STAT 234 Lecture 21 Analysis of Two-Sample Data Section 10.1-10.2

Yibi Huang
Department of Statistics
University of Chicago

Two Sample Problems (1)

- E.g., is the air more polluted in Chicago or in LA?
- E.g., Do smokers or nonsmokers suffer more from depression?
- E.g., Does the mean response for the treatment group differ from that for the control group?

Two Sample Problems (2)

Population 1

Distribution of

Two Sample Problems (2)

Population 1

Population 2

Distribution of
Population 2

Population distributions may be normal or not normal or of the

Two Sample Problems (2)

Population 1

Population 2

Distribution of Population 2

$$
\text { Population } 1
$$

Population $\operatorname{SDs} \sigma_{1}$ and σ_{2} may not be equal.

Two Sample Problems (2)

Population 1

Population 2

Distribution of Population 2

$$
\text { Population } 1
$$

Goal: difference in population means $\mu_{1}-\mu_{2}$.

Two Sample Data

$$
\begin{array}{ll}
\text { Population } 1 & \longrightarrow \text { random sample } X_{1}, X_{2}, \ldots, X_{m} \\
\text { Population } 2 & \longrightarrow \text { random sample } Y_{1}, Y_{2}, \ldots \ldots \ldots, Y_{n}
\end{array}
$$

- Observations in one group are independent of those in the other group
- the two samples can be of different sizes m and n

Two Sample Problems (3)

A natural estimate of $\mu_{1}-\mu_{2}$ is the difference of the two sample means $\bar{X}-\bar{Y}$.

How close is $\bar{X}-\bar{Y}$ to $\mu_{1}-\mu_{2}$?

Two Sample Problems (4)

Recall

$$
\mathrm{E}(\bar{X})=\mu_{1}, \quad \mathrm{E}(\bar{Y})=\mu_{2}, \quad \operatorname{Var}(\bar{X})=\frac{\sigma_{1}^{2}}{m}, \quad \operatorname{Var}(\bar{Y})=\frac{\sigma_{2}^{2}}{n} .
$$

Observe $\bar{X}-\bar{Y}$ is an unbiased estimate of $\mu_{1}-\mu_{2}$ because

$$
\mathrm{E}(\bar{X}-\bar{Y})=\mathrm{E}(\bar{X})-\mathrm{E}(\bar{Y})=\mu_{1}-\mu_{2} .
$$

Furthermore, since the two samples are independent, \bar{X} and \bar{Y} are independent, we have

$$
\operatorname{Var}(\bar{X}-\bar{Y})=\operatorname{Var}(\bar{X})-2 \underbrace{\operatorname{Cov}(\bar{X}, \bar{Y})}_{=0 \text { by indep. }}+\operatorname{Var}(\bar{Y})=\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}
$$

Thus the standard error of $\bar{X}-\bar{Y}$ is

$$
\mathrm{SD}(\bar{X}-\bar{Y})=\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}
$$

Two-Sample z-Test w/ Known $\sigma_{1} \& \sigma_{2}$

For testing $\mathrm{H}_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$, the z-statistic is

$$
z \text {-stat }=\frac{\bar{X}-\bar{Y}-\Delta_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}}
$$

We reject $\mathrm{H}_{0}: \mu=\mu_{0}$ at the significance level α if

- z-stat $>z_{\alpha}$ for $\mathrm{H}_{A}: \mu_{1}-\mu_{2}>\Delta_{0}$
- z-stat $<-z_{\alpha}$ for $\mathrm{H}_{A}: \mu_{1}-\mu_{2}<\Delta_{0}$
- $\mid z$-stat $\mid>z_{\alpha / 2}$ for $\mathrm{H}_{A}: \mu_{1}-\mu_{2} \neq \Delta_{0}$

Two-Sample z-Cl w/ Known $\sigma_{1} \& \sigma_{2}$

A ($1-\alpha) 100 \% \mathrm{Cl}$ for $\mu_{1}-\mu_{2}$ is given by

$$
\bar{X}-\bar{Y} \pm z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}
$$

Two-Sample t-Statistic w/ Unknown $\sigma_{1} \& \sigma_{2}$

Of course, σ_{1}^{2} and σ_{2}^{2} are often unknown, We thus replace them with the sample variances s_{1}^{2} and s_{2}^{2}.

$$
t=\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{m}+\frac{s_{2}^{2}}{n}}} \quad \text { where } \begin{aligned}
s_{1}^{2} & =\frac{\sum_{i=1}^{m}\left(X_{i}-\bar{X}\right)^{2}}{m-1} \\
s_{2}^{2} & =\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}{n-1}
\end{aligned}
$$

- Unfortunately, the two-sample t-statistic does NOT have a t-distribution
- Fortunately, it can be approximated by a t-distribution with a certain degrees of freedom.

