STAT 234 Lecture 24-25 Simple Linear Regression Model (Section 12.1-12.4)

Yibi Huang

Department of Statistics
University of Chicago

Outline

- Simple Linear Regression Models (Section 12.1)
- Least Square Estimate (Section 12.2)
- Hypothesis Tests \& Confidence Intervals for β_{1} and β_{0} (Section 12.3)
- Two Kinds of Conditional Predictions Problems (Section 12.4)

Simple Linear Regression Models (Section 12.1)

Simple Linear Regression Model (Review)

1. The condition mean of Y given $X=x$ is a linear function of x, i.e.,

$$
\mathrm{E}(Y \mid X=x)=\beta_{0}+\beta_{1} x
$$

2. The conditional variance of Y does not change with x, i.e.,

$$
\operatorname{Var}(Y \mid X=x)=\sigma^{2} \quad \text { for every } x
$$

3. (Optional) The conditional distribution of Y given $X=x$ is normal,

$$
(Y \mid X=x) \sim N\left(\beta_{0}+\beta_{1} x, \sigma^{2}\right)
$$

Simple Linear Regression Model

Equivalently, the SLR model asserts the values of X and Y for individuals in a population are related as follows

$$
Y=\beta_{0}+\beta_{1} X+\varepsilon,
$$

- the value of ε, called the error or the noise, varies from observation to observation, follows a normal distribution

$$
\varepsilon \sim N\left(0, \sigma^{2}\right)
$$

- In the model, the line $y=\beta_{0}+\beta_{1} x$ is called the population regression line.

Data for a Simple Linear Regression Model

Suppose the data comprised of n individuals/cases randomly sampled from a population.

From case i we observe the response y_{i} and the predictor x_{i} :

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

The SLR model states that

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}
$$

How do we estimate intercept β_{0} and the slope β_{1} ?

Least-Square Estimates of the
Intercept and the Slope (Section
12.2)

Residuals (Prediction Errors)

If one use the line $y=a+b x$ to predict y from x, the predicted y when $x=x_{i}$ is

$$
\hat{y}_{i}=a+b x_{i} .
$$

The residual $\left(e_{i}\right)$ of the i th observation $\left(x_{i}, y_{i}\right)$ is

e_{i}	$=$	y_{i}	-	\hat{y}_{i}
(Residual)		$($ Observed $y)$		(Predicted y)
	$=$	y_{i}	-	$\left(a+b x_{i}\right)$

Residuals are the (signed) vertical distances from data points to model line, not the shortest distances

Least-Square Estimates of the Intercept and the Slope

We want a line $y=\widehat{\beta}_{0}+\widehat{\beta}_{1} x$ having small residuals:

- Using the line $y=\widehat{\beta}_{0}+\widehat{\beta}_{1} x$, the predicted y when $x=x_{i}$ is

$$
\widehat{y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i}
$$

- The residual for $\left(x_{i}, y_{i}\right)$ is $e_{i}=y_{i}-\widehat{y}_{i}=y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}$.

For SLR, the least squares estimate $\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right)$ for $\left(\beta_{0}, \beta_{1}\right)$ is the intercept and slope of the straight line with the minimum sum of squared residuals.

$$
\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}\right)^{2}
$$

Solving the Least Squares Problem (1)

To find the $\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right)$ that minimize

$$
L\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}\right)^{2}
$$

one can set the derivatives of L with respect to $\widehat{\beta}_{0}$ and $\widehat{\beta}_{1}$ to 0

$$
\begin{aligned}
& \frac{\partial L}{\partial \widehat{\beta}_{0}}=-2 \sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}\right)=0 \\
& \frac{\partial L}{\partial \widehat{\beta}_{1}}=-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}\right)=0
\end{aligned}
$$

This results in the 2 equations below in 2 unknowns $\widehat{\beta}_{0}$ and $\widehat{\beta}_{1}$.

$$
\begin{aligned}
n \widehat{\beta}_{0}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i} & =\sum_{i=1}^{n} y_{i} \\
\widehat{\beta}_{0} \sum_{i=1}^{n} x_{i}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2} & =\sum_{i=1}^{n} x_{i} y_{i}
\end{aligned}
$$

Solving the Least Squares Problem (2)

$$
\begin{aligned}
\widehat{\beta}_{0}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i} & =\sum_{i=1}^{n} y_{i} \\
\widehat{\beta}_{0} \sum_{i=1}^{n} x_{i}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2} & =\sum_{i=1}^{n} x_{i} y_{i}
\end{aligned}
$$

Solving the Least Squares Problem (2)

$$
\begin{array}{r}
\widehat{\beta}_{0}+\widehat{\beta}_{1} \overbrace{\sum_{i=1}^{n} x_{i}}^{=n \bar{x}}=\overbrace{\sum_{i=1}^{n} y_{i}}^{=n \bar{y}} \\
\widehat{\beta}_{0} \underbrace{\sum_{i=1}^{n} x_{i}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}}_{=n \bar{x}}=\sum_{i=1}^{n} x_{i} y_{i}
\end{array}
$$

Solving the Least Squares Problem (2)

$$
\begin{aligned}
& n \widehat{\beta}_{0}+\widehat{\beta}_{1} \overbrace{\sum_{i=1}^{n} x_{i}}^{=n \bar{x}}=\overbrace{\sum_{i=1}^{n} y_{i}}^{=n \bar{y}} \stackrel{\text { divide by } n}{\Longrightarrow} \widehat{\beta}_{0}+\widehat{\beta}_{1} \bar{x}=\bar{y} \Rightarrow \widehat{\beta}_{0}=\bar{y}-\widehat{\beta}_{1} \bar{x} \\
& \widehat{\beta}_{0} \underbrace{\sum_{i=1}^{n} x_{i}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} x_{i} y_{i}}_{=n \bar{x}}
\end{aligned}
$$

Solving the Least Squares Problem (2)

$$
\begin{gathered}
n \widehat{\beta}_{0}+\widehat{\beta}_{1} \overbrace{\sum_{i=1}^{n} x_{i}}^{=n \bar{x}}=\overbrace{\sum_{i=1}^{n} y_{i}}^{=n \bar{y}} \stackrel{\text { divide by } n}{\Longrightarrow} \widehat{\beta}_{0}+\widehat{\beta}_{1} \bar{x}=\bar{y} \Rightarrow \widehat{\beta}_{0}=\bar{y}-\widehat{\beta}_{1} \bar{x} \\
\widehat{\beta}_{0} \underbrace{\sum_{i=1}^{n} x_{i}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} x_{i} y_{i} \Longrightarrow \widehat{\beta}_{0} n \bar{x}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} x_{i} y_{i}}_{=n \bar{x}}
\end{gathered}
$$

