STAT 24400 Lecture 4 Continuous Random Variables (Section 2.2) Functions of a Random Variable (Section 2.3)

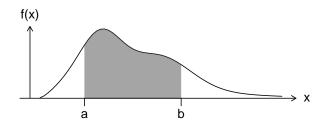
Yibi Huang Department of Statistics University of Chicago

Continuous Random Variables

Continuous Random Variables

A random variable X is said to have a *continuous distribution* if there exists a non-negative function f such that

$$P(a < X \le b) = \int_a^b f(x) dx$$
, for all $-\infty \le a < b \le \infty$.



Here f is called the probability density function (PDF), the density curve, or the density of X.

Conditions of PDF

A PDF f(x) can be of any imaginable shape but must satisfy the following:

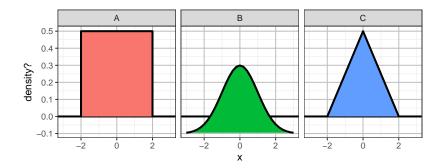
► It must be *nonnegative*

 $f(x) \ge 0$ for all x

The total area under the PDF must be 1

$$\int_{-\infty}^{\infty} f(x) \, dx = \mathrm{P}(-\infty < X \le \infty) = 1$$

Which of the 3 functions below is a valid probability density function (PDF)?



PDF is NOT a Probability

Suppose f is the PDF of X. If f is continuous at a point x, then for small δ

$$P\left(x-\frac{\delta}{2} < X \leq x+\frac{\delta}{2}\right) = \int_{x-\delta/2}^{x+\delta/2} f(u) \, du = \delta f(x).$$

▶ Is the PDF f of a random variable always ≤ 1 ?

PDF is NOT a Probability

Suppose f is the PDF of X. If f is continuous at a point x, then for small δ

$$P\left(x-\frac{\delta}{2} < X \leq x+\frac{\delta}{2}\right) = \int_{x-\delta/2}^{x+\delta/2} f(u) \, du = \delta f(x).$$

▶ Is the PDF f of a random variable always ≤ 1?
 No, the PDF f(x) itself is not a probability.
 It's the area underneath f(x) that represents the probability.

P(X = x) = 0 If X Is Continuous

For any continuous random variable X

$$P(X = x) = \int_{x}^{x} f(u) du = 0$$

P(X = x) = 0 If X Is Continuous

For any continuous random variable X

$$P(X = x) = \int_{x}^{x} f(u) du = 0$$

What percentage of men are 6-feet tall exactly? Those that are 6.00001 or 5.99999 feet tall don't count. P(X = x) = 0 If X Is Continuous

For any continuous random variable X

$$P(X = x) = \int_{x}^{x} f(u) du = 0$$

- What percentage of men are 6-feet tall exactly? Those that are 6.00001 or 5.99999 feet tall don't count.
- It doesn't matter whether the end point(s) of an interval is included when calculating the probability of X falling the interval if X is continuous

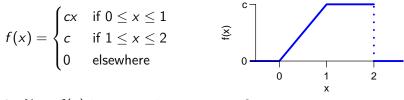
$$P(a < X < b) = P(a \le X \le b) = P(a \le X < b) = P(a < X \le b)$$

A PDF f(x) May Not be Continuous

The PDF f(x) of a continuous random variable might not be continuous.

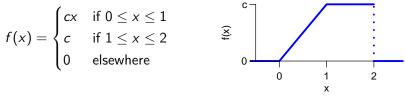
See the example on the next page.

Consider a continuous random variable X with the PDF



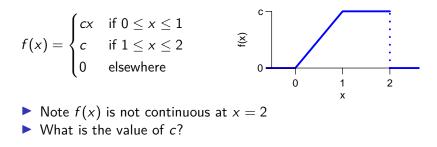
Note f(x) is not continuous at x = 2

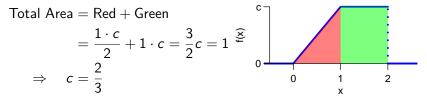
Consider a continuous random variable X with the PDF



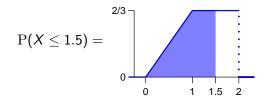
Note f(x) is not continuous at x = 2
What is the value of c?

