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Outline

• Simple Linear Regression Models (Section 12.1)
• Least Square Estimate (Section 12.2)
• Hypothesis Tests & Confidence Intervals for β1 and β0

(Section 12.3)
• Two Kinds of Conditional Predictions Problems (Section 12.4)
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Simple Linear Regression Models
(Section 12.1)



Simple Linear Regression Model (Review)

1. The condition mean of Y given X = xis a linear function of x,
i.e.,

E(Y | X = x) = β0 + β1x

2. The conditional variance of Y does not change with x, i.e.,

Var(Y | X = x) = σ2 for every x

3. (Optional) The conditional distribution of Y given X = x is
normal,

(Y |X = x) ∼ N(β0 + β1x, σ2).
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Line y = β0 + β1x

\end{center}
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Simple Linear Regression Model

Equivalently, the SLR model asserts the values of X and Y for
individuals in a population are related as follows

Y = β0 + β1X + ε,

• the value of ε, called the error or the noise, varies from
observation to observation, follows a normal distribution

ε ∼ N(0, σ2)

• In the model, the line y = β0 + β1x is called the population
regression line.
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Data for a Simple Linear Regression Model

Suppose the data comprised of n individuals/cases randomly
sampled from a population.

From case i we observe the response yi and the predictor xi:

(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn)

The SLR model states that

yi = β0 + β1xi + εi

How do we estimate intercept β0 and the slope β1?
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Least-Square Estimates of the
Intercept and the Slope (Section
12.2)



Residuals (Prediction Errors)

If one use the line y = a + bx to predict y from x, the predicted y
when x = xi is

ŷi = a + bxi.

The residual (ei) of the ith observation (xi, yi) is

ei = yi − ŷi

(Residual) (Observed y) (Predicted y)
= yi − (a + bxi)
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shortest distances
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Least-Square Estimates of the Intercept and the Slope

We want a line y = β̂0 + β̂1x having small residuals:

• Using the line y = β̂0 + β̂1x, the predicted y when x = xi is

ŷi = β̂0 + β̂1xi

• The residual for (xi, yi) is ei = yi − ŷi = yi − β̂0 − β̂1xi.

For SLR, the least squares estimate (̂β0, β̂1) for (β0, β1) is the
intercept and slope of the straight line with the minimum sum of
squared residuals.

n∑
i=1

e2
i =

n∑
i=1

(yi − β̂0 − β̂1xi)2.
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Solving the Least Squares Problem (1)

To find the (̂β0, β̂1) that minimize

L(̂β0, β̂1) =
n∑

i=1

(yi − β̂0 − β̂1xi)2

one can set the derivatives of L with respect to β̂0 and β̂1 to 0
∂L

∂β̂0
= −2

∑n

i=1
(yi − β̂0 − β̂1xi) = 0

∂L

∂β̂1
= −2

∑n

i=1
xi(yi − β̂0 − β̂1xi) = 0

This results in the 2 equations below in 2 unknowns β̂0 andβ̂1.

nβ̂0 + β̂1

∑n

i=1
xi =

∑n

i=1
yi

β̂0

n∑
i=1

xi + β̂1

∑n

i=1
x2

i =
∑n

i=1
xiyi
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Solving the Least Squares Problem (2)

nβ̂0 + β̂1

∑n

i=1
xi =

∑n

i=1
yi

divide by n
=⇒ β̂0 + β̂1 x̄ = ȳ ⇒ β̂0 = ȳ − β̂1 x̄

β̂0

∑n

i=1
xi + β̂1

n∑
i=1

x2
i =

n∑
i=1

xiyi

=⇒ β̂0nx̄ + β̂1

n∑
i=1

x2
i =

n∑
i=1

xiyi

Replacing β̂0 with ȳ − β̂1 x̄ in the second equation, we get

(ȳ − β̂1 x̄)nx̄ + β̂1

∑n

i=1
x2

i =
∑n

i=1
xiyi

⇐⇒ β̂1

(∑n

i=1
x2

i − nx̄2
)
=

∑n

i=1
xiyi − nx̄ȳ

⇐⇒ β̂1 =

∑n
i=1 xiyi − nx̄ȳ∑n
i=1 x2

i − nx̄2

9



Solving the Least Squares Problem (2)
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⇐⇒ β̂1 =

∑n
i=1 xiyi − nx̄ȳ∑n
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Formulas for the Least Square Estimate for the Slope

Recall the shortcut formulas for sample covariance and variance:

sxy =

∑n
i=1(xi − x̄)(yi − ȳ)

n − 1
=

(∑n
i=1 xiyi

)
− nx̄ȳ

n − 1
,

s2
x = sxx =

∑n
i=1(xi − x̄)2

n − 1
=

(∑n
i=1 x2

i

)
− nx̄2

n − 1
.