Solving the Least Squares Problem (2)

$$
\begin{gathered}
n \widehat{\beta}_{0}+\widehat{\beta}_{1} \overbrace{\sum_{i=1}^{n} x_{i}}^{=n \bar{x}}=\overbrace{\sum_{i=1}^{n} y_{i}}^{=n \bar{y}} \stackrel{\text { divide by } n}{\Longrightarrow} \widehat{\beta}_{0}+\widehat{\beta}_{1} \bar{x}=\bar{y} \Rightarrow \widehat{\beta}_{0}=\bar{y}-\widehat{\beta}_{1} \bar{x} \\
\widehat{\beta}_{0} \underbrace{\sum_{i=1}^{n} x_{i}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} x_{i} y_{i} \Longrightarrow \widehat{\beta}_{0} n \bar{x}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} x_{i} y_{i}}_{=n \bar{x}}
\end{gathered}
$$

Replacing $\widehat{\beta}_{0}$ with $\bar{y}-\widehat{\beta}_{1} \bar{x}$ in the second equation, we get

$$
\begin{aligned}
& \quad\left(\bar{y}-\widehat{\beta}_{1} \bar{x}\right) n \bar{x}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} x_{i} y_{i} \\
\Longleftrightarrow & \widehat{\beta}_{1}\left(\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}\right)=\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y} \\
\Longleftrightarrow & \widehat{\beta}_{1}=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}
\end{aligned}
$$

Formulas for the Least Square Estimate for the Slope

Recall the shortcut formulas for sample covariance and variance:

$$
\begin{aligned}
s_{x y} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}=\frac{\left(\sum_{i=1}^{n} x_{i} y_{i}\right)-n \bar{x} \bar{y}}{n-1}, \\
s_{x}^{2}=s_{x x} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right)-n \bar{x}^{2}}{n-1} .
\end{aligned}
$$

The LS estimate of the slope is hence

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}=\frac{s_{x y}}{s_{x}^{2}}=\frac{\text { sample covariance of } X \& Y}{\text { sample variance of } X} .
$$

Formulas for the Least Square Estimate for the Slope

Recall the shortcut formulas for sample covariance and variance:

$$
\begin{aligned}
s_{x y} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}=\frac{\left(\sum_{i=1}^{n} x_{i} y_{i}\right)-n \bar{x} \bar{y}}{n-1}, \\
s_{x}^{2}=s_{x x} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right)-n \bar{x}^{2}}{n-1} .
\end{aligned}
$$

The LS estimate of the slope is hence

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}=\frac{s_{x y}}{s_{x}^{2}}=\frac{\text { sample covariance of } X \& Y}{\text { sample variance of } X} .
$$

Another formula:

$$
\widehat{\beta}_{1}=\frac{s_{x y}}{s_{x}^{2}}=\underbrace{\left(\frac{s_{x y}}{s_{x} s_{y}}\right)}_{=r} \frac{s_{y}}{s_{x}}=r \frac{s_{y}}{s_{x}}, \quad \text { where } r=\frac{s_{x y}}{s_{x} s_{y}}=\binom{\text { sample }}{\text { correlation }}
$$

Properties of the LS Regression Line

$$
\begin{aligned}
\widehat{y} & =\overbrace{\widehat{\beta}_{0}}^{=\bar{y}-\widehat{\beta}_{1} \bar{x}}+\widehat{\beta}_{1} \cdot x \\
\Leftrightarrow \widehat{y}-\bar{y} & =\widehat{\beta}_{1} \cdot(x-\bar{x})=r \frac{s_{y}}{s_{x}}(x-\bar{x}) \\
\Leftrightarrow \underbrace{\frac{s^{\text {score of }} \bar{y}}{s_{y}}}_{z} & =r \cdot \underbrace{\frac{x-\bar{x}}{s_{x}}}_{z \text {-score of } x}
\end{aligned}
$$

- The LS regression line always passes through (\bar{x}, \bar{y})
- As x goes up by 1 SD of x, the predicted value \widehat{y} only goes up by $r \times$ (SD of y)
- When $r=0$, the LS regression line is horizontal $y=\bar{y}$, and the predicted value \hat{y} is always the mean \bar{y}

Example: Armor Strength — Least Square

$$
\begin{aligned}
n & =20 \\
\bar{x} & =733.4 \\
\bar{y} & =79.34 \\
\sum x_{i}^{2} & =10792614 \\
\sum y_{i}^{2} & =130028 \\
\sum x_{i} y_{i} & =1172708
\end{aligned}
$$

The LS estimates are

$$
\begin{aligned}
\widehat{\beta}_{1} & =\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}} \\
& =\frac{1172708-20(733.4)(79.34)}{10792614-20(733.4)^{2}}=\frac{8949}{35103} \approx 0.2549 \\
\widehat{\beta}_{0}=\bar{y}-\widehat{\beta}_{1} \bar{x} & =79.34-0.2549(733.4) \approx-107.63
\end{aligned}
$$

Example: Armor Strength — Least Square Line (2)

	Velocity (x)	Penetration Area (y)
mean	$\bar{x}=733.4$,	$\bar{y}=79.34$
SD	$s_{x} \approx 42.983$	$s_{y}=14.745$
	correlation	$r=0.7431$

The slope and the intercept of the least square regression line is

$$
\begin{aligned}
\text { slope } & =\widehat{\beta}_{1}=r \frac{s_{y}}{s_{x}}=0.7431 \times \frac{14.745}{42.983}=0.2549 \\
\text { intercept } & =\widehat{\beta}_{0}=\bar{y}-\widehat{\beta}_{1} \cdot \bar{x}=79.34-0.2549(733.4) \approx-107.6
\end{aligned}
$$

The equation of the least square regression line is thus

$$
\widehat{y}=-107.6-0.2549 x
$$

Least Square Regression in \mathbf{R}

Regression in R is as simple as $\operatorname{lm}(y \sim x)$, in which lm stands for "linear models".

```
armor = read.table(
    "http://www.stat.uchicago.edu/~yibi/s234/ArmorStrength.txt",
    header=TRUE)
lm(penetration.area ~ velocity, data=armor)
```

Call:
$\operatorname{lm}(f o r m u l a=$ penetration.area \sim velocity, data $=$ armor)

Coefficients:

```
(Intercept) velocity
    -107.632 0.255
```

The R output says the least square regression line is penetration area $\left(\mathrm{mm}^{2}\right)=-107.632+0.255$ (firing velocity in m / s).

