

2π
e−x2/2.

fY (y) = d
dy FY (y) = ϕ(√y) d

dy
√y − ϕ(−√y) d

dy (−√y)

= 1
2√y (ϕ(√y) + ϕ(−√y))

= 1
√y ϕ(√y) since ϕ(x) = ϕ(−x)

= 1√
2πy e−y/2 for y ≥ 0.
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Linear Transformation of Random Variables
Suppose X is a continuous r.v. with the PDF fX (x). The PDF for
Y = aX + b is

fY = 1
|a|

fX
(y − b

a

)
, if a ̸= 0.

Proof. Denote the CDF for X as FX (x). The CDF for Y = aX + b
would be

FY (y) = P(aX + b︸ ︷︷ ︸
=Y

≤ y) =

P
(
X ≤ y−b

a

)
= FX

(
y−b

a

)
if a > 0

P
(
X ≥ y−b

a

)
= 1 − FX

(
y−b

a

)
if a < 0.

We then differentiate the CDF to obtain the PDF using the chain
rule. Recall F ′

X (x) = fX (x).

fY (y) = d
dy FY (y) =

fX
(

y−b
a

)
d
dy

(
y−b

a

)
= 1

a fX
(

y−b
a

)
if a > 0

−fX
(

y−b
a

)
d
dy

(
y−b

a

)
= 1

−a fX
(

y−b
a

)
if a < 0
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Linear Transformation of Random Variables — Examples
▶ If Z ∼ N(0, 1), the PDF for X = σZ + µ with σ > 0 is

fX (x) = 1
σ

ϕ

(x − µ

σ

)
= 1

σ
√

2π
exp

[
−1

2

(x − µ

σ

)2
]

.

▶ If X ∼ N(µ, σ2) and Y = aX + b with a ̸= 0,

1
|a|

fX
(y − b

a

)
= 1

|a|σ
√

2π
exp

[
−1

2

(y − b − aµ

aσ

)2]
.

Thus Y ∼ N(aµ + b, a2σ2).
▶ If X ∼ Exp(λ) and Y = aX for a > 0, then their PDFs are

fX (x) = λe−λx , for x ≥ 0,

fY (y) = 1
a fX

(y
a

)
= λ

a e−λx/a, for x ≥ 0.

Thus, Y ∼ Exp(λ/a).
▶ If X ∼ Gamma(α, λ) and Y = aX for a > 0,

then Y ∼ Gamma(α, λ/a) (HW)
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Differentiable & Strictly Monotone Transformations
Suppose fX is the PDF of X and g() is differentiable & strictly
monotone. Then Y = g(X ) is a continuous r.v. with PDF

fY (y) = fX (g−1(y)) ·
∣∣∣∣ d
dy g−1(y)

∣∣∣∣ .

Proof. The CDF of Y is

FY (y) = P(Y ≤ y) = P(g(X ) ≤ y)

=
{

P(X ≤ g−1(y)) = FX (g−1(y)) if g is increasing
P(X ≥ g−1(y)) = 1 − FX (g−1(y)) if g is decreasing

We then differentiate the CDF to obtain the PDF using the chain
rule.

fY (y) = d
dy FY (y) =


fX (g−1(y)) d

dy g−1(y) if g is increasing

−fX (g−1(y)) d
dy g−1(y) if g is decreasing
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Example (Random Laser Beams)
A laser device shoots laser beams at a random
angle Θ uniform on (−π/2, π/2) to a wall that
is 1 unit away from the device. Find the PDF
for the location Y = tan(Θ) where the laser
beam points to on the wall.

laser
device

la
se

r b
ea

m

Θ
distance to wall =1

0

Y
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Example (Random Laser Beams)
The PDF for Θ ∼ Uniform(−π/2, π/2) is

fΘ(θ) = 1
π

, for − π

2 < θ <
π

2 .

For Y = g(Θ) = tan(Θ), g−1(y) = arctan(y),
its derivative is

d
dy arctan(y) = 1

1 + y2 .

The PDF for Y = g(Θ) = tan(Θ) is

fY (y) = fX (g−1(y))
∣∣∣∣ d
dy g−1(y)

∣∣∣∣ = 1
π

1
1 + y2 ,

for −∞ < y < ∞.

The distribution with the PDF above has a
name called the Cauchy distribution.
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distance to wall =1

0

Y
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Caution
Watch out that the formula fY (y) = fX (g−1(y))

∣∣∣ d
dy g−1(y)

∣∣∣ only
works for strictly monotone transformation.

For other cases, like g(x) = |x | or g(x) = x2, use the CDF
method.

Ex2 Revisit. For Y = X 2 where X ∼ N(0, 1), g(x) = x2,
g−1(y) = √y , d

dy g−1(y) = 1
2√y . Applying the formula

fY (y) = fX (g−1(y))
∣∣∣ d

dy g−1(y)
∣∣∣, we’ll obtain the incorrect PDF

fY (y) = ϕ(√y) 1
2√y = 1

2
√

2πy e−y/2 for y ≥ 0,

rather than the correct PDF

fY (y) = ϕ(√y) 1
√y = 1√

2πy e−y/2 for y ≥ 0.
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Transforming to Uniform
Suppose X is a continuous r.v. with CDF F , where

▶ F is strictly increasing on some interval I,
▶ F = 0 to the left of I, and F = 1 to the right of I.
▶ I may be a bounded interval or an unbounded interval such as

the whole real line.

then F −1(x) is then well defined for x ∈ I.

Let Y = F (X ). What is the distribution of Y ?

FY (y) = P(Y ≤ y) = P(F (X ) ≤ y)
= P(X ≤ F −1(y))
= F (F −1(y))
= y , for 0 < y < 1.

This means that Y ∼ Uniform(0, 1) (since its CDF is the Uniform
CDF)
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Example

Recall the CDF For X ∼ Exp(λ) is

F (x) = 1 − e−λx , x > 0.

Then 1 − exp(−λX ) ∼ Uniform(0,1), which also implies

exp(−λX ) ∼ Uniform(0, 1)

since U and 1 − U have identical distribution if U ∼ Uniform(0, 1).
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How to Generate a Random Variable with a Given CDF
from Uniform?

Let F be the CDF for some continuous distribution satisfying the
conditions below

▶ F is strictly increasing on some interval I,
▶ F = 0 to the left of I, and F = 1 to the right of I.
▶ I may be a bounded interval or an unbounded interval such as

the whole real line.

and let U ∼ Uniform(0, 1).
What is the distribution of X = F −1(U)?

P(X ≤ x) = P(F −1(U) ≤ x) = P(U ≤ F (x)) = F (x)

where the last equality holds since U is Uniform[0, 1].

This means that X has CDF equal to F .
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