The LS estimate of the slope is hence

β̂1 =

∑n
i=1 xiyi − nx̄ȳ∑n
i=1 x2

i − nx̄2
=

sxy

s2
x
=

sample covariance of X & Y
sample variance of X

.

Another formula:

β̂1 =
sxy

s2
x
=

(
sxy

sxsy

)
︸ ︷︷ ︸
=r

sy

sx
= r

sy

sx
, where r =

sxy

sxsy
=

(
sample

correlation

)
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Properties of the LS Regression Line

ŷ =

=ȳ−β̂1 x̄︷︸︸︷
β̂0 +β̂1 · x

⇔ ŷ − ȳ = β̂1 · (x − x̄) = r
sy

sx
(x − x̄)

⇔
ŷ − ȳ

sy︸︷︷︸
z−score of ŷ

= r ·
x − x̄

sx︸︷︷︸
z−score of x

• The LS regression line always passes through (x̄, ȳ)
• As x goes up by 1 SD of x, the predicted value ŷ only goes up

by r × (SD of y)
• When r = 0, the LS regression line is horizontal y = ȳ, and the

predicted value ŷ is always the mean ȳ
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Example: Armor Strength — Least Square

60

80

100

700 750 800
Velocity (m/s)

P
en

et
ra

tio
n 

A
re

a 
(m

m
2 ) n = 20

x̄ = 733.4

ȳ = 79.34∑
x2

i = 10792614∑
y2

i = 130028∑
xiyi = 1172708

The LS estimates are

β̂1 =

∑n
i=1 xiyi − nx̄ȳ∑n
i=1 x2

i − nx̄2

=
1172708 − 20(733.4)(79.34)

10792614 − 20(733.4)2 =
8949
35103

≈ 0.2549

β̂0 = ȳ − β̂1 x̄ = 79.34 − 0.2549(733.4) ≈ −107.63
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Example: Armor Strength — Least Square Line (2)
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Velocity Penetration
(x) Area (y)

mean x̄ = 733.4, ȳ = 79.34
SD sx ≈ 42.983 sy = 14.745

correlation r = 0.7431

The slope and the intercept of the least square regression line is

slope = β̂1 = r
sy

sx
= 0.7431 ×

14.745
42.983

= 0.2549

intercept = β̂0 = ȳ − β̂1 · x̄ = 79.34 − 0.2549(733.4) ≈ −107.6

The equation of the least square regression line is thus

ŷ = −107.6 − 0.2549x.
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Least Square Regression in R

Regression in R is as simple as lm(y ~ x), in which lm stands for
“linear models”.

armor = read.table(

"http://www.stat.uchicago.edu/~yibi/s234/ArmorStrength.txt",

header=TRUE)

lm(penetration.area ~ velocity, data=armor)

Call:

lm(formula = penetration.area ~ velocity, data = armor)

Coefficients:

(Intercept) velocity

-107.632 0.255

The R output says the least square regression line is

̂penetration area (mm2) = −107.632 + 0.255 (firing velocity in m/s).

Our calculation is slightly off due to rounding errors. 14



Interpretation of Slope

The slope indicates how much the response changes associated
with a unit change in x on average (may NOT be causal, unless the
data are from an experiment).

̂penetration area (mm2) = −107.632 + 0.255 (firing velocity in m/s).

• When the firing velocity increases by 1 m/s the penetration
area is estimated to increase by 0.255 mm2 on average.

• When the firing velocity increases by 10 m/s the penetration
area is estimated to increase by 2.55 mm2 on average.
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Interpretation of the Intercept

The intercept is the predicted value of response when x = 0, which
might have no practical meaning if x = 0 is not a possible value.

