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Random Variables

▶ So far we have considered probabilities for events (subsets) in
a space space.

▶ But sample spaces are often “complicated”, e.g.,
▶ Coin tossing: a string of outcomes such as

TTHHTTTHTHTTTTH. . .
▶ Collecting responses for a survey: a long list of the answers to

all the items:
(Yes;1980;3;2000$;Chicago;No;1;Maybe;N/A;7;. . . )

▶ In most cases, we are interested in some specific numerical
properties computed from the “outcome” itself, e.g.,
▶ # of tosses required to get the first heads
▶ # of people answered yes to item #5 in a survey.

▶ Such a numerical outcome from a random phenomenon is a
random variable.

3 / 38



Random Variable
Formally speaking, a random variable is a real-valued function on
the sample space Ω and maps elements of Ω, ω, to real numbers.

Ω X−−−−→ R
ω 7−→ x = X (ω)

Ex 1. Let X be the number of heads in 3 tosses of a coin. Sample
space Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}. Then

X (HHH) = 3, X (HHT) = 2, X (HTH) = 2, X (HTT) = 1,
X (THH) = 2, X (THT) = 1, X (TTH) = 1, X (TTT) = 0

Ex 2. Let Y be the number of tosses required to get a head.
Ω = {H, TH, TTH, TTTH, TTTTH, . . .} Then

Y (H) = 1, Y (TH) = 2, Y (TTH) = 3, Y (TTTH) = 4, . . .
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Discrete and Continuous Random Variable

There are two types of random variables:

▶ Discrete random variables can only take a finite or countable
infinite number of different values
▶ Example: Number of heads obtained, number of batteries

replaced last year
▶ Continuous random variables take real (decimal) values

▶ Example: lifetime of a battery, someone’s blood pressure
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Distribution of a Discrete Random Variable
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Coin Example
Let X = number of heads in 4 tosses of a fair coin.

P(X = 0) = P({TTTT}) = 1/16

P(X = 1) = P({HTTT, THTT, TTHT, TTTH}) = 4/16
P(X = 2) = P({HHTT, HTHT, HTTH, THHT, THTH, TTHH}) = 6/16
P(X = 3) = P({HHHT, HHTH, HTHH, THHH}) = 4/16
P(X = 4) = P({HHHH}) = 1/16

The probability for each possible value of X is

Possible Value x of X 0 1 2 3 4
Probability P(X = x) 1

16
4
16

6
16

4
16

1
16

Note: these probabilities add up to 1:

1
16 + 4

16 + 6
16 + 4

16 + 1
16 = 1
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Probability Mass Function (PMF)
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Probability Mass Function (PMF)
The probability mass function (PMF) of a random variable X is a
function p(x) that maps each possible value xi to the
corresponding probability P(X = xi).

▶ A PMF p(x) must satisfy 0 ≤ p(x) ≤ 1 and
∑

x p(x) = 1.

Example (coin tossing on the previous slide)

Possible Values of X 0 1 2 3 4
Probabilities 1/16 4/16 6/16 4/16 1/16

The PMF of X is

p(x) =


1/16 if x = 0 or 4
4/16 if x = 1 or 3
6/16 if x = 2
0 if x ̸= 0, 1, 2, 3, 4

x

p(
x)

−2 0 2 4 6
0

1/8

2/8

3/8
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Example: A Card Game

Consider a card game that you draw ONE card from a well-shuffled
deck of cards. You win

▶ $1 if you draw a heart,
▶ $5 if you draw an ace (including the ace of hearts),
▶ $10 if you draw the king of spades and
▶ $0 for any other card you draw.

What’s the PMF of your reward X?

