STAT 234 Lecture 23A Sample Covariance and Correlation Section 12.5

Yibi Huang
Department of Statistics
University of Chicago

Sample Covariance

Given n pairs of observations $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, sample covariance $s_{x y}$ is a measure of the direction and strength of the linear relationship between X and Y, defined as

$$
s_{x y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

Sample Covariance

Given n pairs of observations $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, sample covariance $s_{x y}$ is a measure of the direction and strength of the linear relationship between X and Y, defined as

$$
s_{x y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

- $s_{x y}>0$: Positive linear relation;
- $s_{x y}<0$: Negative linear relation
- The magnitude of covariance reflects the strength of the relation
- The covariance of a variable X with itself is its sample variance

$$
s_{x x}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=s_{x}^{2}
$$

Sample Covariance Reflects the Direction of a Linear Relation

What is the sign of $\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$?

Cov >0 as most points have $\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)>0$

Cov <0 as most points have $\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)<0$

Sample Covariance Reflects the Strength of a Linear Relation

Cov Has a Larger Magnitude

Cov Has a Smaller Magnitude

Covariance is of a smaller magnitude in the right plot than in the left because the $\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$ of most points in the left plot are of the different signs and get cancelled out when adding up.

How Large the Covariance is Large Enough?

It can be shown in the next slide that

$$
\left|s_{x y}\right| \leq s_{x} s_{y}=(\mathrm{SD} \text { of } X) \times(\mathrm{SD} \text { of } Y)
$$

How Large the Covariance is Large Enough?

It can be shown in the next slide that

$$
\left|s_{x y}\right| \leq s_{x} s_{y}=(\mathrm{SD} \text { of } X) \times(\mathrm{SD} \text { of } Y)
$$

Moreover, the sample covariance reaches its maximum possible magnitude if and only if all the points $\left(x_{i}, y_{i}\right)$ fall on a straight line.

How Large the Covariance is Large Enough?

It can be shown in the next slide that

$$
\left|s_{x y}\right| \leq s_{x} s_{y}=(\mathrm{SD} \text { of } X) \times(\mathrm{SD} \text { of } Y)
$$

Moreover, the sample covariance reaches its maximum possible magnitude if and only if all the points $\left(x_{i}, y_{i}\right)$ fall on a straight line.

Thus, one can determine whether a linear relation is strong by comparing the Cov with the product of the SDs of the two variables.

Proof of $\left|s_{x y}\right| \leq s_{x} s_{y}$

For any two sequences $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$, the
Cauchy Schwartz Inequality below is always true

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)
$$

Moreover, the inequality becomes an equality if and only if

$$
\alpha a_{i}+\beta b_{i}=0 \quad \text { for all } i \text { for some non-zero constants } \alpha \text { and } \beta .
$$

Applying Cauchy Schwartz Inequality with $a_{i}=x_{i}-\bar{x}$ and $b_{i}=y_{i}-\bar{y}$, we get

$$
\underbrace{\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)\right)^{2}}_{\left[(n-1) s_{x y}\right]^{2}} \leq \underbrace{\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)}_{(n-1) s_{x}^{2}} \underbrace{\left(\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}\right)}_{(n-1) s_{y}^{2}} .
$$

Dividing both sides by $(n-1)^{2}$, and taking square-root, we get

$$
\left|s_{x y}\right| \leq s_{x} s_{y}
$$

Proof of $\left|s_{x y}\right| \leq s_{x} s_{y}$ (Cont'd)

Moreover, recall the the inequality becomes an equality if and only if

$$
\alpha a_{i}+\beta b_{i}=0 \quad \text { for all } i \text { for some nonzero constants } \alpha \text { and } \beta \text {. }
$$

Now with $a_{i}=x_{i}-\bar{x}$ and $b_{i}=y_{i}-\bar{y}$, we get that $\left|s_{x y}\right|$ reach its max $s_{x} s_{y}$ if and only if
$\alpha\left(x_{i}-\bar{x}\right)+\beta\left(y_{i}-\bar{y}\right)=0 \quad$ for all i for some nonzero constants α and β,
or equivalently all the points $\left(x_{i}, y_{i}\right)$ fall on the straight line

$$
\alpha x_{i}+\beta y_{i}=\alpha \bar{x}+\beta \bar{y}
$$

Shortcut Formula for the Sample Covariance

There are various formula for computing the sample covariance:

$$
\begin{aligned}
s_{x y} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
& =\frac{\left(\sum_{i=1}^{n} x_{i} y_{i}\right)-n \bar{x} \bar{y}}{n-1}
\end{aligned}
$$

The last one is the shortcut formula for calculating the sample covariance, similar to the shortcut formula for the sample variance

$$
s_{x}^{2}=\frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right)-n \bar{x}^{2}}{n-1}
$$

Sample Correlation $=$ Correlation Coefficient r

Given n pairs of observations $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, the (sample) corelation is defined to be

$$
r=\frac{s_{x y}}{s_{x} s_{y}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}
$$

- $-1 \leq r \leq 1$ since $\left|s_{x y}\right| \leq s_{x} s_{y}$
- The closer r is to 1 or -1 , the stronger the linear relation
- $r=1$ or -1 if and only if all the points $\left(x_{i}, y_{i}\right)$ fall on a straight line

Positive Correlations

Negative Correlations

Sample Correlation r v.s. Population Correlation ρ

Recall in Lecture 11 we introduced the correlation between two random variables X, Y,

$$
\rho=\rho_{X Y}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=\frac{\mathrm{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sqrt{\mathrm{E}\left[\left(X-\mu_{X}\right)^{2}\right] \mathrm{E}\left[\left(Y-\mu_{Y}\right)^{2}\right]}} .
$$

The sample correlation r

$$
r_{x y}=r=\widehat{\rho}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i}\left(x_{i}-\bar{x}\right)^{2} \sum_{i}\left(y_{i}-\bar{y}\right)^{2}}}=\frac{s_{x y}}{s_{x} s_{y}},
$$

is an estimate for the population correlation ρ if $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ are i.i.d. pairs of observations from the joint distribution of (X, Y).