̂penetration area (mm2) = −107.632 + 0.255 (firing velocity in m/s).

e.g., when the firing velocity is 0 m/s, the predicted penetration
area is −107.632 mm2?

• extrapolation, not reliable
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R: Adding the LS Regression Line on the Scatterplot

p = ggplot(armor, aes(x=velocity, y=penetration.area)) +

geom_point(col=rgb(0,0,1,0.5), size=2) +

xlab("Velocity (m/s)") +

ylab("Penetration Area (mmˆ2)")

p + geom_smooth(method='lm', col="red")

p + geom_smooth(method='lm', col="red", se=FALSE)
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Prediction

One can plug in an x-value to the equation of the least-square
regression line to predict the response y.

e.g., when the firing velocity is 750 m/s, the predicted penetration
area in mm2 is

ŷ = −107.632 + 0.255 × 750 = 83.57 mm2

Predicted yPredicted yPredicted yPredicted yPredicted yPredicted yPredicted yPredicted yPredicted yPredicted yPredicted yPredicted yPredicted yPredicted yPredicted yPredicted yPredicted yPredicted yPredicted yPredicted y
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Extrapolation

Applying a model estimate to values outside of the realm of the
original data is called extrapolation.
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The variable X = velocity range from 660 to 800 m/s. Prediction
made using X-values outside of this range is extrapolation.
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Hypothesis Tests & Confidence
Intervals for β1 and β0 (Section
12.3)



Sample Regression Line v.s. Population Regression Line
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How Close Is β̂1 to β1?

Under the SLR model: yi = β0 + β1xi + εi, one can show that

• E(̂β1) = β1 . . . . . . . . . . . . . . . . . . . β̂1 is an unbiased estimate of β1

• Var(̂β1) =
σ2∑

(xi − x̄)2 =
σ2

(n − 1)s2
x
.

β̂1 will be closer to β1 if

1) the sample size n is larger, or 2) X has greater variability
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Proof of the Unbiasedness of β̂1 (1)

Recall the formula for the LS estimate for slope β̂1 is

β̂1 =
sxy

s2
x
=

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

To find the expected value of β̂1, we will first show an alternative

formula for it: β̂1 =

∑n
i=1(xi − x̄)yi∑n
i=1(xi − x̄)2 .∑n

i=1
(xi − x̄)(yi − ȳ) =

∑n

i=1
(xi − x̄)yi −

∑n

i=1
(xi − x̄)ȳ

=
∑n

i=1
(xi − x̄)yi − ȳ

∑n

i=1
(xi − x̄)︸          ︷︷          ︸
=0

=
∑n

i=1
(xi − x̄)yi

This proves the alternative formula: β̂1 =

∑n
i=1(xi − x̄)yi∑n
i=1(xi − x̄)2 .
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Proof of the Expected Value of β̂1 (2)

Under the SLR model: yi = β0 + β1xi + εi, we know
E[yi] = β0 + β1xi. Hence,

E[̂β1] = E
[∑n

i=1(xi − x̄)yi∑n
i=1(xi − x̄)2

]
=

∑n
i=1(xi − x̄) E[yi]∑n

i=1(xi − x̄)2 =

∑n
i=1(xi − x̄)(β0 + β1xi)∑n

i=1(xi − x̄)2

The numerator
∑n

i=1(xi − x̄)(β0 + β1xi) equals

β0

=0︷          ︸︸          ︷∑n

i=1
(xi − x̄) + β1

∑n

i=1
(xi − x̄)xi

= β1

∑n

i=1
(xi − x̄)(xi −x̄) + β1 x̄

∑n

i=1
(xi − x̄)︸          ︷︷          ︸
=0

= β1

∑n

i=1
(xi − x̄)2

Putting the numerator back to E[̂β1], we get

E[̂β1] = β1
∑n

i=1(xi−x̄)2∑n
i=1(xi−x̄)2 = β1. So β̂1 is an unbiased estimator for β1.
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Proof of Variance of β̂1

For the SLR model yi = β0 + β1xi + εi as xi’s are regarded as fixed
numbers and εi’s are indep. with Var(εi) = σ2, we know that yi’s
are also indep. with Var(yi) = σ2.