Consider a continuous random variable X with the PDF

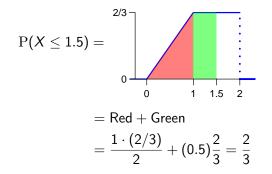




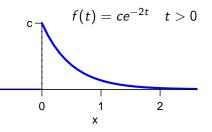
What is $P(X \le 1.5)$?



What is $P(X \le 1.5)$?

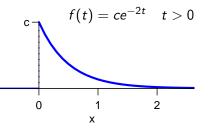


Suppose the lifetime T (in days) of a certain type of batteries has the PDF shown on the right.



Find the value of c so that f(t) is a legitimate PDF.

Suppose the lifetime T (in days) of a certain type of batteries has the PDF shown on the right.

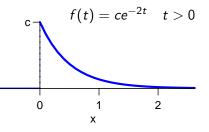


Find the value of c so that f(t) is a legitimate PDF.

$$\int_{-\infty}^{\infty} f(t)dt = \int_{0}^{\infty} ce^{-2t}dt = -\frac{c}{2}e^{-2t}\Big|_{t=0}^{t=\infty} = \frac{c}{2} - 0 = 1$$

So *c* = 2!

Suppose the lifetime T (in days) of a certain type of batteries has the PDF shown on the right.



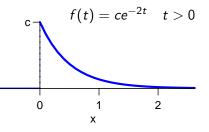
Find the value of c so that f(t) is a legitimate PDF.

$$\int_{-\infty}^{\infty} f(t)dt = \int_{0}^{\infty} c e^{-2t} dt = -\frac{c}{2} e^{-2t} \Big|_{t=0}^{t=\infty} = \frac{c}{2} - 0 = 1$$

So *c* = 2!

Observe that f(0) = 2e⁰ = 2 > 1 !?! Can a PDF f(x) exceed 1?

Suppose the lifetime T (in days) of a certain type of batteries has the PDF shown on the right.



Find the value of c so that f(t) is a legitimate PDF.

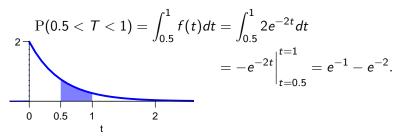
$$\int_{-\infty}^{\infty} f(t)dt = \int_{0}^{\infty} ce^{-2t}dt = \left. -\frac{c}{2}e^{-2t} \right|_{t=0}^{t=\infty} = \frac{c}{2} - 0 = 1$$

So *c* = 2!

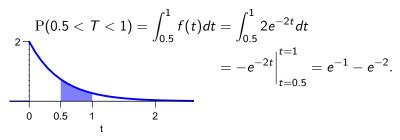
 Observe that f(0) = 2e⁰ = 2 > 1 !?! Can a PDF f(x) exceed 1? Yes, the PDF f(x) itself is not a probability. It's the area underneath f(x) that represents the probability.

What is the chance that the battery lasts 0.5 to 1 day?

What is the chance that the battery lasts 0.5 to 1 day?

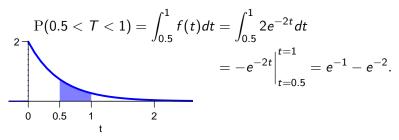


What is the chance that the battery lasts 0.5 to 1 day?

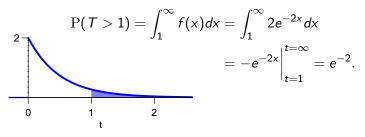


What is the chance that the battery last over one day, P(T > 1)?

What is the chance that the battery lasts 0.5 to 1 day?



What is the chance that the battery last over one day, P(T > 1)?