Our calculation is slightly off due to rounding errors.

Interpretation of Slope

The slope indicates how much the response changes associated with a unit change in x on average (may NOT be causal, unless the data are from an experiment).
penetration area $\left(\mathrm{mm}^{2}\right)=-107.632+0.255$ (firing velocity in m / s).

- When the firing velocity increases by $1 \mathrm{~m} / \mathrm{s}$ the penetration area is estimated to increase by $0.255 \mathrm{~mm}^{2}$ on average.
- When the firing velocity increases by $10 \mathrm{~m} / \mathrm{s}$ the penetration area is estimated to increase by $2.55 \mathrm{~mm}^{2}$ on average.

Interpretation of the Intercept

The intercept is the predicted value of response when $x=0$, which might have no practical meaning if $x=0$ is not a possible value. penetration area $\left(\mathrm{mm}^{2}\right)=-107.632+0.255$ (firing velocity in m / s).
e.g., when the firing velocity is $0 \mathrm{~m} / \mathrm{s}$, the predicted penetration area is $-107.632 \mathrm{~mm}^{2}$?

- extrapolation, not reliable

R: Adding the LS Regression Line on the Scatterplot

```
p = ggplot(armor, aes(x=velocity, y=penetration.area)) +
    geom_point(col=rgb(0,0,1,0.5), size=2) +
    xlab("Velocity (m/s)") +
    ylab("Penetration Area (mm^2)")
```

p + geom_smooth(method='lm', col="red")
p + geom_smooth(method='lm', col="red", se=FALSE)

Prediction

One can plug in an x-value to the equation of the least-square regression line to predict the response y.
e.g., when the firing velocity is $750 \mathrm{~m} / \mathrm{s}$, the predicted penetration area in mm^{2} is

$$
\widehat{y}=-107.632+0.255 \times 750=83.57 \mathrm{~mm}^{2}
$$

Extrapolation

Applying a model estimate to values outside of the realm of the original data is called extrapolation.

The variable $X=$ velocity range from 660 to $800 \mathrm{~m} / \mathrm{s}$. Prediction made using X-values outside of this range is extrapolation.

Hypothesis Tests \& Confidence Intervals for β_{1} and β_{0} (Section 12.3)

Sample Regression Line v.s. Population Regression Line

$y=\beta_{0}+\beta_{1} x$	$y=\widehat{\beta}_{0}+\widehat{\beta}_{1} x$
least-square regression line of the population	least-square regression line of the sample
fixed	random, changes from sample to sample
unknown	can be calculated from sample

Sample Regression Line v.s. Population Regression Line

Sample Regression Line v.s. Population Regression Line

Sample Regression Line v.s. Population Regression Line

How Close Is $\widehat{\beta}_{1}$ to β_{1} ?

Under the SLR model: $y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}$, one can show that

- $\mathrm{E}\left(\widehat{\beta}_{1}\right)=\beta_{1} \ldots \ldots \ldots \ldots \ldots . \widehat{\beta}_{1}$ is an unbiased estimate of β_{1}
- $\operatorname{Var}\left(\widehat{\beta}_{1}\right)=\frac{\sigma^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sigma^{2}}{(n-1) s_{x}^{2}}$.

How Close Is $\widehat{\beta}_{1}$ to β_{1} ?

Under the SLR model: $y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}$, one can show that

- $\mathrm{E}\left(\widehat{\beta}_{1}\right)=\beta_{1} \ldots \ldots \ldots \ldots \ldots . \widehat{\beta}_{1}$ is an unbiased estimate of β_{1}
- $\operatorname{Var}\left(\widehat{\beta}_{1}\right)=\frac{\sigma^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sigma^{2}}{(n-1) s_{x}^{2}}$.
$\widehat{\beta}_{1}$ will be closer to β_{1} if

1) the sample size n is larger, or 2) X has greater variability

Proof of the Unbiasedness of $\widehat{\beta}_{1}(1)$

Recall the formula for the LS estimate for slope $\widehat{\beta}_{1}$ is

$$
\widehat{\beta}_{1}=\frac{s_{x y}}{s_{x}^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

To find the expected value of $\widehat{\beta}_{1}$, we will first show an alternative
formula for it: $\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$.

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}-\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \bar{y} \\
& =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}-\bar{y} \underbrace{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)}_{=0} \\
& =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}
\end{aligned}
$$

This proves the alternative formula: $\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$.

Proof of the Expected Value of $\widehat{\beta}_{1}$ (2)

Under the SLR model: $y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}$, we know
$\mathrm{E}\left[y_{i}\right]=\beta_{0}+\beta_{1} x_{i}$. Hence,
$\mathrm{E}\left[\widehat{\beta}_{1}\right]=\mathrm{E}\left[\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right]=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \mathrm{E}\left[y_{i}\right]}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(\beta_{0}+\beta_{1} x_{i}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$
The numerator $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(\beta_{0}+\beta_{1} x_{i}\right)$ equals

$$
\begin{aligned}
\beta_{0} \overbrace{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)}^{=0} & +\beta_{1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i} \\
& =\beta_{1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)+\beta_{1} \bar{x} \underbrace{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)}_{=0} \\
& =\beta_{1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
\end{aligned}
$$

Putting the numerator back to $\mathrm{E}\left[\widehat{\beta}_{1}\right]$, we get
$\mathrm{E}\left[\widehat{\beta}_{1}\right]=\frac{\beta_{1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\beta_{1}$. So $\widehat{\beta}_{1}$ is an unbiased estimator for β_{1}.

Proof of Variance of $\widehat{\beta}_{1}$

For the SLR model $y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}$ as x_{i} 's are regarded as fixed numbers and ε_{i} 's are indep. with $\operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}$, we know that y_{i} 's are also indep. with $\operatorname{Var}\left(y_{i}\right)=\sigma^{2}$.