Recall that for independent random variables Y1,Y2, . . . ,Yn, and
fixed numbers c1, c2, . . . , cn the variance has the property:

Var(c1Y1+c2Y2+ . . .+cnYn) = c2
1 Var(Y1)+c2

2 Var(Y2)+ . . .+c2
n Var(Yn)

Apply the property above to the variance of β̂1 with c j =
x j−x̄∑n

i=1(xi−x̄)2 ,
we get

Var(̂β1) = Var
(∑n

i=1(xi − x̄)yi∑n
i=1(xi − x̄)2

)
= Var(

n∑
i=1

ciyi) =
n∑

i=1

c2
i Var(yi) = σ2

n∑
i=1

c2
i

= σ2
n∑

i=1

(
(x j − x̄)∑n

i=1(xi − x̄)2

)2

= σ2
∑n

i=1(xi − x̄)2

(
∑n

i=1(xi − x̄)2)2 =
σ2∑n

i=1(xi − x̄)2 .
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Sampling Distribution of the Intercept β̂0

Under the SLR model, the estimate of the intercept

β̂0 = ȳ − β̂1 x̄

is also unbiased and (approx.) normal with the variance

Var(̂β0) = σ2
(
1
n
+

x̄2∑n
i=1(xi − x̄)2

)
What is the intuition here?

Var(̂β0) = Var(ȳ − β̂1 x̄) = Var(ȳ) − 2x̄

=0︷      ︸︸      ︷
Cov(ȳ, β̂1)+x̄2 Var(̂β1)

=
σ2

n
+ 0 + x̄2 σ2∑n

i=1(xi − x̄)2

• ȳ and β̂1 are uncorrelated because the slope (̂β1) is invariant if
you shift the response up or down (ȳ).
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Covariance of β̂1 and β̂0

The estimates for the slope and the intercept are negatively
correlated and their covariance is

Cov(̂β1, β̂0) = Cov(̂β1, ȳ − β̂1 x̄)

= Cov(̂β1, ȳ)︸      ︷︷      ︸
=0

−x̄ Cov(̂β1, β̂1)︸       ︷︷       ︸
=Var(̂β1)

= 0 − x̄ Var(̂β1) =
−σ2 x̄∑n

i=1(xi − x̄)2

• Usually, if the slope estimate is too high, the intercept
estimate is too low
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Estimate of σ2 — Variance of the Errors εi.

• A naive estimate of σ2 is the sample variance of the εi

σ̂2 =

∑
(εi − ε)2

n − 1
where εi = yi − β0 − β1xi

However, this is not possible as β0 and β1 are unknown.

• We can estimate β0 and β1 with β̂0 and β̂1 and approximate
the errors εi with the residuals

ei = yi − (̂β0 + β̂1xi) = yi − ŷi

We use the “sample variance” of the residuals ei to estimate
σ2:

σ̂2 =

∑
(ei − ē)2

n − 2
=

∑
e2

i

n − 2
=

∑
(yi − ŷi)2

n − 2
• We will show in the next lecture that ē = 0
• We divide by n − 2, not n − 1 or n as We are not able to

estimate error unless we have at least 3 observations
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Standard Error (SE) of the Slope and the Intercept

The standard deviation (SD) of β̂1 and β̂0 are the square-root of
their variances

SD(̂β1) =
σ√∑

(xi − x̄)2
, SD(̂β0) = σ

√
1
n
+

x̄2∑
(xi − x̄)2

If the unknown σ is replaced with the estimate

σ̂ =

√∑
(yi − ŷi)2

n − 2
,

The estimated SD’s are called the standard error (SE)’s:

SE(̂β1) =
σ̂√∑

(xi − x̄)2
, SE(̂β0) = σ̂

√
1
n
+

x̄2∑
(xi − x̄)2 .
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Sampling Distributions of β̂1 and β̂0

The sampling distributions of β̂1 and β̂0 are both normal.

β̂1 ∼ N
(
β1,

σ2∑
(xi−x̄)2

)
⇒ z =

β̂1 − β1

σ/
√∑

(xi − x̄)2
∼ N(0, 1)

β̂0 ∼ N
(
β0, σ

2
(

1
n +

x̄2∑
(xi−x̄)2

))
⇒ z =

β̂0 − β0

σ
√

1
n +

x̄2∑
(xi−x̄)2

∼ N(0, 1)

This is (approx.) valid

• either if the errors εi are i.i.d. N(0, σ2)
• or if the errors εi are independent and the sample size n is large

If the unknown σ is replaced by σ̂, z become the t-statistic with a
t-distribution with df = n − 2.