Cumulative Distribution Function (CDF)

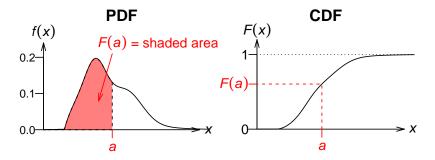
Cumulative Distribution Function (CDF)

For any random variable X, its *cumulative distribution function* (*CDF*) is the function defined by

$$F(x) = F_X(x) = P(X \le x).$$

One can get the CDF of a random variable by integrating its PDF:

$$F(x) = \int_{-\infty}^{x} f(u) \, du$$



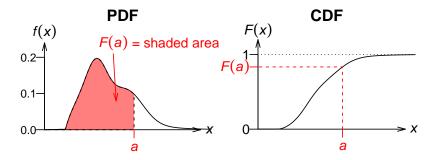
Cumulative Distribution Function (CDF)

For any random variable X, its *cumulative distribution function* (*CDF*) is the function defined by

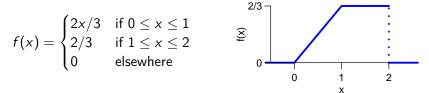
$$F(x) = F_X(x) = P(X \le x).$$

One can get the CDF of a random variable by integrating its PDF:

$$F(x) = \int_{-\infty}^{x} f(u) \, du$$



Example 1 (CDF)



Let's find the CDF F(x) for the density in Example 1 piece by piece.

For
$$x < 0$$
, $F(x) = \int_{-\infty}^{x} f(u) du = 0$ since $f(u) = 0$ for $u < 0$.
For $0 \le x < 1$,

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du$$

$$= \text{shaded area of } \underbrace{\underbrace{2^{1/3}}_{2x/3}}_{0 \qquad 0 \qquad x \ 1 \qquad 2}$$

For
$$1 \le x \le 2$$
,

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du$$

$$= \text{shaded area of}$$

$$= \text{Red} + \text{Green}$$

$$= \frac{1 \cdot (2/3)}{2} + \frac{2}{3} \cdot (x-1) = \frac{1}{3} + \frac{2}{3}(x-1)$$
For $x > 2$, $F(x) = \int_{-\infty}^{x} f(u) du = 1$ since the entire area is

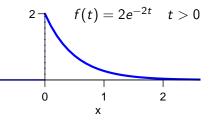
included.

To sum up, the CDF is

$$F(x) = \begin{cases} 0 & \text{if } x < 0 & 1 \\ \frac{1}{3}x^2 & \text{if } 0 \le x \le 1 & \frac{1}{2} \\ \frac{1}{3} + \frac{2}{3}(x-1) & \text{if } 1 \le x \le 2 & \frac{1}{2} \\ 1 & \text{if } x > 2 & 0 & 1/3 \\ 1 & \text{if } x > 2 & 0 & \frac{1}{2} \\ \end{cases}$$

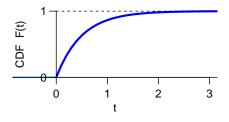
Example 2 (CDF)

Recall the PDF for the lifetime T (in days) of a certain type of batteries is $f(t) = 2e^{-2t}$, t > 0



The CDF F(t) is

$$F(t) = \begin{cases} 0 & \text{if } t < 0\\ \int_{-\infty}^{t} f(x) dx = \int_{0}^{t} 2e^{-2u} du = -e^{-2u} \Big|_{0}^{t} = 1 - e^{-2t} & \text{for } t \ge 0 \end{cases}$$



Obtaining the PDF from the CDF

The PDF can be obtained from the CDF by differentiation.

$$f(x)=\frac{d}{dx}F(x).$$

Example 1

$$F(x) = \begin{cases} 0 & \text{if } x < 0\\ \frac{1}{3}x^2 & \text{if } 0 \le x \le 1\\ \frac{1}{3} + \frac{2}{3}(x-1) & \text{if } 1 \le x \le 2\\ 1 & \text{if } x > 2 \end{cases} \Rightarrow \frac{d}{dx}F(x) = \begin{cases} 0 & \text{if } x < 0\\ \frac{2}{3}x & \text{if } 0 \le x \le 1\\ \frac{2}{3} & \text{if } 1 \le x \le 2\\ 0 & \text{if } x > 2 \end{cases}$$

Observe $\frac{d}{dx}F(x)$ is exactly the PDF f(x).