Outcome x p(x)
Heart (not ace) 1 12/52
Ace 5 4/52
King of spades 10 1/52
All else 0 35/52

⇒ p(x) =


35/52 if x = 0
12/52 if x = 1
4/52 if x = 5
1/52 if x = 10
0 for all other values of x
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Common Discrete Distributions
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Bernouli Distribution

A random variable X that can take only two values, 0 and 1, with
probabilities 1 − p and p, respectively, is called a Bernoulli random
variable. Its PMF is thus

p(1) = p
p(0) = 1 − p
p(x) = 0, if x ̸= 0 or 1

Such a distribution is called Bernoulli distribution with parameter
p.
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Bernoulli Trials

A random trial having only 2 possible outcomes (S = Success, F =
Failure) is called a Bernoulli trial, e.g.,

▶ whether a coin lands heads or tails when tossing a coin
▶ whether one gets a six or not a six when rolling a die
▶ whether a drug works on a patient or not
▶ whether a electronic device is defected
▶ whether a subject answers Yes or No to a survey question

If the probability of Success for a Bernoulli trial is P(S) = p, and
let X = 1 if the outcome is a Success and 0 if a Failure, then X
would be a Bernoulli random variable with parameter p.
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Binomial Distributions
Suppose n independent Bernoulli trials are to be performed, each
of which results in

▶ a success with probability p and
▶ a failure with probability 1 − p.

Define

X = the number of successes obtained in the n trials,

then X is said to have a binomial distribution with parameters
(n, p), denoted as

X ∼ Bin(n, p).

with the probability mass function (PMF)

P(X = k) =
(

n
k

)
pk(1 − p)n−k , k = 0, 1, . . . , n.

How the Binomial PMF above is obtained? (Next slide)
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Consider the case with n = 5 trails. Possible outcomes for the event
X = 2 (2 successes in 5 trials) are the

(
5
2

)
= 10 possible orderings of

the 2 successes and 3 failures:

Possible Orders
S S F F F
S F S F F
S F F S F
S F F F S
F S S F F
F S F S F
F S F F S
F F S S F
F F S F S
F F F S S

As the trials are independent, the probabilities
for the outcomes are respectively,

P(SSFFF ) = P(S)P(S)P(F )P(F )P(F )
= pp(1 − p)(1 − p)(1 − p) = p2(1 − p)3,

P(SFSFF ) = P(S)P(F )P(S)P(F )P(F )
= p(1 − p)p(1 − p)(1 − p) = p2(1 − p)3,
etc

Observe the 10 outcomes have equal probability p2(1 − p)3

since they all have 2 Successes and 3 Failures.

As the outcomes above are disjoint,
P(X = 2) = P(2 successes in 5 trials) is the sum of their probabilities

P(X = 2) =
(

5
2

)
p2(1 − p)3.
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In general, for X ∼ Bin(n, p), outcomes in the event

{X = k} = {k successes in n trials} are the
(

n
k

)
possible

orderings of the k successes and n − k failures that each has
probability pk(1 − p)n−k to occur. The Binomial PMF is thus

p(k) = P(X = k) =
(

n
k

)
pk(1 − p)n−k , k = 0, 1, . . . , n.
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Does the Binomial PMF Add Up to 1?
A legitimate PMF p(k) must add up to 1

∑
k p(k) = 1.

Does the Binomial PMF satisfy the condition

n∑
k=0

p(k) =
n∑

k=0

(
n
k

)
pk(1 − p)n−k = 1?

Yes, using the Binomial Expansion

(a + b)n =
n∑

k=0

(
n
k

)
akbn−k ,

plugging in a = p and b = 1 − p, we get

n∑
k=0

(
n
k

)
pk(1 − p)n−k = (p + (1 − p))n = 1n = 1.
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Sum of i.i.d. Bernoulli Random Variables is Binomial

If X1, X2, . . . , Xn are i.i.d. Bernoulli random variables with success
probability p, then

X1 + X2 + . . . + Xn ∼ Bin(n, p).

where “i.i.d.” = independent and identically distributed.

Moreover, if X ∼ Bin(m, p) and Y ∼ Bin(ℓ, p) are independent,
then

X + Y ∼ Bin(m + ℓ, p).
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Geometric Distribution
Suppose that a sequence of independent Bernoulli trials are
performed, each with probability of success p. Let X be the
number of trials required to obtain the first Success.

The PMF of X is

0.
00

0.
15

0.
30

x

p(
x)

−5 0 5 10 15

p(k) = P(X = k) = P(
k−1 F’s︷ ︸︸ ︷
F . . . F S) by indep.