Example: Armor Strength

Soldiers depend on their body armor for protection. Specimens of UHMWPE body armor were shot with a 7.62 mm round at various firing velocities. The penetration areas were recorded ${ }^{a}$.
a"Testing of Body Armor Materials-Phase III", 2012, by the US Army and the National Research Council

Velocity $(\mathrm{m} / \mathrm{s})$	Penetration Area $\left(\mathrm{mm}^{2}\right)$
670	66.4
675	64.5
679	63.6
681	72.9
694	79.1
699	76.7
699	65.5
708	68.0
726	57.8
732	72.4
738	78.6
740	87.9
762	92.6
762	83.0
768	79.0
780	75.3
792	83.4
786	100.7
790	106.6
787	112.8

Finding Covariance \& Correlation in R

Armor Strength Data and the variables:

```
armor = read.table(
        "http://www.stat.uchicago.edu/~yibi/s234/ArmorStrength.txt",
    header=TRUE)
str(armor)
'data.frame': 20 obs. of 2 variables:
    $ velocity : int 670 675 679 681 694 699 699 708 726 732 ...
    $ penetration.area: num 66.4 64.5 63.6 72.9 79.1 76.7 65.5 68 57.8 72
```

The R commands cov() and cor() can calculate the sample covariance and sample correlation between two variables

```
cov(armor$velocity, armor$penetration.area)
[1] 471.0042
cor(armor$velocity, armor$penetration.area)
[1] 0.743148
```


Covariance \& Correlation Do Not Distinguish Between X \& Y

When one uses X to predict Y, X is called the explanatory variable, and Y the response. Covariance and correlation do not distinguish between $X \& Y$. They treat X and Y symmetrically.

$$
\begin{aligned}
& s_{x y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)=s_{y x} ; \\
& r_{x y}=\frac{s_{x y}}{s_{x} s_{y}}=\frac{s_{y x}}{s_{x} s_{y}}=r_{y x}
\end{aligned}
$$

Swapping the x-, y-axes doesn't change r (both $r \approx 0.74$.)

Scaling Property of Sample Covariance

$$
\begin{array}{ccc}
\frac{(X, Y)}{\left(x_{1}, y_{1}\right)} & \rightarrow & \frac{(a X+b, c Y+d)}{\left(a x_{1}+b, c y_{1}+d\right)} \\
\left(x_{2}, y_{2}\right) \\
\left(x_{3}, y_{3}\right) & \Rightarrow & \left(a x_{2}+b, c y_{2}+d\right) \\
\vdots & & \left(a, c y_{3}+d\right) \\
\left(x_{n}, y_{n}\right) & & \left(a x_{n}+b, c y_{n}+d\right)
\end{array}
$$

The sample covariance has the scaling property:

$$
\begin{aligned}
S_{a X+b, c Y+d} & =\frac{1}{n-1} \sum_{i=1}^{n}\left[a x_{i}+b-(a \bar{x}+b)\right]\left[c y_{i}+d-(c \bar{y}+d)\right] \\
& =\frac{1}{n-1} \sum_{i=1}^{n} a c\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
& =a c S_{X Y}
\end{aligned}
$$

Scaling Property of Sample Covariance - Example

Example. When $X=$ velocity is measured in feet/sec rather than meter/sec,

- the value of X becomes ≈ 3.28 times as large since

$$
1 \text { meter } \approx 3.28 \text { feet. }
$$

- the covariance between velocity and penetration.area would become about 3.28 times as large

```
x = armor$velocity
y = armor$penetration.area
cov(x, y)
[1] 471.0042
cov(3.28 * x, y)
[1] 1544.894
cov(x, y) * 3.28
[1] 1544.894
```


Correlation is Scale Invariant

The sample correlation is scaling invariant and has no units!

$$
\begin{aligned}
r_{a X+b, c Y+d}=\frac{S_{a X+b, c Y+d}}{S_{a X+b} S_{c Y+d}}=\frac{a c S_{X Y}}{|a| S_{X}|c| S_{Y}} & =(\text { sign of } a c) \times \frac{s_{X Y}}{s_{X} s_{Y}} \\
& =(\text { sign of } a c) \times r_{X Y}
\end{aligned}
$$

Example. When velocity is measured in ft / s rather than m / s, the value of velocity becomes ≈ 3.28 times as large, the correlation between velocity and penetration. area remain unchanged to be $r \approx 0.74$.

```
cor(x, y)
[1] 0.743148
cor(3.28 * x, y)
[1] 0.743148
```


Correlation Doesn't Reflect Strength of Nonlinear Relations

Both scatter plots below show perfect nonlinear relations. All points fall on the quadratic curve $y=2-x^{2} / 2$.

$r=0$ (why?)
(black + white dots)

$r=0.91$
(black dots only)