T1 =
β̂1 − β1

σ̂/
√∑

(xi − x̄)2
=
β̂1 − β1

SE(̂β1)
∼ tn−2, T0 =

β̂0 − β0

σ̂
√

1
n+

x̄2∑
(xi−x̄)2

=
β̂0 − β0

SE(̂β0)
∼ tn−2.

29



Confidence Intervals for β0 and β1

The (1 − α) confidence intervals for β0 and β1 are respectively

β̂0 ± tα/2,n−2SE(̂β0) and β̂1 ± tα/2,n−2SE(̂β1),

where tα/2,n−2 is the value such that
P(|T | < tα/2,n−2) = 1 − α for T ∼ tn−2.

− tα 2,n−2 tα 2,n−2

α 2α 2 1 − α

In R, tα/2,n−2 = qt(alpha/2, df=n-2, lower.tail=F).

90% CI 95% CI 99% CI
t0.1/2,df t0.05/2,df t0.01/2,df

↓ ↓ ↓

α 0.1 0.05 0.025 0.01 0.005 0.001 0.0005
ν 1 3.078 6.314 12.706 31.821 63.657 318.309 636.619

2 1.886 2.920 4.303 6.965 9.925 22.327 31.599
3 1.638 2.353 3.182 4.541 5.841 10.215 12.924
4 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 1.440 1.943 2.447 3.143 3.707 5.208 5.959

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
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Tests for β0 and β1

To test the hypotheses H0: β0 = c or H0: β1 = c the t-statistic are
respectively

t =
β̂0 − c0

SE(̂β0)
∼ tn−2, and t =

β̂1 − c1

SE(̂β1)
∼ tn−2

The P-value can be computed based on Ha:

−|t| |t| t t

t t

P−value

HA β1 ≠ c β1 < c β1 > c
two−sided lower one−sided upper one−sided
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Example: Armor Strength

Soldiers depend on their body armor for
protection. Specimens of UHMWPE body armor
were shot with a 7.62 mm round at various firing
velocities. The penetration areas were recordeda.

a"Testing of Body Armor Materials-Phase III", 2012, by the
US Army and the National Research Council

Penetration
Velocity Area

(m/s) (mm2)
670 66.4
675 64.5
679 63.6
681 72.9
694 79.1
699 76.7
699 65.5
708 68.0
726 57.8
732 72.4
738 78.6
740 87.9
762 92.6
762 83.0
768 79.0
780 75.3
792 83.4
786 100.7
790 106.6
787 112.8
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Least Square Regression in R

Regression in R is as simple as lm(y ~ x), in which lm stands for
“linear models”.

armor = read.table(

"http://www.stat.uchicago.edu/~yibi/s234/ArmorStrength.txt",

header=TRUE)

lm(penetration.area ~ velocity, data=armor)

Call:

lm(formula = penetration.area ~ velocity, data = armor)

Coefficients:

(Intercept) velocity

-107.632 0.255
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> lmarmor = lm(penetration.area ~ velocity, data=armor)

> summary(lmarmor)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -107.6324 39.7450 -2.71 0.01440

velocity 0.2549 0.0541 4.71 0.00017

Residual standard error: 10.1 on 18 degrees of freedom

Multiple R-squared: 0.552, Adjusted R-squared: 0.527

F-statistic: 22.2 on 1 and 18 DF, p-value: 0.000174

“Residual standard error: 10.1” in the R output is the estimate
for σ = SD(εi), σ̂ = 10.1.