See the next slide for the approximation

Approximate Distribution of the Two-Sample t-Statistic

The two-sample t-statistic has an approximate t_{v} distribution.
For the degrees of freedom v we have two formulas:

- software formula:

$$
v=\frac{\left(w_{1}+w_{2}\right)^{2}}{w_{1}^{2} /(m-1)+w_{2}^{2} /(n-1)}, \quad \text { where } \quad \begin{aligned}
& w_{1}=s_{1}^{2} / m \\
& w_{2}=s_{2}^{2} / n
\end{aligned}
$$

- simple formula: $v=\min (m-1, n-1)$

Comparison of the two formulas:

- The software formula is more accurate. It gives larger d.f. and yields shorter Cls and smaller P-value
- The simple formula is conservative. I.e., it yields wider Cls and larger P-values than the actual P-value
- In the exam, it is fine just using the simple formula.

Confidence Intervals for $\mu_{1}-\mu_{2}$

A $(1-\alpha) 100 \% \mathrm{CI}$ for $\mu_{1}-\mu_{2}$ is given by

$$
(\bar{X}-\bar{Y}) \pm t_{\alpha / 2, v} \sqrt{\frac{s_{1}^{2}}{m}+\frac{s_{2}^{2}}{n}}
$$

where $t_{\alpha / 2, v}$ is the value of the t distribution with v degrees of freedom such that density curve of t_{v}

which can be found in R using the qt () command.
qt(alpha/2, df, lower.tail=F)

Example: Young Blood Helps Old Brains?

Several studies ${ }^{1}$ on mice indicate that young blood help old brains. Old mice were randomly assigned to receive blood plasma either from a young mouse or another old mouse, and then tested on treadmill. The maximum treadmill runtime in minutes for 17 mice receiving young blood and 13 mice receiving old blood are

Blood	Runtime (minutes)	Mean \quad SD	
Young	272831353940454655	56.76	23.22
	5659687690909090		
Old	192122252829293136	34.69	14.37
	42505168		

[^0]
Example: CI for the Young Blood Effect

Using the simple df $=\min (17-1,13-1)=12$, the critical value $t_{0.05 / 2,12} \approx 2.179$ for $95 \% \mathrm{Cl}$ can be found in R as follows
qt(0.05/2, df=12, lower.tail=F)

\#\# [1] $2.178813 \quad$| | | α | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | 0.0005 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

The $95 \% \mathrm{Cl}$ for $\mu_{Y}-\mu_{O}$ (Young - Old) is hence

$$
\begin{aligned}
\bar{X}_{Y}-\bar{X}_{O} \pm t_{0.05 / 2,12} \sqrt{\frac{s_{Y}^{2}}{m}+\frac{s_{O}^{2}}{n}} & \approx 56.76-34.69 \pm 2.179 \sqrt{\frac{23.22^{2}}{17}+\frac{14.37^{2}}{13}} \\
& \approx 22.07 \pm 15.03=(7.04,37.10)
\end{aligned}
$$

With 95% confidence, the maximum treadmill runtime of old mice receiving plasma from a young mouse is 7.04 to 37.10 minutes longer on average than those who received plasma from a old mouse.