= P(F ) · · · P(F )P(S)
= (1 − p) · · · (1 − p)︸ ︷︷ ︸

k−1 copies

p

= (1 − p)k−1p,

if x is a positive integer and p(k) = 0 if not, denoted as

X ∼ Geometric(p).

We say X has a geometric distribution, since the PMF is a
geometric sequence.
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Does the Geometric PMF Add Up to 1?
Does

∑∞
k=1 p(k) =

∑∞
k=1(1 − p)k−1p = 1?

Recall the geometric series∑∞
k=0

axk = a + ax + ax2 + · · · axk + · · ·

= a
1 − x if |x | < 1.

The sum of the Geometric PMF∑∞
k=1

p(k) =
∑∞

k=1
(1 − p)k−1p

= p + (1 − p)p + (1 − p)2p + · · · + (1 − p)k−1p + · · ·

is simply the case that a = p and x = 1 − p and hence the sum is
a

1 − r = p
1 − (1 − p) = p

p = 1.
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Negative Binomial Distributions
Suppose that a sequence of independent Bernoulli trials are
performed, each with probability of success p. Let X be the
number of trials required to obtain the r th Success.

first k − 1 trials kth trial︷ ︸︸ ︷
? ? · · · · · · ?︸ ︷︷ ︸ ︷︸︸︷S︸︷︷︸

r − 1 S’s and k − r F’s rth S
in any order

For the event {X = k} to occur,
▶ the kth trial must be a Success,
▶ the first k − 1 trials can be r − 1

successes and k − r failures
in any order.

Thus, the Negative Binomial PMF is

P(X = k) =

first k − 1 trials︷ ︸︸ ︷(
k − 1
r − 1

)
pr−1(1 − p)k−r ×

kth trial︷︸︸︷
p

=
(

k − 1
r − 1

)
pr (1 − p)k−r k = r , r + 1, . . . .

denoted as X ∼ NB(r , p).
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Relation Between Negative Binomial & Geometric

If X1, X2, . . . , Xr are i.i.d. random variables with a Geometric(p)
distribution, then

X1 + X2 + . . . + Xr ∼ NB(r , p).

Conversely, let

▶ X1 be the number of trials needed to get the first Success
▶ X2 be the number of additional trials needed to get the 2nd

Success after the first Success
▶

...
▶ Xr be the number of additional trials needed to get the r th

Success after the (r − 1)st Success

then X1, X2, . . . , Xr are independent Geometric(p) random
variables.
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Negative Binomial Expansion (1)
Recall the geometric series: for |x | < 1,

1
1 − x = 1 + x + x2 + · · · xk + · · · =

∞∑
k=0

xk .

Taking derivative on both sides, we get

1
(1 − x)2 = 1 + 2x + · · · kxk−1 + · · · =

∞∑
k=1

(
k
1

)
xk−1.

Taking the 2nd derivative on both sides, we get

2
(1 − x)3 =

∞∑
k=2

(
k
1

)
(k − 1)xk−2 =

∞∑
k=2

2
(

k
2

)
xk−2

Dividing both sides by 2, we get

1
(1 − x)3 =

∞∑
k=2

(
k
2

)
xk−2.
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Negative Binomial Expansion (2)

By Mathematical Induction, one can show that the mth derivative
of 1

1−x =
∑∞

k=0 xk is

1
(1 − x)m+1 =

∞∑
k=m

(
k
m

)
xk−m,

called the Negative Binomial expansion.

The sum of the Negative Binomial PMF can be obtained by apply
the Negative Binomial expansion with m = r − 1 and x = 1 − p,

∞∑
k=r

(
k − 1
r − 1

)
pr (1 − p)k−r = pr

∞∑
k=r

(
k − 1
r − 1

)
(1 − p)k−r

= pr · 1
(1 − (1 − p))r−1+1 = pr

pr = 1.
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Hypergeometric Distribution
R red balls, B blue balls

↙ ↘
d balls drawn at random R + B − d balls

without replacement remained in the original box
X red, d −X blue R−X red, B−(d −X ) blue

Suppose d draws are made at random w/o replacement from a
box containing R red balls and B blue balls. The number of red
balls X obtained in d draws has a hypergeometric distribution:

P(X = x) = P(x red, d − x blue)

=
(# of ways to pick x red balls

out of R red balls
)(# of ways to pick d − x blue balls

out of B blue balls
)

(# of ways to pick d balls out of R + B balls) =
(R

x
)( B

d−x
)(R+B

d
)

for 0 ≤ x ≤ R, 0 ≤ d − x ≤ B.