Recall that for independent random variables $Y_{1}, Y_{2}, \ldots, Y_{n}$, and fixed numbers $c_{1}, c_{2}, \ldots, c_{n}$ the variance has the property:
$\operatorname{Var}\left(c_{1} Y_{1}+c_{2} Y_{2}+\ldots+c_{n} Y_{n}\right)=c_{1}^{2} \operatorname{Var}\left(Y_{1}\right)+c_{2}^{2} \operatorname{Var}\left(Y_{2}\right)+\ldots+c_{n}^{2} \operatorname{Var}\left(Y_{n}\right)$
Apply the property above to the variance of $\widehat{\beta}_{1}$ with $c_{j}=\frac{x_{j}-\bar{x}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$, we get

$$
\begin{aligned}
\operatorname{Var}\left(\widehat{\beta}_{1}\right) & =\operatorname{Var}\left(\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)=\operatorname{Var}\left(\sum_{i=1}^{n} c_{i} y_{i}\right)=\sum_{i=1}^{n} c_{i}^{2} \operatorname{Var}\left(y_{i}\right)=\sigma^{2} \sum_{i=1}^{n} c_{i}^{2} \\
& =\sigma^{2} \sum_{i=1}^{n}\left(\frac{\left(x_{j}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)^{2}=\sigma^{2} \frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)^{2}}=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} .
\end{aligned}
$$

Sampling Distribution of the Intercept $\widehat{\beta}_{0}$

Under the SLR model, the estimate of the intercept

$$
\widehat{\beta}_{0}=\bar{y}-\widehat{\beta}_{1} \bar{x}
$$

is also unbiased and (approx.) normal with the variance

$$
\operatorname{Var}\left(\widehat{\beta}_{0}\right)=\sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)
$$

What is the intuition here?

$$
\begin{aligned}
\operatorname{Var}\left(\widehat{\beta}_{0}\right)=\operatorname{Var}\left(\bar{y}-\widehat{\beta}_{1} \bar{x}\right) & =\operatorname{Var}(\bar{y})-2 \bar{x} \overbrace{\operatorname{Cov}\left(\bar{y}, \widehat{\beta}_{1}\right)}^{=0}+\bar{x}^{2} \operatorname{Var}\left(\widehat{\beta}_{1}\right) \\
& =\frac{\sigma^{2}}{n}+0+\bar{x}^{2} \frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
\end{aligned}
$$

- \bar{y} and $\widehat{\beta}_{1}$ are uncorrelated because the slope $\left(\widehat{\beta}_{1}\right)$ is invariant if you shift the response up or down (\bar{y}).

Covariance of $\widehat{\beta}_{1}$ and $\widehat{\beta}_{0}$

The estimates for the slope and the intercept are negatively correlated and their covariance is

$$
\begin{aligned}
\operatorname{Cov}\left(\widehat{\beta}_{1}, \widehat{\beta}_{0}\right) & =\operatorname{Cov}\left(\widehat{\beta}_{1}, \bar{y}-\widehat{\beta}_{1} \bar{x}\right) \\
& =\underbrace{\operatorname{Cov}\left(\widehat{\beta}_{1}, \bar{y}\right)}_{=0}-\bar{x} \underbrace{\operatorname{Cov}\left(\widehat{\beta}_{1}, \widehat{\beta}_{1}\right)}_{=\operatorname{Var}\left(\widehat{\beta}_{1}\right)} \\
& =0-\bar{x} \operatorname{Var}\left(\widehat{\beta}_{1}\right)=\frac{-\sigma^{2} \bar{x}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
\end{aligned}
$$

- Usually, if the slope estimate is too high, the intercept estimate is too low

Estimate of σ^{2} - Variance of the Errors ε_{i}.

- A naive estimate of σ^{2} is the sample variance of the ε_{i}

$$
\widehat{\sigma}^{2}=\frac{\sum\left(\varepsilon_{i}-\bar{\varepsilon}\right)^{2}}{n-1} \quad \text { where } \quad \varepsilon_{i}=y_{i}-\beta_{0}-\beta_{1} x_{i}
$$

However, this is not possible as β_{0} and β_{1} are unknown.

Estimate of σ^{2} - Variance of the Errors ε_{i}.

- A naive estimate of σ^{2} is the sample variance of the ε_{i}

$$
\widehat{\sigma}^{2}=\frac{\sum\left(\varepsilon_{i}-\bar{\varepsilon}\right)^{2}}{n-1} \quad \text { where } \quad \varepsilon_{i}=y_{i}-\beta_{0}-\beta_{1} x_{i}
$$

However, this is not possible as β_{0} and β_{1} are unknown.

- We can estimate β_{0} and β_{1} with $\widehat{\beta}_{0}$ and $\widehat{\beta}_{1}$ and approximate the errors ε_{i} with the residuals

$$
e_{i}=y_{i}-\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i}\right)=y_{i}-\widehat{y}_{i}
$$

We use the "sample variance" of the residuals e_{i} to estimate σ^{2} :

$$
\widehat{\sigma}^{2}=\frac{\sum\left(e_{i}-\bar{e}\right)^{2}}{n-2}=\frac{\sum e_{i}^{2}}{n-2}=\frac{\sum\left(y_{i}-\widehat{y}_{i}\right)^{2}}{n-2}
$$

Estimate of σ^{2} - Variance of the Errors ε_{i}.

- A naive estimate of σ^{2} is the sample variance of the ε_{i}

$$
\widehat{\sigma}^{2}=\frac{\sum\left(\varepsilon_{i}-\bar{\varepsilon}\right)^{2}}{n-1} \quad \text { where } \quad \varepsilon_{i}=y_{i}-\beta_{0}-\beta_{1} x_{i}
$$

However, this is not possible as β_{0} and β_{1} are unknown.

- We can estimate β_{0} and β_{1} with $\widehat{\beta}_{0}$ and $\widehat{\beta}_{1}$ and approximate the errors ε_{i} with the residuals

$$
e_{i}=y_{i}-\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i}\right)=y_{i}-\widehat{y}_{i}
$$

We use the "sample variance" of the residuals e_{i} to estimate σ^{2} :

$$
\widehat{\sigma}^{2}=\frac{\sum\left(e_{i}-\bar{e}\right)^{2}}{n-2}=\frac{\sum e_{i}^{2}}{n-2}=\frac{\sum\left(y_{i}-\widehat{y}_{i}\right)^{2}}{n-2}
$$

- We will show in the next lecture that $\bar{e}=0$

Estimate of σ^{2} - Variance of the Errors ε_{i}.

- A naive estimate of σ^{2} is the sample variance of the ε_{i}

$$
\widehat{\sigma}^{2}=\frac{\sum\left(\varepsilon_{i}-\bar{\varepsilon}\right)^{2}}{n-1} \quad \text { where } \quad \varepsilon_{i}=y_{i}-\beta_{0}-\beta_{1} x_{i}
$$

However, this is not possible as β_{0} and β_{1} are unknown.

