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Outline

Coverage: Section 1.5-1.6 of Rice’s Book

▶ 1.5 Conditional Probability
▶ Definition of Conditional Probability
▶ Multiplication Law
▶ Law Of Total Probability
▶ Bayes’ Rule

▶ 1.6 Independence
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Conditional Probability
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Example – Conditional Probability
A pair of dice is rolled. The sample space is

Ω =



(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)


▶ What is the probability of getting doubles = same number on

both dice?

double = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}

P(double) = #(double)
#(Ω) = 6

36 .

▶ If total is known to be 10 or more, what is the probability of
getting a double? 2

6 = 1
3 4 / 34
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Conditional Probabilities
The conditional probability of A happens given that B has
occurred is denoted

P(A | B),
and read as the probability of “A given B.”

For the example on the previous slide, let{
A = getting a double,

B = total is 10+,
we have P(A | B) = 2

6 ̸= P(A) = 6
36 .

The given information (total is 10+) has changed
(restricted) the sample space.

Ω =



(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)


→


(4, 6)

(5, 5) (5, 6)

(6, 4) (6, 5) (6, 6)

︸ ︷︷ ︸
restricted sample space
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Definition of Conditional Probability
The conditional probability P(A | B) is defined as as

P(A | B) = P(A ∩ B)
P(B) if P(B) > 0.

S
A BA∩B

Example.

▶ P(total is 10+) = 6/36
▶ P(double ∩ total is 10+) = P({(5, 5) or (6, 6)}) = 2/36

By definition of conditional probability,

P(double | total is 10+) = P(double ∩ total is 10+)
P(total is 10+) = 2/36

6/36 = 2
6 .
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P(A | B) v.s. P(A ∩ B)

▶ P(A ∩ B) is the probability that A and B both occur (we are
unsure whether B will occur)

▶ P(A | B) is the probability that A occurs given that B has
occurred

▶ P(A ∩ B) = P(A ∩ B)
P(Ω) → The sample space is Ω

▶ P(A | B) = P(A ∩ B)
P(B) → The sample space is B.

Ω
A BA B

A∩B

B

A∩B
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Example — Red or Black
You have 3 cards.
▶ Card 1 is Red on both sides, R1 R2 ,
▶ Card 2 is Black on both sides, B1 B2 ,
▶ Card 3 is Red on one side and Black on the other, R3 B3 ,

After shuffling the cards behind your back, you select one of them
at random and place it on your desk with your hand covering it.
Upon lifting your hand, you observe that the face showing is red.
Which of the following is the correct conditional probability

P(the other side is Red | the up side is Red)?

1. Sample space = {Card 1, Card 2, Card 3}. Given the face is
Red, it can only be Cards 1 or 3 and their flip sides are Red
and Black, ⇒ Answer = 1/2.

2. Sample space = {R1, R2, B1, B2, R3, B3}. Given the face is
Red, it could be R1, R2, or R3 and their flip sides are R2, R1
and B3, ⇒ Answer = 2/3.
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Example — Red or Black (Cont’d)

By the definition of conditional probability

P(the other side is Red | the up side is Red) = P(both sides are Red)
P(the up side is Red) .

Which sample space allows us to compute P(the up side is Red)?

▶ {Card 1, Card 2, Card 3}
▶ {R1, R2, B1, B2, R3, B3}
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Calculation of Conditional Probabilities
Do NOT always calculate conditional probabilities by the
definition.

P(A | B) = P(A ∩ B)
P(B)

Sometimes, it’s more straightforward to find P(A | B) by thinking
about how B has changed the sample space instead of finding
P(A ∩ B), P(B) and their ratio.

Ω
A BA B

A∩B

B

A∩B
"conditioning"

on event B

B = new "sample
 space"

A∩B = what remains
of event A

Ex. A deck of cards is well-shuffled and the two cards are drawn
w/o replacement. What is the probability that second card is a
King given that the first card is a King?

3/51
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Multiplication Law

The definition of conditional probability

P(B | A) = P(A ∩ B)
P(A)

can be used the other way around. Multiplying both sides by P(A),
we get the Multiplication Law:

P(A ∩ B) = P(A) × P(B | A)

If we want P(A ∩ B), and both P(A), P(B | A) are known or are
easy to compute, we can use the Multiplication Law.
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Example: Multiplication Law
A deck of cards is shuffled and the two top cards are placed face
down on a table. What is the probability that both cards are
Kings?

Solution. Let

A = 1st card is a King,

B = 2nd card is a King.

▶ P(A) = P(the 1st card is a King) =

4/52

.
▶ Given that the 1st card is a King, the conditional probability

that the 2nd card is a King =?

P(B | A) = 3
51

.

▶ So the probability that both cards are Kings =?

P(A ∩ B) = P(A) × P(B | A) = 4
52 × 3

51 = 1
221 ≈ 0.0045.