Q: If the draws are made with replacement, what’s the distribution
of X?

X ∼ Bin
(
d , p = R

R+B

)
.
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The hypergeometric PMF adds up to 1

∑
x

P(X = x) =
∑

x
(R

x
)( B

d−x
)(R+B

d
) = 1

because of Vandermonde’s identity of the Binomial coefficients.(
m + n

r

)
=

r∑
k=0

(
m
k

)(
n

r − k

)
.
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Hypergeometric ≈ Binomial if . . .
If the number of balls are large (R and B both → ∞ and

R
R+B → p), then

P(X = x) =
(R

x
)( B

d−x
)(R+B

d
) −→

(
d
x

)
px (1 − p)d−x for x = 0, 1, . . . , d ,

i.e., drawing with or without replacement makes little difference.
Proof.(R

x
)( B

d−x
)(R+B

d
) =

R!
x !(R−x)!

B!
(d−x)!(B−d+x)!
(R+B)!

d!(R+B−d)!

= d!
x ! (d − x)!

R!
(R−x)!

B!
(B−d+x)!

(R+B)!
(R+B−d)!

=
(

d
x

)
R

R + B︸ ︷︷ ︸
→p

R − 1
R + B − 1︸ ︷︷ ︸

→p

· · · R − x + 1
R + B − x + 1︸ ︷︷ ︸

→p

× B
R + B − x︸ ︷︷ ︸

→1−p

B − 1
R + B − x − 1︸ ︷︷ ︸

→1−p

· · · B − d + x + 1
(R + B − d + 1)︸ ︷︷ ︸

→1−p

→
(

d
x

)
px (1 − p)d−x .
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Poisson Distribution

A random variable X has a Poisson distribution with parameter
λ > 0 if its PMF is

P(X = k) = λk

k! e−λ, k = 0, 1, 2, . . .

denoted as
X ∼ Poisson(λ).

We can show Poisson PMF sum to 1 using the Taylor expansion of
the exponential function: eu =

∑∞
k=0 uk/k!, and obtain

∞∑
k=0

P(X = k) =
∞∑

k=0

λk

k! e−λ = e−λ
∞∑

k=0

λk

k!︸ ︷︷ ︸
=eλ

= e−λeλ = 1.
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Poisson Approximation to Binomial

For a Binomial distribution with huge n and tiny p such that np
moderate,

Binomial(n, p) is approx. Poisson(λ = np).

Below are the values of P(Y = k), k = 0, 1, 2, 3, 4, 5 for

Y ∼ Binomial(n = 50, p = 0.03), and
Y ∼ Poisson(λ = 50 × 0.03 = 1.5).

dbinom(0:5, size=50, p=0.03) # Binomial(n=50, p=0.03)
[1] 0.21807 0.33721 0.25552 0.12644 0.04595 0.01307
dpois(0:5, lambda = 50*0.03) # Poisson(lambda = 50*0.03)
[1] 0.22313 0.33470 0.25102 0.12551 0.04707 0.01412
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Proof of Poisson Approximation to Binomial

The Binomial PMF is

P(X = k) =
(

n
k

)
pk(1 − p)n−k

= n!
k!(n − k)!

(
λ

n

)k (
1 − λ

n

)n−k
(setting λ = np)

= λk

k!
n!

(n − k)!nk︸ ︷︷ ︸
→1

(
1 − λ

n

)n

︸ ︷︷ ︸
→e−λ

(
1 − λ

n

)−k

︸ ︷︷ ︸
→1

→ λk

k! e−λ as n → ∞ with np → λ.
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Example — Fatalities From Horse Kicks (p.45, Textbook)

The # of deaths in a year resulted from being kicked by a horse or
mule was recorded for each of 10 corps of Prussian cavalry over a
period of 20 years, giving 200 corps-years worth of data.