- We can estimate β_{0} and β_{1} with $\widehat{\beta}_{0}$ and $\widehat{\beta}_{1}$ and approximate the errors ε_{i} with the residuals

$$
e_{i}=y_{i}-\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i}\right)=y_{i}-\widehat{y}_{i}
$$

We use the "sample variance" of the residuals e_{i} to estimate σ^{2} :

$$
\widehat{\sigma}^{2}=\frac{\sum\left(e_{i}-\bar{e}\right)^{2}}{n-2}=\frac{\sum e_{i}^{2}}{n-2}=\frac{\sum\left(y_{i}-\widehat{y}_{i}\right)^{2}}{n-2}
$$

- We will show in the next lecture that $\bar{e}=0$
- We divide by $n-2$, not $n-1$ or n as We are not able to estimate error unless we have at least 3 observations

Standard Error (SE) of the Slope and the Intercept

The standard deviation (SD) of $\widehat{\beta}_{1}$ and $\widehat{\beta}_{0}$ are the square-root of their variances

$$
\mathrm{SD}\left(\widehat{\beta}_{1}\right)=\frac{\sigma}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}}, \quad \mathrm{SD}\left(\widehat{\beta}_{0}\right)=\sigma \sqrt{\frac{1}{n}+\frac{\bar{x}^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}}
$$

If the unknown σ is replaced with the estimate

$$
\widehat{\sigma}=\sqrt{\frac{\sum\left(y_{i}-\widehat{y}_{i}\right)^{2}}{n-2}},
$$

The estimated SD's are called the standard error (SE)'s:

$$
\mathrm{SE}\left(\widehat{\beta}_{1}\right)=\frac{\widehat{\sigma}}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}}, \quad \mathrm{SE}\left(\widehat{\beta}_{0}\right)=\widehat{\sigma} \sqrt{\frac{1}{n}+\frac{\bar{x}^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}} .
$$

Sampling Distributions of $\widehat{\beta}_{1}$ and $\widehat{\beta}_{0}$

The sampling distributions of $\widehat{\beta}_{1}$ and $\widehat{\beta}_{0}$ are both normal.

$$
\begin{array}{r}
\widehat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right) \Rightarrow z=\frac{\widehat{\beta}_{1}-\beta_{1}}{\sigma / \sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}} \sim N(0,1) \\
\widehat{\beta}_{0} \sim N\left(\beta_{0}, \sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right)\right) \Rightarrow z=\frac{\widehat{\beta}_{0}-\beta_{0}}{\sigma \sqrt{\frac{1}{n}+\frac{\hat{x}^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}}} \sim N(0,1)
\end{array}
$$

This is (approx.) valid

- either if the errors ε_{i} are i.i.d. $N\left(0, \sigma^{2}\right)$
- or if the errors ε_{i} are independent and the sample size n is large

If the unknown σ is replaced by $\widehat{\sigma}, z$ become the t-statistic with a t-distribution with $\mathrm{df}=n-2$.
$T_{1}=\frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{\sigma} / \sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}}=\frac{\widehat{\beta}_{1}-\beta_{1}}{\operatorname{SE}\left(\widehat{\beta}_{1}\right)} \sim t_{n-2}, T_{0}=\frac{\widehat{\beta}_{0}-\beta_{0}}{\widehat{\sigma} \sqrt{\frac{1}{n}+\frac{\widehat{x}^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}}}=\frac{\widehat{\beta}_{0}-\beta_{0}}{\operatorname{SE}\left(\widehat{\beta}_{0}\right)} \sim t_{n-2}$.

Confidence Intervals for β_{0} and β_{1}

The $(1-\alpha)$ confidence intervals for β_{0} and β_{1} are respectively

$$
\widehat{\beta}_{0} \pm t_{\alpha / 2, n-2} \operatorname{SE}\left(\widehat{\beta}_{0}\right) \quad \text { and } \quad \widehat{\beta}_{1} \pm t_{\alpha / 2, n-2} \operatorname{SE}\left(\widehat{\beta}_{1}\right)
$$

where $t_{\alpha / 2, n-2}$ is the value such that $P\left(|T|<t_{\alpha / 2, n-2}\right)=1-\alpha$ for $T \sim t_{n-2}$.

In R, $t_{\alpha / 2, n-2}=\mathrm{qt}($ alpha $/ 2, \mathrm{df}=\mathrm{n}-2$, lower.tail=F).

		$\begin{array}{r} 90 \% \mathrm{Cl} \\ t_{0.1 / 2, \mathrm{df}} \\ \downarrow \end{array}$	$\begin{array}{r} 95 \% \mathrm{Cl} \\ t_{0.05 / 2, \mathrm{df}} \\ \downarrow \end{array}$	$\begin{array}{r} 99 \% \mathrm{Cl} \\ t_{0.01 / 2, \mathrm{df}} \\ \downarrow \end{array}$			
	0.1	0.05	0.025	0.01	0.005	0.001	0.0005
v	3.078	6.314	12.706	31.821	63.657	318.309	636.619
	1.886	2.920	4.303	6.965	9.925	22.327	31.599
	1.638	2.353	3.182	4.541	5.841	10.215	12.924
	1.533	2.132	2.776	3.747	4.604	7.173	8.610
	1.476	2.015	2.571	3.365	4.032	5.893	6.869
	1.440	1.943	2.447	3.143	3.707	5.208	5.959

Tests for β_{0} and β_{1}

To test the hypotheses $\mathrm{H}_{0}: \beta_{0}=c$ or $\mathrm{H}_{0}: \beta_{1}=c$ the t-statistic are respectively

$$
t=\frac{\widehat{\beta}_{0}-c_{0}}{\operatorname{SE}\left(\widehat{\beta}_{0}\right)} \sim t_{n-2}, \quad \text { and } \quad t=\frac{\widehat{\beta}_{1}-c_{1}}{\operatorname{SE}\left(\widehat{\beta}_{1}\right)} \sim t_{n-2}
$$

The P-value can be computed based on H_{a} :

Example: Armor Strength

Soldiers depend on their body armor for protection. Specimens of UHMWPE body armor were shot with a 7.62 mm round at various firing velocities. The penetration areas were recorded ${ }^{a}$.
a"Testing of Body Armor Materials-Phase III", 2012, by the US Army and the National Research Council

Velocity $(\mathrm{m} / \mathrm{s})$	Penetration Area $\left(\mathrm{mm}^{2}\right)$
670	66.4
675	64.5
679	63.6
681	72.9
694	79.1
699	76.7
699	65.5
708	68.0
726	57.8
732	72.4
738	78.6
740	87.9
762	92.6
762	83.0
768	79.0
780	75.3
792	83.4
786	100.7
790	106.6
787	112.8

