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Sample Covariance

Given n pairs of observations (x1, y1), (x2, y2), . . . , (xn, yn), sample
covariance sxy is a measure of the direction and strength of the
linear relationship between X and Y, defined as

sxy =
1

n − 1

∑n

i=1
(xi − x̄)(yi − ȳ)

• sxy > 0: Positive linear relation;
• sxy < 0: Negative linear relation
• The magnitude of covariance reflects the strength of the

relation
• The covariance of a variable X with itself is its sample

variance
sxx =

1
n − 1

∑n

i=1
(xi − x̄)2 = s2

x
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Sample Covariance Reflects the Direction of a Linear Relation

What is the sign of (xi − x̄)(yi − ȳ)?

X

Y

+−

+ −
x

y

xi − x > 0xi − x < 0

xi − x > 0xi − x < 0

yi − y > 0

yi − y < 0

yi − y > 0

yi − y < 0

Cov > 0 as most points have
(xi − x)(yi − y) > 0

X

Y

+−

+ −
x

y

xi − x > 0xi − x < 0

xi − x > 0xi − x < 0

yi − y > 0

yi − y < 0

yi − y > 0

yi − y < 0

Cov < 0 as most points have
(xi − x)(yi − y) < 0
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Sample Covariance Reflects the Strength of a Linear Relation

X

Y

+−

+ −
x

y

xi − x > 0xi − x < 0

xi − x > 0xi − x < 0

yi − y > 0

yi − y < 0

yi − y > 0

yi − y < 0

Cov Has a Larger Magnitude
X

Y

+−

+ −
x

y

xi − x > 0xi − x < 0

xi − x > 0xi − x < 0

yi − y > 0

yi − y < 0

yi − y > 0

yi − y < 0

Cov Has a Smaller Magnitude

Covariance is of a smaller magnitude in the right plot than in the
left because the (xi − x̄)(yi − ȳ) of most points in the left plot are of
the different signs and get cancelled out when adding up.
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How Large the Covariance is Large Enough?

It can be shown in the next slide that

|sxy| ≤ sxsy = (SD of X) × (SD of Y)

Moreover, the sample covariance reaches its maximum possible
magnitude if and only if all the points (xi, yi) fall on a straight line.

Thus, one can determine whether a linear relation is strong by
comparing the Cov with the product of the SDs of the two variables.
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Proof of |sxy| ≤ sxsy

For any two sequences (a1, a2, . . . , an) and (b1, b2, . . . , bn), the
Cauchy Schwartz Inequality below is always true(∑n

i=1
aibi

)2
≤

(∑n

i=1
a2

i

) (∑n

i=1
b2

i

)
Moreover, the inequality becomes an equality if and only if

αai + βbi = 0 for all i for some non-zero constants α and β.

Applying Cauchy Schwartz Inequality with ai = xi − x̄ and
bi = yi − ȳ, we get(∑n

i=1
(xi − x̄)(yi − ȳ)

)2
︸                        ︷︷                        ︸

[(n−1)sxy]2

≤

(∑n

i=1
(xi − x̄)2

)
︸              ︷︷              ︸

(n−1)s2
x

(∑n

i=1
(yi − ȳ)2

)
︸              ︷︷              ︸

(n−1)s2
y

.

Dividing both sides by (n − 1)2, and taking square-root, we get

|sxy| ≤ sxsy.
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Proof of |sxy| ≤ sxsy (Cont’d)

Moreover, recall the the inequality becomes an equality if and only
if

αai + βbi = 0 for all i for some nonzero constants α and β.

Now with ai = xi − x̄ and bi = yi − ȳ, we get that |sxy| reach its max
sxsy if and only if

α(xi− x̄)+β(yi−ȳ) = 0 for all i for some nonzero constants α and β,

or equivalently all the points (xi, yi) fall on the straight line

αxi + βyi = αx̄ + βȳ
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Shortcut Formula for the Sample Covariance

There are various formula for computing the sample covariance:

sxy =
1

n − 1

∑n

i=1
(xi − x̄)(yi − ȳ)

=

(∑n
i=1 xiyi

)
− nx̄ȳ

n − 1

The last one is the shortcut formula for calculating the sample
covariance, similar to the shortcut formula for the sample variance

s2
x =

(∑n
i=1 x2

i

)
− nx̄2

n − 1
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Sample Correlation = Correlation Coefficient r

Given n pairs of observations (x1, y1), (x2, y2), . . . , (xn, yn), the
(sample) corelation is defined to be

r =
sxy

sxsy
=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2∑n
i=1(yi − ȳ)2

• −1 ≤ r ≤ 1 since |sxy| ≤ sxsy

• The closer r is to 1 or −1, the stronger the linear relation
• r = 1 or −1 if and only if all the points (xi, yi) fall on a straight

line
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Positive Correlations

r = 0 r = 0.2 r = 0.4

r = 0.6 r = 0.8 r = 0.9
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Negative Correlations

r = − 0.1 r = − 0.3 r = − 0.5

r = − 0.7 r = − 0.95 r = − 0.99
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Sample Correlation r v.s. Population Correlation ρ

Recall in Lecture 11 we introduced the correlation between two
random variables X,Y,

ρ = ρXY =
σXY

σXσY
=

Cov(X,Y)
√

Var(X) Var(Y)
=

E[(X − µX)(Y − µY )]√
E[(X − µX)2] E[(Y − µY )2]

.