That is, the variance σ2 = Var(εi) for the noise term εi in the SLR
model: yi = β0 + β1xi + εi is estimated to be σ̂2 = 10.12.
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The Summary Output

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -107.6324 39.7450 -2.71 0.01440

velocity 0.2549 0.0541 4.71 0.00017

• The column “estimate” shows the LS estimates for the
intercept β̂0 = −107.6324 and the slope β̂1 = 0.2549

• The column “std. error” gives:

SE(̂β0) = 39.7450, SE(̂β1) = 0.0541
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R Tests Whether β1 and β0 Equal 0 Automatically

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -107.6324 39.7450 -2.71 0.01440

velocity 0.2549 0.0541 4.71 0.00017

• The column t value shows the t-statistic for testing H0: β0 = 0
and H0: β1 = 0,

t0 =
β̂0 − 0

SE(̂β0)
=
−107.6350

37.7450
= −2.71, t1 =

β̂1 − 0

SE(̂β1)
=

0.2549
0.0541

= 4.71

which are simply the ratios of the first two columns
• The column “p.value” shows the 2-sided P-values for testing

H0: β0 = 0 and H0: β1 = 0.
• Testing H0: β1 = 0 is equivalent to testing whether the

penetration area is linearly related to the velocity. The small
P-value 0.00017 asserts the relation is significant
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Example: Testing Whether β1 is a Non-Zero Value

To test whether β1 equal to some non-zero value c1, one has to calculate
the t-statistic and P-value himself.

Ex. To see if the penetration area increases by 0.1 mm2 on average
when the firing velocity increases by 1 m/s i.e., β1 = 0.1.

Estimate Std.Error t value Pr(>|t|)
(Intercept) -107.6324 39.7450 -2.71 0.01440

velocity 0.2549 0.0541 4.71 <0.00017

To test H0 : β1 = 0.1 v.s. HA : β1 > 0.1, the t-statistic is

t1 =
β̂1 − 0.1

SE(̂β1)
=

0.2549 − 0.1
0.0541

≈ 2.863 with df = 20 − 2 = 18.

The upper one-sided p-value is
pt(2.863, df = 20-2, lower.tail=F)≈ 0.0052.

Conclusion: When the firing velocity increases by 1 m/s, the penetration

area increases significantly more than 0.1 mm2 on average. 37



Example: Confidence Interval for β1

Estimate Std.Error t value Pr(>|t|)
(Intercept) -107.6324 39.7450 -2.71 0.01440

velocity 0.2549 0.0541 4.71 <0.00017

The 95% CI for the slope β1 is

β̂1 ± t0.05/2,20−2SE(̂β1) = 0.2549 ± 2.101 × 0.0541

= 0.2549 ± 0.1137 ≈ (0.1412, 0.3686).

where t0.05/2,20−2 ≈ 2.101 for a 95% CI can be found in R or using t-table
for df = n − 2 = 20 − 2 = 18.

qt(0.05/2, df=20-2, lower.tail=F)

[1] 2.101

qt(1-0.05/2, df=20-2)

[1] 2.101

α 0.1 0.05 0.025 0.01 0.005 0.001 0.0005
ν 18 1.330 1.734 2.101 2.552 2.878 3.610 3.922

Interpretation: With 95% confidence, penetration area increases by

0.1412 to 0.3686 mm2 on average when firing velocity increases by 1

m/s. 38



Finding CIs for Coefficients Using confint()

The confint() command can produce confidence intervals for the
coefficients β0 and β1 for us

confint(lmarmor)

2.5 % 97.5 %

(Intercept) -191.1335 -24.1314

velocity 0.1413 0.3686

confint(lmarmor, level = 0.95)

2.5 % 97.5 %

(Intercept) -191.1335 -24.1314

velocity 0.1413 0.3686

confint(lmarmor, level = 0.95, "velocity")

2.5 % 97.5 %

velocity 0.1413 0.3686

confint(lmarmor, level = 0.95, "(Intercept)")

2.5 % 97.5 %

(Intercept) -191.1 -24.13
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Two Kinds of Conditional
Predictions Problems (Section
12.4)



Two Kinds of Conditional Predictions Problems

There are two kinds of conditional prediction problems of the
response Y given X = x0 based on a SLR model Y = β0 + β1X + ε:

• when X is known to be x0, estimate the mean response
E[Y |X = x0] = β0 + β1x0

• when X is known to be x0, predict the response for one
specific observation Y = β0 + β1x0 + ε

For the armor strength example, one may want to

• estimate the average penetration area on the armor when
shot at a firing speed of x0 = 700 m/s, which is β0 + 700β1

• predict penetration area on the armor for one shot at a firing
speed of of x0 = 700 m/s, which is β0 + 700β1 + ε.
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Estimation v.s. Prediction

The first one is an estimation problem as β0 + β1x0 only involve
fixed parameters β0, β1, and x0.