Least Square Regression in R

Regression in R is as simple as $\operatorname{lm}(y \sim x)$, in which lm stands for "linear models".

```
armor = read.table(
    "http://www.stat.uchicago.edu/~yibi/s234/ArmorStrength.txt",
    header=TRUE)
lm(penetration.area ~ velocity, data=armor)
Call:
lm(formula = penetration.area ~ velocity, data = armor)
Coefficients:
(Intercept) velocity
    -107.632 0.255
```

> lmarmor = lm(penetration.area ~ velocity, data=armor)
> summary (lmarmor)

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) -107.6324 $39.7450 \quad-2.71 \quad 0.01440$
$\begin{array}{lllll}\text { velocity } & 0.2549 & 0.0541 & 4.71 & 0.00017\end{array}$

Residual standard error: 10.1 on 18 degrees of freedom Multiple R-squared: 0.552, Adjusted R-squared: 0.527 F-statistic: 22.2 on 1 and 18 DF, p-value: 0.000174
"Residual standard error: 10.1 " in the R output is the estimate for $\sigma=\mathrm{SD}\left(\varepsilon_{i}\right), \widehat{\sigma}=10.1$.

That is, the variance $\sigma^{2}=\operatorname{Var}\left(\varepsilon_{i}\right)$ for the noise term ε_{i} in the SLR model: $y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}$ is estimated to be $\widehat{\sigma}^{2}=10.1^{2}$.

The Summary Output

Coefficients:

	Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
(Intercept)	-107.6324	39.7450	-2.71	0.01440
velocity	0.2549	0.0541	4.71	0.00017

- The column "estimate" shows the LS estimates for the intercept $\widehat{\beta}_{0}=-107.6324$ and the slope $\widehat{\beta}_{1}=0.2549$
- The column "std. error" gives:

$$
\mathrm{SE}\left(\widehat{\beta}_{0}\right)=39.7450, \quad \mathrm{SE}\left(\widehat{\beta}_{1}\right)=0.0541
$$

R Tests Whether β_{1} and β_{0} Equal 0 Automatically

Coefficients:

	Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
(Intercept)	-107.6324	39.7450	-2.71	0.01440
velocity	0.2549	0.0541	4.71	0.00017

- The column \mathbf{t} value shows the \mathbf{t}-statistic for testing $\mathrm{H}_{0}: \beta_{0}=0$ and $\mathrm{H}_{0}: \beta_{1}=0$,

$$
t_{0}=\frac{\widehat{\beta}_{0}-0}{\operatorname{SE}\left(\widehat{\beta}_{0}\right)}=\frac{-107.6350}{37.7450}=-2.71, t_{1}=\frac{\widehat{\beta}_{1}-0}{\operatorname{SE}\left(\widehat{\beta}_{1}\right)}=\frac{0.2549}{0.0541}=4.71
$$

which are simply the ratios of the first two columns

- The column "p.value" shows the 2 -sided P-values for testing $\mathrm{H}_{0}: \beta_{0}=0$ and $\mathrm{H}_{0}: \beta_{1}=0$.
- Testing $\mathrm{H}_{0}: \beta_{1}=0$ is equivalent to testing whether the penetration area is linearly related to the velocity. The small P-value 0.00017 asserts the relation is significant

Example: Testing Whether β_{1} is a Non-Zero Value

To test whether β_{1} equal to some non-zero value c_{1}, one has to calculate the t-statistic and P-value himself.

Ex. To see if the penetration area increases by $0.1 \mathrm{~mm}^{2}$ on average when the firing velocity increases by $1 \mathrm{~m} / \mathrm{s}$ i.e., $\beta_{1}=0.1$.

	Estimate	Std.Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	-107.6324	39.7450	-2.71	0.01440
velocity	0.2549	0.0541	4.71	<0.00017

To test $H_{0}: \beta_{1}=0.1$ v.s. $H_{A}: \beta_{1}>0.1$, the t-statistic is

$$
t_{1}=\frac{\widehat{\beta}_{1}-0.1}{\operatorname{SE}\left(\widehat{\beta}_{1}\right)}=\frac{0.2549-0.1}{0.0541} \approx 2.863 \text { with df }=20-2=18
$$

The upper one-sided p-value is pt(2.863, df = 20-2, lower.tail=F) ≈ 0.0052.

Conclusion: When the firing velocity increases by $1 \mathrm{~m} / \mathrm{s}$, the penetration area increases significantly more than $0.1 \mathrm{~mm}^{2}$ on average.

Example: Confidence Interval for β_{1}

$$
\begin{array}{lrrrr}
& \text { Estimate } & \text { Std.Error } & \text { t value } & \operatorname{Pr}(>|t|) \\
\text { (Intercept) } & -107.6324 & 39.7450 & -2.71 & 0.01440 \\
\text { velocity } & 0.2549 & 0.0541 & 4.71 & <0.00017
\end{array}
$$

The $95 \% \mathrm{Cl}$ for the slope β_{1} is

$$
\begin{aligned}
\widehat{\beta}_{1} \pm t_{0.05 / 2,20-2} \mathrm{SE}\left(\widehat{\beta}_{1}\right) & =0.2549 \pm 2.101 \times 0.0541 \\
& =0.2549 \pm 0.1137 \approx(0.1412,0.3686)
\end{aligned}
$$

where $t_{0.05 / 2,20-2} \approx 2.101$ for a $95 \% \mathrm{Cl}$ can be found in R or using t-table for $\mathrm{df}=n-2=20-2=18$.
qt($0.05 / 2, \mathrm{df}=20-2$, lower.tail=F)
[1] 2.101
qt (1-0.05/2, df=20-2)

α	0.1	0.05	0.025	0.01	0.005	0.001	0.0005
v	18	1.330	1.734	2.101	2.552	2.878	3.610

Interpretation: With 95\% confidence, penetration area increases by 0.1412 to $0.3686 \mathrm{~mm}^{2}$ on average when firing velocity increases by 1 m / s.