Example 2. For the CDF of the battery life distribution

$$F(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1 - e^{-2t} & \text{if } t \ge 0 \end{cases} \Rightarrow \frac{d}{dx}F(x) = \begin{cases} 0 & \text{if } t < 0 \\ 2e^{-2t} & \text{if } t \ge 0 \end{cases}$$

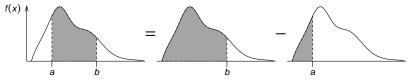
Computing Probabilities Using the CDF

Let X be a continuous rv with PDF f(x) and CDF F(x). Then for any number a,

$$P(X > a) = 1 - F(a)$$

and for any two numbers a and b with a < b,

$$P(a \leq X \leq b) = F(b) - F(a)$$



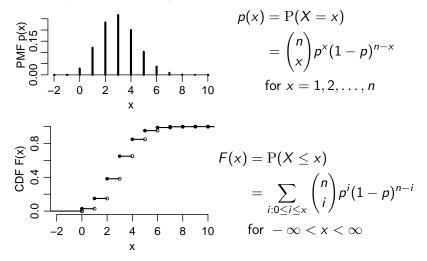
Recall in **Example 2**, we computed P(0.5 < T < 1) by integrating the PDF. We can also compute it using the CDF, $F(t) = 1 - e^{-2t}$, t > 0.

$$P(0.5 < T < 1) = F(1) - F(0.5) = (1 - e^{-2}) - (1 - e^{-1}) = e^{-1} - e^{-2}$$

which agrees with our prior calculation.

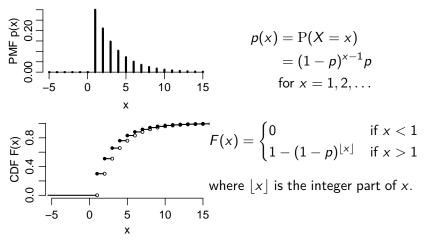
CDFs for Discrete Random Variables

CDFs $F(x) = P(X \le x)$ are also defined for discrete random variables. Below are the PMF and CDF for Binomial(n = 10, p = 0.3).



CDFs for Geometric Random Variables

Below are the pmf and CDF for Geometric(p = 0.3):



Note that the CDF of a discrete r.v. is a discontinuous but right-continuous step function.

Summary: Properties of CDFs

► The CDF F(x) = P(X ≤ x) is a probability, and hence it must be between 0 and 1.

$$0 \leq F(x) \leq 1$$

CDFs are always non-decreasing. For a < b</p>

$$F(b) - F(a) = P(X \le b) - P(X \le a) = P(a < X \le b) \ge 0$$

▶ The CDF of a continuous r.v. must be continuous. As $\delta \rightarrow 0$

$$F(x+\delta)-F(x)=\int_{x}^{x+\delta}f(u)du
ightarrow 0$$

The CDF of a discrete r.v. is discontinuous but right-continuous step function.

Common Continuous Distributions

Uniform Distribution

A random variable is said to be *uniform* over the interval [a, b] if its density is constant over the interval [a, b],

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b, \\ 0 & \text{otherwise.} \end{cases} \begin{bmatrix} 1 \\ b-a \\ g \\ 0 \end{bmatrix}$$

Its CDF is thus

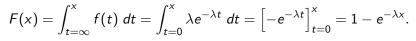
$$F(x) = \begin{cases} 0 & \text{if } x < a, \\ \frac{x}{b-a} & \text{if } a \le x \le b, \\ 1 & \text{if } x > b. \\ \end{cases} \quad 0 \qquad a \qquad b \qquad x \qquad b$$

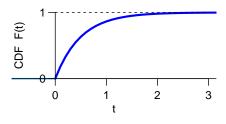
Exponential Distribution

A random variable X is said have an *exponential distribution* with *rate* λ , denoted as $X \sim \text{Exp}(\lambda)$, if its PDF is

$$f(x) = \lambda e^{-\lambda x}$$
, for $x \ge 0$.

