STAT 234 Lecture 23B Simple Linear Regression Model Section 12.1

Yibi Huang
Department of Statistics
University of Chicago

Example: Pearson's Father-and-Son Data

Father-son pairs are grouped by father's height, to the nearest inch.

Example: Pearson's Father-and-Son Data

Father-son pairs are grouped by father's height, to the nearest inch.

Example: Pearson's Father-and-Son Data

Father-son pairs are grouped by father's height, to the nearest inch.

Example: Pearson's Father-and-Son Data

Father-son pairs are grouped by father's height, to the nearest inch.

Example: Pearson's Father-and-Son Data

Father-son pairs are grouped by father's height, to the nearest inch.

Example: Pearson's Father-and-Son Data

Simple Linear Regression Model

Pearson's father-and-son data inspire the following assumptions for the simple linear regression (SLR) model:

1. The condition mean of Y given $X=x$ is a linear function of x, i.e.,

$$
\mathrm{E}(Y \mid X=x)=\beta_{0}+\beta_{1} x
$$

2. The conditional variance of Y does not change with x, i.e.,

$$
\operatorname{Var}(Y \mid X=x)=\sigma^{2} \quad \text { for every } x
$$

3. (Optional) The conditional distribution of Y given $X=x$ is normal,

$$
(Y \mid X=x) \sim N\left(\beta_{0}+\beta_{1} x, \sigma^{2}\right) .
$$

Simple Linear Regression Model

Equivalently, the SLR model asserts the values of X and Y for individuals in a population are related as follows

$$
Y=\beta_{0}+\beta_{1} X+\varepsilon,
$$

- the value of ε, called the error or the noise, varies from observation to observation, follows a normal distribution

$$
\varepsilon \sim N\left(0, \sigma^{2}\right)
$$

- In the model, the line $y=\beta_{0}+\beta_{1} x$ is called the population regression line.

Data for a Simple Linear Regression Model

Suppose the data comprised of n individuals/cases randomly sampled from a population.

From case i we observe the response y_{i} and the predictor x_{i} :

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

The SLR model states that

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}
$$

How do we estimate intercept β_{0} and the slope β_{1} ?