Finding Cls for Coefficients Using confint()

The confint () command can produce confidence intervals for the coefficients β_{0} and β_{1} for us

```
confint(lmarmor)
```

 2.5 \% 97.5 \%
 (Intercept) -191.1335 -24.1314
velocity $\quad 0.1413 \quad 0.3686$
confint (lmarmor, level $=0.95$)
2.5 \% 97.5%
(Intercept) -191.1335 -24.1314
velocity $0.1413 \quad 0.3686$
confint(lmarmor, level = 0.95, "velocity")
2.5 \% 97.5 \%
velocity 0.14130 .3686
confint(lmarmor, level = 0.95, "(Intercept)")
2.5 \% 97.5 \%
(Intercept) -191.1-24.13

Two Kinds of Conditional Predictions Problems (Section 12.4)

Two Kinds of Conditional Predictions Problems

There are two kinds of conditional prediction problems of the response Y given $X=x_{0}$ based on a SLR model $Y=\beta_{0}+\beta_{1} X+\varepsilon$:

- when X is known to be x_{0}, estimate the mean response $\mathrm{E}\left[Y \mid X=x_{0}\right]=\beta_{0}+\beta_{1} x_{0}$
- when X is known to be x_{0}, predict the response for one specific observation $Y=\beta_{0}+\beta_{1} x_{0}+\varepsilon$

Two Kinds of Conditional Predictions Problems

There are two kinds of conditional prediction problems of the response Y given $X=x_{0}$ based on a SLR model $Y=\beta_{0}+\beta_{1} X+\varepsilon$:

- when X is known to be x_{0}, estimate the mean response

$$
\mathrm{E}\left[Y \mid X=x_{0}\right]=\beta_{0}+\beta_{1} x_{0}
$$

- when X is known to be x_{0}, predict the response for one specific observation $Y=\beta_{0}+\beta_{1} x_{0}+\varepsilon$

For the armor strength example, one may want to

- estimate the average penetration area on the armor when shot at a firing speed of $x_{0}=700 \mathrm{~m} / \mathrm{s}$, which is $\beta_{0}+700 \beta_{1}$
- predict penetration area on the armor for one shot at a firing speed of of $x_{0}=700 \mathrm{~m} / \mathrm{s}$, which is $\beta_{0}+700 \beta_{1}+\varepsilon$.

Estimation v.s. Prediction

The first one is an estimation problem as $\beta_{0}+\beta_{1} x_{0}$ only involve fixed parameters β_{0}, β_{1}, and x_{0}.

The second one is a prediction problem as $\beta_{0}+\beta_{1} x_{0}+\varepsilon$ involve a random number ε

Estimated Value and Predicted Value

In the first one,

$$
\mathrm{E}\left[Y \mid X=x_{0}\right]=\beta_{0}+\beta_{1} x_{0} \quad \text { is estimated by } \widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0} .
$$

where the unknown β_{0} and β_{1} are replaced by their LS estimates.

In the second one,

$$
Y=\beta_{0}+\beta_{1} x_{0}+\varepsilon \quad \text { is predicted by } \quad \widehat{Y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0}+0
$$

The noise ε for a future observation is predicted to be its mean 0 since it's independent of all observed $\left(x_{i}, y_{i}\right)$'s. We cannot make a better prediction for ε from the observed $\left(x_{i}, y_{i}\right)$'s.

The Two Prediction Problems Differ in the Uncertainty!

For estimating $\mathrm{E}\left[Y \mid X=x_{0}\right]=\beta_{0}+\beta_{1} x_{0}$, the variance for the estimate $\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0}$ can be shown to be

$$
\begin{aligned}
\operatorname{Var}\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0}\right) & =\mathrm{E}\left[\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0}-\beta_{0}-\beta_{1} x_{0}\right)^{2}\right] \\
& =\sigma^{2}\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)
\end{aligned}
$$

To predict $Y=\beta_{0}+\beta_{1} x_{0}+\varepsilon$, we need to include the extra variability from the noise ε.

$$
\begin{aligned}
\mathrm{E}\left[(\widehat{Y}-Y)^{2}\right] & \left.=\mathrm{E}\left[\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0}-\beta_{0}-\beta_{1} x_{0}-\varepsilon\right)^{2}\right] \\
& =\operatorname{Var}\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0}\right)+\operatorname{Var}(\varepsilon) \\
& =\sigma^{2}\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)+\sigma^{2}
\end{aligned}
$$

As n gets large, $\operatorname{Var}\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0}\right)$ would go down to 0 but $\mathrm{E}\left[(\widehat{Y}-Y)^{2}\right]$ only approaches σ^{2}.

What Affects the Accuracy of Prediction?

Recall the variances for the two prediction problems are

$$
\begin{cases}\sigma^{2}\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right) & \text { for estimating } \mathrm{E}\left[Y \mid X=x_{0}\right]=\beta_{0}+\beta_{1} x_{0} \\ \sigma^{2}\left(1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\overline{x^{2}}\right.}\right) & \text { to predict } Y \text { when } X=x_{0}\end{cases}
$$

An accurate prediction (less variance) comes from

- small σ^{2} (i.e., small noise ε 's)
- large sample size n
- large $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ (more spread in predictors)
- small $\left(x_{0}-\bar{x}\right)^{2}$

Confidence Intervals and Prediction Intervals

The $100(1-\alpha) \%$ confidence interval for $\beta_{0}+\beta_{1} x_{0}$ is

$$
\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0} \pm t_{\alpha / 2, n-2} \widehat{\sigma} \sqrt{\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}
$$

The $100(1-\alpha) \%$ prediction interval for $Y=\beta_{0}+\beta_{1} x_{0}+\varepsilon$ is

$$
\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0} \pm t_{\alpha / 2, n-2} \widehat{\sigma} \sqrt{1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}
$$

Confidence Intervals and Prediction Intervals in \mathbf{R}

```
predict(lmarmor, data.frame(velocity=700), interval="confidence",
    level=0.95)
    fit lwr upr
1 70.83 64.73 76.92
predict(lmarmor, data.frame(velocity=700), interval="prediction",
    level=0.95)
    fit lwr upr
170.8348.67 92.98
```

- When the firing velocity is $700 \mathrm{~m} / \mathrm{s}$, the penetration area is $70.83 \mathrm{~mm}^{2}$ on average, and the 95% confidence interval is 64.73 to $76.92 \mathrm{~mm}^{2}$.
- When the firing velocity is $700 \mathrm{~m} / \mathrm{s}$, the penetration area for one shot 48.67 to $92.98 \mathrm{~mm}^{2}$ with 95% confidence.
- The prediction interval for a single shot is wider.

The plot below shows the 95\% confidence intervals and the 95\% prediction intervals at different values of x_{0}.