Its CDF is





2

The Exponential Distribution is Memoryless

$$P(X > t + s \mid X > t) = P(X > s)$$

Proof.

$$P(X > t + s \mid X > t) = \frac{P(X > t + s \cap X > t)}{P(X > t)}$$
$$= \frac{P(X > t + s)}{P(X > t)}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda t}} = e^{-\lambda s} = P(X > s)$$

Implication. If the lifetime of batteries has an Exponential distribution, then a used battery is as good as a new one, as long as it's not dead!

Gamma Distribution

Gamma(α, λ) distribution with the "shape" parameter $\alpha > 0$ and "rate" parameter $\lambda > 0$ has the PDF:

$$f(x) = rac{\lambda^{lpha}}{\mathsf{\Gamma}(lpha)} x^{lpha - 1} e^{-\lambda x} ext{ for } x \geq 0$$

Gamma Distribution

Gamma(α, λ) distribution with the "shape" parameter $\alpha > 0$ and "rate" parameter $\lambda > 0$ has the PDF:

$$f(x) = rac{\lambda^{lpha}}{\Gamma(lpha)} x^{lpha - 1} e^{-\lambda x}$$
 for $x \ge 0$

where

$$\Gamma(\alpha) = \int_{z=0}^{\infty} z^{\alpha-1} e^{-z} dz$$

is a normalizing constant (so that density integrates to 1). Note: $\Gamma(k) = (k - 1)!$ for integers $k \ge 1$.

Gamma Distribution

Gamma(α, λ) distribution with the "shape" parameter $\alpha > 0$ and "rate" parameter $\lambda > 0$ has the PDF:

$$f(x) = rac{\lambda^{lpha}}{\Gamma(lpha)} x^{lpha - 1} e^{-\lambda x}$$
 for $x \ge 0$

where

$$\Gamma(\alpha) = \int_{z=0}^{\infty} z^{\alpha-1} e^{-z} dz$$

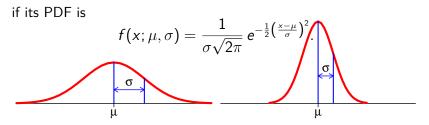
is a normalizing constant (so that density integrates to 1). Note: $\Gamma(k) = (k - 1)!$ for integers $k \ge 1$.

- Gamma $(\alpha = 1, \lambda) = \mathsf{Exp}(\lambda)$
- Note: the textbook calls λ the "scale" but this does not agree with standard terminology.

Normal Distributions

A random variable X is said to have a normal distribution (aka. Gaussian distributions) with a mean μ , and an standard deviation (SD) σ denoted as

$${\sf X} \sim {\sf N}(\mu,\,\sigma^2)$$



The density curve is **bell-shaped** and **symmetric** about its mean μ .

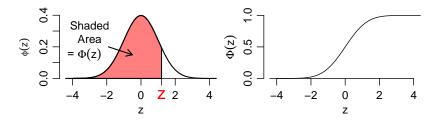
A normal distribution with $\mu = 0$, and $\sigma = 1$ is called the standard normal distribution, denoted as N(0, 1)

PDF & CDF of the Standard Normal Distribution

The PDF & CDF of the standard normal N(0,1) are respectively

PDF:
$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}, \quad -\infty < z < \infty,$$

CDF: $\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du, \quad -\infty < z < \infty.$



- The CDF $\Phi(z)$ has no close-form formula
- The normal probability table (on p.A7 in Textbook) gives the values of the CDF Φ(z) for different z's

The random variable U is said to have a beta distribution with parameters $\alpha,\ \beta$ if its density is given by

$$f(u) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} u^{\alpha - 1} (1 - u)^{\beta - 1}, \quad \text{for } 0 \le u \le 1,$$

denoted as $U \sim \text{BETA}(\alpha, \beta)$.

• BETA(
$$\alpha = 1, \beta = 1$$
) is Uniform(0, 1)

Functions/Transformation of a Random Variable

Functions/Transformation of a Random Variable

- If X is a continuous random variable with density $f_X(x)$, and Y = g(X), what is the distribution of Y?
- The general method is to find the CDF for Y = g(X) first.
- **Ex1.** Suppose $X \sim \text{Exp}(\lambda)$. Find the PDF for $Y = e^{X}$.