13 / 34
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Multiplication Law for Several Events

P(ABC) = P(A) · P(B | A) · P(C | AB)
P(ABCD) = P(A) · P(B | A) · P(C | AB) · P(D | ABC)

P(ABCDE ) = P(A) · P(B | A) · P(C | AB) · P(D | ABC) · P(E | ABCD)

and so on
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Example: General Multiplication Rule for Several Events
Five cards are dealt from a deck of well-shuffled card. What is the chance
that none of them are hearts ♡?

Sol. Let Ai be the event that the ith card dealt is not a ♡.

▶ P(A1) = P(1st card is not a ♡) = 39/52

▶ Given the 1st card is not a ♡, the conditional probability that the
2nd is not a ♡ = P(A2 | A1) = 38

51 .

▶ Given neither of the first two cards is a ♡, the condition probability
that the 3rd is not a ♡ = P(A3 | A1A2) = 37

50 .

▶ Likewise, P(A4 | A1A2A3) = 36
49 , P(A5 | A1A2A3A4) = 35

48
▶ By the General Multiplication Rule,

P(A1A2A3A4A5) = 39
52 × 38

51 × 37
50 × 36

49 × 35
48 ≈ 0.222
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Law of Total Probability
and Bayes’ Rule
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Example – A Nervous Job Applicant

Suppose an job applicant has been invited for an interview.
The probability that

▶ he is nervous is P(N) = 0.7,
▶ he succeeds in interview given he is nervous is P(S | N) = 0.2,
▶ he succeeds in interview given he is not nervous is

P(S | Nc) = 0.9.

What is the probability that he succeeds in the interview?

Nc N

S∩Nc

S∩N

P(S) = P(S ∩ N) + P(S ∩ Nc)
= P(N)P(S | N) + P(Nc)P(S | Nc)
= 0.7 × 0.2 + 0.3 × 0.9 = 0.41.

17 / 34



Tree Diagram for the Nervous Job Applicant Example
Another look at the nervous job applicant example:

Nervous

0.7

Success
0.2

0.7 × 0.2

Failure
0.8

0.7 × 0.8

Not
Nervous

0.3
Success

0.9

0.3 × 0.9

Failure
0.1

0.3 × 0.1
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Nervous Job Applicant Example Continued

Conversely, given the interview is successful, what is the probability
that the job applicant is nervous during the interview?

P(N | S) = P(N ∩ S)
P(S)

= P(N ∩ S)
0.41

(
where P(S) = 0.41 was

found in the previous page

)

= P(N)P(S | N)
0.41 since P(N ∩ S) = P(N)P(S | N)

= 0.7 × 0.2
0.41 = 14

41 ≈ 0.34.
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Bayes’ Rule (or Bayes’ Theorem)

The problem in the previous slide is an example of Bayes’ Rule.

Knowing P(B | A), P(B | Ac), and P(A), is there a way to know
P(A | B)?

P(A | B) = P(A ∩ B)
P(B)

= P(A)P(B | A)
P(B) since P(A ∩ B) = P(A)P(B | A)

= P(A)P(B | A)
P(B ∩ A) + P(B ∩ Ac) since B = (B ∩ A) ∪ (B ∩ Ac)

= P(A)P(B | A)
P(A)P(B | A) + P(Ac)P(B | Ac)

20 / 34
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Medical Testing

A common application of Bayes’ rule is in medical testing

▶ Let D denote the event that an individual has the disease that
we are testing for

▶ Let T+ denote the event that the test result is positive,
and T− denote the event that the test result is negative

▶ P(T+ | D) is called the sensitivity of the test
▶ P(T− | Dc) is called the specificity of the test
▶ Ideally, we hope P(T+ | D) and P(T− | Dc) both equal 1.

However, medical tests are not perfect.
They may give false positives and false negatives.
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Enzyme Immunoassay Test for HIV

▶ P(T+ | D) = 0.98 (sensitivity - positive for infected)
▶ P(T− | Dc) = 0.995 (specificity - negative for not infected)
▶ P(D) = 1/300 (prevalence of HIV in USA)

What is the probability that the tested person is infected if the test
was positive?

P(D | T+) = P(D)P(T+ | D)
P(D)P(T+ | D) + P(Dc)P(T+ | Dc)

= 1/300 × 0.98
(1/300) × 0.98 + (299/300) × 0.005

= 39.6%

This test is not confirmatory. Need to confirm by a second test.
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Tree Diagram for the HIV Test

Infected
1

300

Positive
0.98

Negative
0.02

Not
Infected

299

300
Positive
0.005

Negative
0.995

1

300
× 0.98

1

300
× 0.02

299

300
× 0.005

299

300
× 0.995

P(D | T+) = (1/300) × 0.98
(1/300) × 0.98 + (299/300) × 0.005
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Bayes’ Rule for 3 or More Cases
▶ The 2 examples above both split the sample space into 2 parts

A or Ac (nervous or not nervous, infected or not infected)
▶ In many cases, we need to calculate P(B) by splitting it into

several parts, using the Law of Total Probability:
Suppose A1, A2, . . . , Ak are disjoint
and A1 ∪ A2 ∪ · · · ∪ Ak = Ω and
Ai ∩ Aj = ∅ for all i ̸= j , then

P(B) = P(B ∩ A1) + P(B ∩ A2) + · · · + P(B ∩ Ak)
= P(A1)P(B | A1) + P(A2)P(B | A2) + · · · + P(Ak)P(B | Ak).