The second one is a prediction problem as β0 + β1x0 + ε involve a
random number ε
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Estimated Value and Predicted Value

In the first one,

E[Y |X = x0] = β0 + β1x0 is estimated by β̂0 + β̂1x0.

where the unknown β0 and β1 are replaced by their LS estimates.

In the second one,

Y = β0 + β1x0 + ε is predicted by Ŷ = β̂0 + β̂1x0 + 0.

The noise ε for a future observation is predicted to be its mean 0
since it’s independent of all observed (xi, yi)’s. We cannot make a
better prediction for ε from the observed (xi, yi)’s.
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The Two Prediction Problems Differ in the Uncertainty!

For estimating E[Y |X = x0] = β0 + β1x0, the variance for the
estimate β̂0 + β̂1x0 can be shown to be

Var(̂β0 + β̂1x0) = E[(̂β0 + β̂1x0 − β0 − β1x0)2]

= σ2
(
1
n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

)
To predict Y = β0 + β1x0 + ε, we need to include the extra variability
from the noise ε.

E[(Ŷ − Y)2] = E[(̂β0 + β̂1x0 − β0 − β1x0 − ε)2]

= Var(̂β0 + β̂1x0)+Var(ε)

= σ2
(
1
n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

)
+σ2

As n gets large, Var(̂β0 + β̂1x0) would go down to 0 but E[(Ŷ − Y)2]
only approaches σ2. 43



What Affects the Accuracy of Prediction?

Recall the variances for the two prediction problems are
σ2

(
1
n +

(x0−x̄)2∑n
i=1(xi−x̄)2

)
for estimating E[Y |X = x0] = β0 + β1x0

σ2
(
1+ 1

n +
(x0−x̄)2∑n
i=1(xi−x̄)2

)
to predict Y when X = x0

An accurate prediction (less variance) comes from

• small σ2 (i.e., small noise ε’s)
• large sample size n
• large

∑n
i=1(xi − x̄)2 (more spread in predictors)

• small (x0 − x̄)2
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Confidence Intervals and Prediction Intervals

The 100(1 − α)% confidence interval for β0 + β1x0 is

β̂0 + β̂1x0 ± tα/2,n−2 σ̂

√
1
n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

The 100(1 − α)% prediction interval for Y = β0 + β1x0 + ε is

β̂0 + β̂1x0 ± tα/2,n−2 σ̂

√
1+

1
n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2
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Confidence Intervals and Prediction Intervals in R

predict(lmarmor, data.frame(velocity=700), interval="confidence",

level=0.95)

fit lwr upr

1 70.83 64.73 76.92

predict(lmarmor, data.frame(velocity=700), interval="prediction",

level=0.95)

fit lwr upr

1 70.83 48.67 92.98

• When the firing velocity is 700 m/s, the penetration area is
70.83 mm2 on average, and the 95% confidence interval is
64.73 to 76.92 mm2.

• When the firing velocity is 700 m/s, the penetration area for
one shot 48.67 to 92.98 mm2 with 95% confidence.

• The prediction interval for a single shot is wider.
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The plot below shows the 95% confidence intervals and the 95%
prediction intervals at different values of x0.
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Both the confidence intervals and the prediction intervals are
narrowest when x0 = x̄.
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geom_smooth(method='lm') in ggplot() by default includes the
95% confidence intervals for estimating E(y|X = x0).

ggplot(armor, aes(x=velocity, y=penetration.area)) +

geom_point() +

geom_smooth(method='lm') +

xlab("Velocity (m/s)") +

ylab("Penetration Area (mmˆ2)")
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Multiple R-Squared = Coefficient of
Determination



Properties of Residuals (1)

Recall the LS estimate (̂β0, β̂1) that minimizes

L(̂β0, β̂1) =
∑n

i=1
(yi − β̂0 − β̂1xi)2

is obtained by setting the derivatives of L with respect to β̂0 and β̂1

to 0
∂L

∂β̂0
=

∑n

i=1
( yi − β̂0 − β̂1xi︸          ︷︷          ︸
= yi−̂yi = ei = residual

) = 0 and

∂L

∂β̂1
=

∑n

i=1
xi(

︷          ︸︸          ︷
yi − β̂0 − β̂1xi) = 0,

The residuals ei hence have the properties∑n

i=1
ei = 0︸         ︷︷         ︸

Residuals add up to 0.