Functions/Transformation of a Random Variable

- If X is a continuous random variable with density $f_X(x)$, and Y = g(X), what is the distribution of Y?
- The general method is to find the CDF for Y = g(X) first.
- **Ex1.** Suppose $X \sim \text{Exp}(\lambda)$. Find the PDF for $Y = e^X$.

Sol. First, recall the CDF for $Exp(\lambda)$ is

 $F_X(x) = 1 - e^{-\lambda x}$ for x > 0, and 0 otherwise.

We can find the CDF for $Y = e^X$ as follows.

$$egin{aligned} F_Y(y) &= \mathrm{P}(Y \leq y) = \mathrm{P}(e^X \leq y) = \mathrm{P}(X \leq \log(y)) \ &= F_X(\log(y)) = 1 - e^{-\lambda \log(y)} = 1 - y^{-\lambda} \quad ext{for } y \geq 1. \end{aligned}$$

We then differentiate the CDF to obtain the PDF.

$$f_Y(y) = rac{d}{dy} F_Y(y) = \lambda y^{-\lambda - 1}, \quad ext{for } y \geq 1,$$

and $f_Y(y) = 0$ otherwise.

Ex2. Suppose $X \sim N(0, 1)$. Find the PDF for $Y = X^2$.

Ex2. Suppose $X \sim N(0, 1)$. Find the PDF for $Y = X^2$.

Sol. We can find the CDF for $Y = X^2$ as follows.

$$\begin{aligned} F_Y(y) &= \mathrm{P}(Y \leq y) = \mathrm{P}(X^2 \leq y) = \mathrm{P}(-\sqrt{y} \leq X \leq \sqrt{y}) \\ &= \Phi(\sqrt{y}) - \Phi(-\sqrt{y}) \end{aligned}$$

We then differentiate the CDF to obtain the PDF using the chain rule. Recall the CDF for N(0,1) is $\Phi(x)$, and $\Phi'(x) = \phi(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \phi(\sqrt{y}) \frac{d}{dy} \sqrt{y} - \phi(-\sqrt{y}) \frac{d}{dy} (-\sqrt{y})$$
$$= \frac{1}{2\sqrt{y}} (\phi(\sqrt{y}) + \phi(-\sqrt{y}))$$
$$= \frac{1}{\sqrt{y}} \phi(\sqrt{y}) \quad \text{since } \phi(x) = \phi(-x)$$
$$= \frac{1}{\sqrt{2\pi y}} e^{-y/2} \quad \text{for } y \ge 0.$$

Linear Transformation of Random Variables

Suppose X is a continuous r.v. with the PDF $f_X(x)$. The PDF for Y = aX + b is

$$f_Y = rac{1}{|a|} f_X\left(rac{y-b}{a}
ight), \quad ext{if } a
eq 0.$$

Proof. Denote the CDF for X as $F_X(x)$. The CDF for Y = aX + b would be

$$F_Y(y) = P(\underbrace{aX+b}_{=Y} \le y) = \begin{cases} P\left(X \le \frac{y-b}{a}\right) = F_X\left(\frac{y-b}{a}\right) & \text{if } a > 0\\ P\left(X \ge \frac{y-b}{a}\right) = 1 - F_X\left(\frac{y-b}{a}\right) & \text{if } a < 0. \end{cases}$$

We then differentiate the CDF to obtain the PDF using the chain rule. Recall $F'_X(x) = f_X(x)$.

$$f_{Y}(y) = \frac{d}{dy}F_{Y}(y) = \begin{cases} f_{X}\left(\frac{y-b}{a}\right)\frac{d}{dy}\left(\frac{y-b}{a}\right) = \frac{1}{a}f_{X}\left(\frac{y-b}{a}\right) & \text{if } a > 0\\ -f_{X}\left(\frac{y-b}{a}\right)\frac{d}{dy}\left(\frac{y-b}{a}\right) = \frac{1}{-a}f_{X}\left(\frac{y-b}{a}\right) & \text{if } a < 0 \end{cases}$$

Linear Transformation of Random Variables — Examples

• If $Z \sim N(0,1)$, the PDF for $X = \sigma Z + \mu$ with $\sigma > 0$ is

$$f_X(x) = \frac{1}{\sigma}\phi\left(\frac{x-\mu}{\sigma}\right) = \frac{1}{\sigma\sqrt{2\pi}}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$