Using the Law of Total Probability, Bayes Rule becomes

P(Ai | B) = P(Ai)P(B | Ai)
P(A1)P(B | A1) + P(A2)P(B | A2) + · · · + P(AK )P(B | AK )
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Example (Bayes’ Rule for 3 Cases)

At a gas station,

▶ 40% of the customers use regular gas (A1),
▶ 35% use mid-grade gas (A2), and
▶ 25% use premium gas (A3).

Moreover,

▶ of those customers using regular gas, only 30% fill their tanks;

P(B | A1) = 0.3

▶ of those using mid-grade, 60% fill their tanks;

P(B | A2) = 0.6

▶ of those using premium, 50% fill their tanks.

P(B | A3) = 0.5

Let B denote the event that the next customer fills the tank.
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Gas Station Example — Tree Diagram
Gas Type Fill Tank?

Regular,  0.40
Yes,  0.3

0.4*0.3  =  0.12

No,  0.7
0.4*0.7  =  0.28

Mid−grade,  0.35
Yes,  0.6

0.35*0.6  =  0.21

No,  0.4
0.35*0.4  =  0.14

Premium,  0.25
Yes,  0.5

0.25*0.5  =  0.125

No,  0.5
0.25*0.5  =  0.125

Q1: What is the probability that the next customer request
premium gas and fill the tank.

P(A3 ∩ B) = P(A3)P(B | A3) = 0.25 × 0.5 = 0.125.
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0.455 ≈ 0.275.
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Independence
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Independence

Two events A and B are said to be independent if any of the
following is true

▶ P(A | B) = P(A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . B happens doesn’t affect how likely A happens

▶ P(A | B) = P(A | Bc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . .How likely A happens is not affected by B happens or not

▶ P(B | A) = P(B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . A happens doesn’t affect how likely B happens

▶ P(A ∩ B) = P(A) × P(B)

If any of the identities above is true, then all remaining identities
will also be true.
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Proof of P(A | B) = P(A) implies P(B | A) = P(B)

P(B | A) = P(A ∩ B)
P(A) definition of conditional prob.

= P(B)P(A | B)
P(A) Multiplication Law

= P(B)P(A)
P(A) since P(A | B) = P(A)

= P(B)

Thus, P(A | B) = P(A) implies P(B | A) = P(B).
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Proof of P(B | A) = P(B) implies P(A ∩ B) = P(A)P(B)

P(A ∩ B) = P(A)P(B | A) (by Multiplication Law)
= P(A)P(B) (since P(B | A) = P(B))
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Independent Events vs Disjoint Events

▶ If A and B are independent, P(A ∩ B) = P(A) × P(B).
▶ If A and B are disjoint: A ∩ B = ∅ ⇒ P(A ∩ B) = 0.
▶ If P(A) > 0 and P(B) > 0,

▶ Independent events cannot be disjoint.
▶ Disjoint events cannot be independent.

▶ Conceptually, A and B are disjoint means that one happens
prevents the other from happening, so one’s occurrence
definitely affects the other’s.
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Multiplication Law for Independent Events

When A and B are independent

P(A ∩ B) = P(A) × P(B)

▶ This is simply the Multiplication Law:
P(A ∩ B) = P(A) × P(B | A) in which P(B | A) reduce to
P(B) when A and B are independent

▶ More generally,

P(A1 ∩ A2 ∩ · · · ∩ Ak) = P(A1) × P(A2) × · · · × P(Ak)

if A1, . . . , Ak are independent.
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Example: Tossing a Coin Until Heads Come Up
Recall the example of tossing a fair coin repeatedly until heads
come up. The sample space is

Ω = {H, TH, TTH, TTTH, . . .} = { 1, 2, 3, 4, . . .︸ ︷︷ ︸
all positive integers

}.

As the tosses are independent,

P(1) = P(H) = 1/2
P(2) = P(TH) = P(T)P(H) = (1/2)(1/2) = 1/22

...
P(k) = P(k − 1 T’s followed by an H)

= P(T) · · · P(T)︸ ︷︷ ︸
k−1 times

P(H)

= (1/2) . . . (1/2)︸ ︷︷ ︸
k−1 times

(1/2) = 1/2k , k = 1, 2, 3 . . .
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Back to the Warmup Puzzle
Puzzle: A fair coin is flipped repeatedly
until the first time we see the sequence HH or TH.

▶ Player A wins if HH comes up first.
▶ Player B wins if TH comes up first.

What is the chance of winning for Player A?

What is Ω?

HH TH
HTH TTH
HTTH TTTH
HTTTH TTTTH
HTTTTH TTTTTH
. . . . . .
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