# of Deaths (in a corp in a year) 0 1 2 3 4 Total
Frequency 109 65 22 3 1 200

The count of deaths due to horse kicks in a corp in a given year
may have a Poisson distribution because

▶ p = P(a soldier died from horsekicks in a given year) ≈ 0;
▶ n = # of soldiers in a corp was large (100’s or 1000’s);
▶ whether a soldier was kicked was (at least nearly) independent

of whether others were kicked
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Example (Fatalities From Horse Kicks — Cont’d)
The fitted Poisson probability to have k deaths from horsekicks for
λ = 0.61 is

P(Y = k) = e−λ λk

k! = e−0.61 (0.61)k

k! , k = 0, 1, 2, . . . .

Observed Relative Poisson
k Frequency Frequency Probability
0 109 0.545 0.543
1 65 0.325 0.331
2 22 0.110 0.101
3 3 0.015 0.021
4 1 0.005 0.003

Total 200 1 0.999

▶ λ = 0.61 is the average of the 200 counts

0 × 109 + 1 × 65 + 2 × 22 + 3 × 3 + 4 × 1
200 = 0.61.
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When Do Poisson Distributions Come Up?

Variables that are generally Poisson:

▶ # of misprints on a page of a book
▶ # of calls coming into an exchange during a unit of time (if

the exchange services a large number of customers who act
more or less independently.)

▶ # of people in a community who survive to age 100
▶ # of vehicles that pass a marker on a roadway during a unit

of time (for light traffic only. In heavy traffic, however, one
vehicle’s movement may influence another)
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Exercise 1

If you roll a fair die 50 times, what is the distribution of the # of
• ’s rolled? And, how likely is it that you will get no more than 5
• ’s?

Let X = number of • ’s. Then X ∼ Binomial(n = 50, p = 1/6).

P(X ≤ 5) =
5∑

k=0
P(X = k) =

5∑
k=0

(
50
k

)(1
6

)k (5
6

)50−k
≈ 0.139.
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Exercise 2

Suppose you draw 10 cards from a standard deck without
replacement.
Let X be the # of Kings you draw.
What’s the distribution of X?

X has a hypergeometric distribution where

▶ the Red balls are the 4 Kings
▶ the Blue balls are the remaining 48 cards that are not Kings

The PMF is

P(X = k) =
(4

k
)( 48

10−k
)(52

10
) , for k = 0, 1, 2, 3, 4.
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Exercise 3

Consider the following game:
At each round, you roll a red die & a blue die.
If the red die is even, you win a prize, otherwise you win nothing.
If the blue die is a 1, then you stop playing, otherwise you continue.

1. What is the distribution of X = the # of rounds you play?
2. What is the distribution of the Y = of times you win?

Ans.

1. X = # of rolls needed to reach the first 1, so
X ∼ Geometric(1/6).

P(X = x) = (5/6)x−1(1/6).
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Exercise 3 (Cont’d)
Recall X = # rounds you play, and Y = # times you win.

Observe that given X = x , Y ∼ Bin(x , 1/2).

To calculate the PMF of Y , we can use the Law of Total
Probability, for each y = 0, 1, 2, . . .,

P(Y = y) =
∞∑

x=1
P(Y = y and X = x)

=
∞∑

x=1
P(X = x) · P(Y = y | X = x)

=
∞∑

x=1
(5

6)x−1 · 1
6︸ ︷︷ ︸

from Geom. distrib.

·
(

x
y

)
(1

2)y (1
2)x−y

︸ ︷︷ ︸
from Binomial distrib.

=
∞∑

x=max(1,y)
(5

6)x−1(1
6)
(

x
y

)
(1

2)x

37 / 38



For y = 0

P(Y = 0) =
∞∑

x=1
(5
6)x−1(1

6)(1
2)x = 1

12

∞∑
x=1

( 5
12)x−1 = 1

12
1

(1 − 5/12) = 1
7 .

For y = 1, 2, 3, . . .,

P(Y = y) =
∞∑

x=y
(5
6)x−1(1

6)
(

x
y

)
(1
2)x = 1

5( 5
12)y

∞∑
x=y

(
x
y

)
( 5
12)x−y

= 1
5( 5

12)y 1
(1 − 5/12)y+1 = 12

35(5
7)y .
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