• If $X \sim N(\mu, \sigma^2)$ and Y = aX + b with $a \neq 0$,

$$\frac{1}{|a|}f_X\left(\frac{y-b}{a}\right) = \frac{1}{|a|\sigma\sqrt{2\pi}}\exp\left[-\frac{1}{2}\left(\frac{y-b-a\mu}{a\sigma}\right)^2\right].$$

Thus $Y \sim N(a\mu + b, a^2\sigma^2)$.

• If $X \sim \text{Exp}(\lambda)$ and Y = aX for a > 0, then their PDFs are

$$f_X(x) = \lambda e^{-\lambda x}, \quad \text{for } x \ge 0,$$

$$f_Y(y) = \frac{1}{a} f_X\left(\frac{y}{a}\right) = \frac{\lambda}{a} e^{-\lambda x/a}, \quad \text{for } x \ge 0$$

Thus, $Y \sim \text{Exp}(\lambda/a)$.

If X ~ Gamma(α, λ) and Y = aX for a > 0, then Y ~ Gamma(α, λ/a) (HW)

Differentiable & Strictly Monotone Transformations

Suppose f_X is the PDF of X and g() is differentiable & strictly monotone. Then Y = g(X) is a continuous r.v. with PDF

$$f_Y(y) = f_X(g^{-1}(y)) \cdot \left| \frac{d}{dy} g^{-1}(y) \right|.$$

Differentiable & Strictly Monotone Transformations

Suppose f_X is the PDF of X and g() is differentiable & strictly monotone. Then Y = g(X) is a continuous r.v. with PDF

$$f_Y(y) = f_X(g^{-1}(y)) \cdot \left| \frac{d}{dy} g^{-1}(y) \right|.$$

Proof. The CDF of Y is

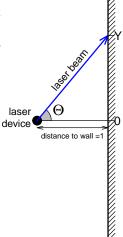
$$\begin{split} F_Y(y) &= \mathrm{P}(Y \le y) = \mathrm{P}(g(X) \le y) \\ &= \begin{cases} \mathrm{P}(X \le g^{-1}(y)) = F_X(g^{-1}(y)) & \text{if } g \text{ is increasing} \\ \mathrm{P}(X \ge g^{-1}(y)) = 1 - F_X(g^{-1}(y)) & \text{if } g \text{ is decreasing} \end{cases} \end{split}$$

We then differentiate the CDF to obtain the PDF using the chain rule.

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \begin{cases} f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y) & \text{if } g \text{ is increasing} \\ -f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y) & \text{if } g \text{ is decreasing} \end{cases}$$

Example (Random Laser Beams)

A laser device shoots laser beams at a random angle Θ uniform on $(-\pi/2, \pi/2)$ to a wall that is 1 unit away from the device. Find the PDF for the location $Y = \tan(\Theta)$ where the laser beam points to on the wall.



Example (Random Laser Beams)

The PDF for $\Theta \sim \text{Uniform}(-\pi/2,\pi/2)$ is

$$f_{\Theta}(heta) = rac{1}{\pi}, \quad ext{for} \ -rac{\pi}{2} < heta < rac{\pi}{2}.$$

For $Y = g(\Theta) = \tan(\Theta)$, $g^{-1}(y) = \arctan(y)$, its derivative is

$$rac{d}{dy} \arctan(y) = rac{1}{1+y^2}.$$

The PDF for $Y = g(\Theta) = \tan(\Theta)$ is

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| = \frac{1}{\pi} \frac{1}{1+y^2},$$

for $-\infty < y < \infty$.