The sample correlation r

rxy = r = ρ̂ =
∑

i(xi − x)(yi − y)√∑
i(xi − x)2∑

i(yi − y)2
=

sxy

sxsy
,

is an estimate for the population correlation ρ if
(x1, y1), (x2, y2), . . . , (xn, yn) are i.i.d. pairs of observations from the
joint distribution of (X,Y).
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Example: Armor Strength

Soldiers depend on their body armor for
protection. Specimens of UHMWPE body armor
were shot with a 7.62 mm round at various firing
velocities. The penetration areas were recordeda.

a"Testing of Body Armor Materials-Phase III", 2012, by the
US Army and the National Research Council

Penetration
Velocity Area

(m/s) (mm2)
670 66.4
675 64.5
679 63.6
681 72.9
694 79.1
699 76.7
699 65.5
708 68.0
726 57.8
732 72.4
738 78.6
740 87.9
762 92.6
762 83.0
768 79.0
780 75.3
792 83.4
786 100.7
790 106.6
787 112.8
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Finding Covariance & Correlation in R

Armor Strength Data and the variables:

armor = read.table(

"http://www.stat.uchicago.edu/~yibi/s234/ArmorStrength.txt",

header=TRUE)

str(armor)

'data.frame': 20 obs. of 2 variables:

$ velocity : int 670 675 679 681 694 699 699 708 726 732 ...

$ penetration.area: num 66.4 64.5 63.6 72.9 79.1 76.7 65.5 68 57.8 72.4 ...

The R commands cov() and cor() can calculate the sample
covariance and sample correlation between two variables

cov(armor$velocity, armor$penetration.area)

[1] 471.0042

cor(armor$velocity, armor$penetration.area)

[1] 0.743148
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Covariance & Correlation Do Not Distinguish Between X & Y

When one uses X to predict Y, X is called the explanatory variable,
and Y the response. Covariance and correlation do not distinguish
between X & Y. They treat X and Y symmetrically.

sxy =
1

n − 1

n∑
i=1

(xi − x̄)(yi − ȳ) =
1

n − 1

n∑
i=1

(yi − ȳ)(xi − x̄) = syx;

rxy =
sxy

sxsy
=

syx

sxsy
= ryx

Swapping the x-, y-axes doesn’t change r (both r ≈ 0.74.)
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Scaling Property of Sample Covariance

(X, Y) −→ (aX + b, cY + d)
(x1, y1) (ax1 + b, cy1 + d)
(x2, y2) (ax2 + b, cy2 + d)
(x3, y3) ⇒ (ax3 + b, cy3 + d)
...

...

(xn, yn) (axn + b, cyn + d)

The sample covariance has the scaling property:

S aX+b,cY+d =
1

n − 1

∑n

i=1
[axi + b − (ax̄ + b)][cyi + d − (cȳ + d)]

=
1

n − 1

∑n

i=1
ac(xi − x̄)(yi − ȳ)

= ac S XY .
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Scaling Property of Sample Covariance — Example

Example. When X = velocity is measured in feet/sec rather
than meter/sec,

• the value of X becomes ≈ 3.28 times as large since

1 meter ≈ 3.28 feet.

• the covariance between velocity and penetration.area
would become about 3.28 times as large

x = armor$velocity

y = armor$penetration.area

cov(x, y)

[1] 471.0042

cov(3.28 * x, y)

[1] 1544.894

cov(x, y) * 3.28

[1] 1544.894
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Correlation is Scale Invariant

The sample correlation is scaling invariant and has no units!

raX+b,cY+d =
S aX+b,cY+d

S aX+bS cY+d
=

ac S XY

|a|S X |c|S Y
= (sign of ac) ×

sXY

sX sY

= (sign of ac) × rXY .

Example. When velocity is measured in ft/s rather than m/s, the
value of velocity becomes ≈ 3.28 times as large, the correlation
between velocity and penetration.area remain unchanged to
be r ≈ 0.74.

cor(x, y)

[1] 0.743148

cor(3.28 * x, y)

[1] 0.743148
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Correlation Doesn’t Reflect Strength of Nonlinear Relations

Both scatter plots below show perfect nonlinear relations. All points
fall on the quadratic curve y = 2 − x2/2.
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r = 0 (why?)
(black + white dots)
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r = 0.91 
(black dots only)
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