Both the confidence intervals and the prediction intervals are narrowest when $x_{0}=\bar{x}$.
geom_smooth(method='lm') in ggplot() by default includes the 95\% confidence intervals for estimating $\mathrm{E}\left(y \mid X=x_{0}\right)$.

```
ggplot(armor, aes(x=velocity, y=penetration.area)) +
    geom_point() +
    geom_smooth(method='lm') +
    xlab("Velocity (m/s)") +
    ylab("Penetration Area (mm^2)")
```


Multiple R-Squared = Coefficient of Determination

Properties of Residuals (1)

Recall the LS estimate ($\left.\widehat{\beta}_{0}, \widehat{\widehat{\beta}}_{1}\right)$ that minimizes

$$
L\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}\right)^{2}
$$

is obtained by setting the derivatives of L with respect to $\widehat{\beta}_{0}$ and $\widehat{\beta}_{1}$ to 0

$$
\begin{gathered}
\frac{\partial L}{\partial \widehat{\beta}_{0}}=\sum_{i=1}^{n}(\underbrace{y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}}_{y_{i}-\widehat{y}_{i}=e_{i}=\text { residual }})=0 \text { and } \\
\frac{\partial L}{\partial \widehat{\beta}_{1}}=\sum_{i=1}^{n} x_{i} \overbrace{y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}})=0,
\end{gathered}
$$

The residuals e_{i} hence have the properties

$$
\underbrace{\sum_{i=1}^{n} e_{i}=0}_{\text {Residuals add up to } 0 .}, \quad \underbrace{\sum_{i=1}^{n} x_{i} e_{i}=0}_{\text {Residuals are orthogonal to } x \text {-variable. }}
$$

Properties of Residuals (2)

The two properties combined imply that residuals have 0 correlation with the explanatory variable X since

$$
\operatorname{Cov}(X, e)=\frac{1}{n-1}(\underbrace{\sum_{i=1}^{n} x_{i} e_{i}}_{=0}-n \bar{x} \underbrace{\bar{e}}_{=0})=0
$$

Sum of Squares

Observe that

$$
y_{i}-\bar{y}=\underbrace{\left(\hat{y}_{i}-\bar{y}\right)}_{a}+\underbrace{\left(y_{i}-\widehat{y}_{i}\right)}_{b}
$$

Squaring up both sides using the identity $(a+b)^{2}=a^{2}+b^{2}+2 a b$, we get

$$
\left(y_{i}-\bar{y}\right)^{2}=\underbrace{\left(\widehat{y}_{i}-\bar{y}\right)^{2}}_{a^{2}}+\underbrace{\left(y_{i}-\widehat{y}_{i}\right)^{2}}_{b^{2}}+\underbrace{2\left(\widehat{y}_{i}-\bar{y}\right)\left(y_{i}-\widehat{y}_{i}\right)}_{2 a b}
$$

Summing up over all the cases $i=1,2, \ldots, n$, we get

$$
\overbrace{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}^{\text {SST }}=\overbrace{\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}}^{\text {SSR }}+\overbrace{\sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2}}^{\text {SSE }}+2 \underbrace{\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)\left(y_{i}-\widehat{y}_{i}\right)}_{=0 \text {, see next page. }}
$$

Why $\sum_{i=1}^{n}\left(\widehat{y}_{i}-\overline{-}\right)\left(y_{i}-\widehat{y}_{i}\right)=0$?

$$
\begin{aligned}
\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)(\underbrace{y_{i}-\widehat{y}_{i}}_{=e_{i}}) & =\sum_{i=1}^{n} \widehat{y}_{i} e_{i}-\sum_{i=1}^{n} \bar{y} e_{i} \\
& =\sum_{i=1}^{n}\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i}\right) e_{i}-\sum_{i=1}^{n} \bar{y} e_{i} \\
& =\widehat{\beta}_{0} \underbrace{\sum_{i=1}^{n} e_{i}}_{=0}+\widehat{\beta}_{1} \underbrace{\sum_{i=1}^{n} x_{i} e_{i}}_{=0}-\bar{y} \underbrace{\sum_{i=1}^{n} e_{i}}_{=0}=0
\end{aligned}
$$

in which we used the properties of residuals that $\sum_{i=1}^{n} e_{i}=0$ and $\sum_{i=1}^{n} x_{i} e_{i}=0$.

Interpretation of Sum of Squares

$$
\underbrace{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}_{\text {SST }}=\underbrace{\sum_{i=1}^{n}\left(\widehat{y_{i}}-\bar{y}\right)^{2}}_{\text {SSR }}+\underbrace{\sum_{i=1}^{n}(\overbrace{y_{i}-\widehat{y}_{i}}^{=e_{i}})^{2}}_{\text {SSE }}
$$

- $\mathrm{SST}=$ total sum of squares
- total variability of Y
- $\operatorname{SSR}=$ regression sum of squares
- variability of Y explained by X
- $\operatorname{SSE}=$ error (residual) sum of squares
- variability of Y not explained by the X 's

Multiple R-Squared

Multiple R^{2}, also called the coefficient of determination, is defined as

$$
\begin{aligned}
R^{2} & =\frac{\mathrm{SSR}}{\mathrm{SST}}=1-\frac{\mathrm{SSE}}{\mathrm{SST}} \\
& =\text { proportion of variability in } Y \text { explained by } X
\end{aligned}
$$

which measures the strength of the linear relationship between Y and the X variable

- $0 \leq R^{2} \leq 1$

Multiple R-Squared

Multiple R^{2}, also called the coefficient of determination, is defined as

$$
\begin{aligned}
R^{2} & =\frac{\mathrm{SSR}}{\mathrm{SST}}=1-\frac{\mathrm{SSE}}{\mathrm{SST}} \\
& =\text { proportion of variability in } Y \text { explained by } X
\end{aligned}
$$

which measures the strength of the linear relationship between Y and the X variable

- $0 \leq R^{2} \leq 1$
- For SLR, $R^{2}=r_{x y}^{2}$ is the square of the correlation between X and Y

Interpretation of R-squared

For the Armor Strength data, $R^{2}=r^{2}=(0.7431)^{2} \approx 0.552$, which means - 55.2% of the variability in the penetration area is explained by the firing velocity.

```
> lmarmor = lm(penetration.area ~ velocity, data=armor)
> summary(lmarmor)
```

Coefficients:

	Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
(Intercept)	-107.6324	39.7450	-2.71	0.01440
velocity	0.2549	0.0541	4.71	0.00017

Residual standard error: 10.1 on 18 degrees of freedom Multiple R-squared: 0.552, Adjusted R-squared: 0.527
F-statistic: 22.2 on 1 and 18 DF , p-value: 0.000174