Example (Random Laser Beams)

The PDF for $\Theta \sim \text{Uniform}(-\pi/2,\pi/2)$ is

$$f_{\Theta}(heta) = rac{1}{\pi}, \quad ext{for} \ -rac{\pi}{2} < heta < rac{\pi}{2}.$$

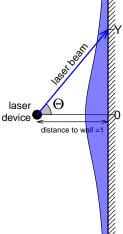
For $Y = g(\Theta) = \tan(\Theta)$, $g^{-1}(y) = \arctan(y)$, its derivative is

$$\frac{d}{dy}\arctan(y) = \frac{1}{1+y^2}.$$

The PDF for $Y = g(\Theta) = \tan(\Theta)$ is

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| = \frac{1}{\pi} \frac{1}{1+y^2},$$

for $-\infty < y < \infty$. The distribution with the PDF above has a name called the *Cauchy distribution*.



Caution

Watch out that the formula $f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|$ only works for strictly monotone transformation.

For other cases, like g(x) = |x| or $g(x) = x^2$, use the CDF method.

Ex2 Revisit. For $Y = X^2$ where $X \sim N(0, 1)$, $g(x) = x^2$, $g^{-1}(y) = \sqrt{y}$, $\frac{d}{dy}g^{-1}(y) = \frac{1}{2\sqrt{y}}$. Applying the formula $f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy}g^{-1}(y) \right|$, we'll obtain the incorrect PDF $f_Y(y) = \phi(\sqrt{y}) \frac{1}{2\sqrt{y}} = \frac{1}{2\sqrt{2\pi y}} e^{-y/2}$ for $y \ge 0$,

rather than the correct PDF

$$f_Y(y) = \phi(\sqrt{y}) rac{1}{\sqrt{y}} = rac{1}{\sqrt{2\pi y}} e^{-y/2} \quad ext{for } y \geq 0$$

Transforming to Uniform

Suppose X is a continuous r.v. with CDF F, where

- ► F is strictly increasing on some interval I,
- F = 0 to the left of *I*, and F = 1 to the right of *I*.
- I may be a bounded interval or an unbounded interval such as the whole real line.

then $F^{-1}(x)$ is then well defined for $x \in I$.

Let Y = F(X). What is the distribution of Y?

Transforming to Uniform

Suppose X is a continuous r.v. with CDF F, where

- F is strictly increasing on some interval I,
- F = 0 to the left of *I*, and F = 1 to the right of *I*.
- I may be a bounded interval or an unbounded interval such as the whole real line.

then $F^{-1}(x)$ is then well defined for $x \in I$.

Let Y = F(X). What is the distribution of Y?

$$F_Y(y) = P(Y \le y) = P(F(X) \le y)$$
$$= P(X \le F^{-1}(y))$$
$$= F(F^{-1}(y))$$
$$= y, \quad \text{for } 0 < y < 1$$

This means that $Y \sim \text{Uniform}(0,1)$ (since its CDF is the Uniform CDF)

.

Example

Recall the CDF For $X \sim \text{Exp}(\lambda)$ is

$$F(x) = 1 - e^{-\lambda x}, \quad x > 0.$$

Then $1 - \exp(-\lambda X) \sim \text{Uniform}(0,1)$, which also implies

 $\exp(-\lambda X) \sim \text{Uniform}(0,1)$

since U and 1 - U have identical distribution if $U \sim \text{Uniform}(0, 1)$.

How to Generate a Random Variable with a Given CDF from Uniform?

Let ${\it F}$ be the CDF for some continuous distribution satisfying the conditions below

- ► F is strictly increasing on some interval I,
- F = 0 to the left of *I*, and F = 1 to the right of *I*.
- I may be a bounded interval or an unbounded interval such as the whole real line.

and let $U \sim \text{Uniform}(0, 1)$. What is the distribution of $X = F^{-1}(U)$?

How to Generate a Random Variable with a Given CDF from Uniform?

Let ${\it F}$ be the CDF for some continuous distribution satisfying the conditions below

- F is strictly increasing on some interval I,
- F = 0 to the left of *I*, and F = 1 to the right of *I*.
- I may be a bounded interval or an unbounded interval such as the whole real line.

and let $U \sim \text{Uniform}(0, 1)$. What is the distribution of $X = F^{-1}(U)$?

$$P(X \le x) = P(F^{-1}(U) \le x) = P(U \le F(x)) = F(x)$$

where the last equality holds since U is Uniform[0, 1].

This means that X has CDF equal to F.