,
∑n

i=1
xiei = 0︸           ︷︷           ︸

Residuals are orthogonal to x-variable.
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Properties of Residuals (2)

The two properties combined imply that residuals have 0
correlation with the explanatory variable X since

Cov(X, e) =
1

n − 1

(∑n

i=1
xiei︸      ︷︷      ︸

=0

−nx̄ ē︸︷︷︸
=0

)
= 0
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Sum of Squares

Observe that
yi − ȳ = (̂yi − ȳ)︸  ︷︷  ︸

a

+ (yi − ŷi)︸  ︷︷  ︸
b

Squaring up both sides using the identity (a + b)2 = a2+b2+2ab, we
get

(yi − ȳ)2 = (̂yi − ȳ)2︸   ︷︷   ︸
a2

+ (yi − ŷi)2︸    ︷︷    ︸
b2

+ 2(̂yi − ȳ)(yi − ŷi)︸              ︷︷              ︸
2ab

Summing up over all the cases i = 1, 2, . . . , n, we get

SST︷        ︸︸        ︷
n∑

i=1

(yi − ȳ)2 =

SSR︷        ︸︸        ︷
n∑

i=1

(̂yi − ȳ)2 +

SSE︷         ︸︸         ︷
n∑

i=1

(yi − ŷi)2 +2
n∑

i=1

(̂yi − ȳ)(yi − ŷi)︸                 ︷︷                 ︸
= 0, see next page.
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Why
∑n

i=1(̂yi − ȳ)(yi − ŷi) = 0?

∑n

i=1
(̂yi − ȳ)(yi − ŷi︸︷︷︸

=ei

) =
∑n

i=1
ŷiei −

n∑
i=1

ȳei

=
∑n

i=1

(̂
β0 + β̂1xi

)
ei −

∑n

i=1
ȳei

= β̂0

∑n

i=1
ei︸   ︷︷   ︸

=0

+β̂1

n∑
i=1

xiei︸  ︷︷  ︸
=0

−ȳ
n∑

i=1

ei︸︷︷︸
=0

= 0

in which we used the properties of residuals that
∑n

i=1 ei = 0 and∑n
i=1 xiei = 0.
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Interpretation of Sum of Squares

n∑
i=1

(yi − y)2

︸        ︷︷        ︸
SST

=

n∑
i=1

(̂yi − y)2

︸        ︷︷        ︸
SSR

+

n∑
i=1

(

=ei︷︸︸︷
yi − ŷi)2

︸         ︷︷         ︸
SSE

• SST = total sum of squares
• total variability of Y

• SSR = regression sum of squares
• variability of Y explained by X

• SSE = error (residual) sum of squares
• variability of Y not explained by the X’s
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Multiple R-Squared

Multiple R2, also called the coefficient of determination, is
defined as

R2 =
SSR
SST

= 1 −
SSE
SST

= proportion of variability in Y explained by X

which measures the strength of the linear relationship between Y
and the X variable

• 0 ≤ R2 ≤ 1

• For SLR, R2 = r2
xy is the square of the correlation between X

and Y
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Multiple R-Squared

Multiple R2, also called the coefficient of determination, is
defined as

R2 =
SSR
SST

= 1 −
SSE
SST

= proportion of variability in Y explained by X

which measures the strength of the linear relationship between Y
and the X variable

• 0 ≤ R2 ≤ 1
• For SLR, R2 = r2

xy is the square of the correlation between X
and Y
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Interpretation of R-squared

For the Armor Strength data, R2 = r2 = (0.7431)2 ≈ 0.552, which
means — 55.2% of the variability in the penetration area is
explained by the firing velocity.

> lmarmor = lm(penetration.area ~ velocity, data=armor)

> summary(lmarmor)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -107.6324 39.7450 -2.71 0.01440

velocity 0.2549 0.0541 4.71 0.00017

Residual standard error: 10.1 on 18 degrees of freedom

Multiple R-squared: 0.552, Adjusted R-squared: 0.527

F-statistic: 22.2 on 1 and 18 DF, p-value: 0.000174
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