Example: CI for the Young Blood Effect

If we use the software formula for the df,

$$
\begin{gathered}
w_{1}=\frac{s_{Y}^{2}}{m} \approx \frac{23.22^{2}}{17} \approx 31.71, \quad w_{2}=\frac{s_{O}^{2}}{n} \approx \frac{14.37^{2}}{13} \approx 15.88 \\
d f=\frac{\left(w_{1}+w_{2}\right)^{2}}{\frac{w_{1}^{2}}{m-1}+\frac{w_{2}^{2}}{n-1}} \approx \frac{(31.71+15.88)^{2}}{\frac{31.71^{2}}{17-1}+\frac{15.88^{2}}{13-1}} \approx 27.007 .
\end{gathered}
$$

The critical value for $95 \% \mathrm{Cl}$ is $t_{0.05 / 2,27} \approx 2.052$.
qt(0.05/2, df=27.007, lower.tail=F)

| \#\# [1] 2.051806 | | α | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | 0.0005 |
| :--- | :--- | :--- | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| | v | 27 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 3.421 | 3.690 |

The $95 \% \mathrm{Cl}$ for $\mu_{Y}-\mu_{O}$ becomes
$\bar{X}_{Y}-\bar{X}_{O} \pm t_{0.05 / 2,27.007} \sqrt{\frac{s_{Y}^{2}}{m}+\frac{s_{O}^{2}}{n}} \approx 56.76-34.69 \pm 2.052 \sqrt{\frac{23.22^{2}}{17}+\frac{14.37^{2}}{13}}$

$$
\approx 22.07 \pm 14.16=(7.91,36.23)
$$

Hypothesis Tests for $\mu_{1}-\mu_{2}$

To test $\mathrm{H}_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$, the two-sample t-statistic is

$$
t=\frac{(\bar{X}-\bar{Y})-\Delta_{0}}{\sqrt{s_{1}^{2} / m+s_{2}^{2} / n}} \sim \text { approx. } t_{v}
$$

where the df is $v=\min (m-1, n-1)$, or the one given by the software formula, and the P-value is computed as follows depending on H_{A}.

The bell curve above is the t-curve with v degrees of freedom.

Example: Test for the Young Blood Effect

To test $\mathrm{H}_{0}: \mu_{Y}-\mu_{O}=0$ v.s. $\mathrm{H}_{a}: \mu_{Y}-\mu_{O} \neq 0$, the t-statistic is

$$
t=\frac{\bar{X}_{Y}-\bar{X}_{O}}{\sqrt{\frac{s_{Y}^{2}}{m}+\frac{s_{O}^{2}}{n}}}=\frac{56.76-34.69}{\sqrt{\frac{23.22^{2}}{17}+\frac{14.37^{2}}{13}}}=\frac{22.07}{6.899} \approx 3.199
$$

df = $13-1=12$ (simple) or 27.007 (software). The two-sided P-value can be found in R to be ≈ 0.0076 or 0.0035

2*pt(3.199, df=12, lower.tail=F)
\#\# [1] 0.007646717
2*pt(3.199, df=27.007, lower.tail=F)
\#\# [1] 0.003507634

	α	0.1	0.05	0.025	0.01	0.005
v	12	1.356	1.782	2.179	2.681	3.055
	27	1.314	1.703	2.052	2.473	2.771

The difference is significant at 1% level.
The maximum treadmill runtime of old mice receiving young blood is significantly longer on average than those receiving old blood.

Analysis of Two Sample Data Assuming Equal Population SD's

What if $\sigma_{1}=\sigma_{2}$?

So far we have assumed that $\sigma_{1} \neq \sigma_{2}$. What if we have reasons to believe $\sigma_{1}=\sigma_{2}=\sigma$ albeit σ is unknown?
When $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}$, both s_{1}^{2} and s_{2}^{2} are unbiased estimates of σ^{2}. We can combine s_{1}^{2} and s_{2}^{2} to get a better estimate for σ^{2}, the so-called pooled sample variances

$$
s_{p}^{2}=\frac{(m-1) s_{1}^{2}+(n-1) s_{2}^{2}}{m+n-2}
$$

Observe that s_{p}^{2} is a weighted average of s_{1}^{2} and s_{2}^{2}, and it gives more weights to the sample with larger size.

Moreover, as $s^{2}=\frac{1}{n-1} \sum_{i}\left(X_{i}-\bar{X}\right)^{2}$, we can see that

$$
s_{p}^{2}=\frac{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}+\sum_{i}\left(Y_{i}-\bar{Y}\right)^{2}}{m+n-2}
$$

is simply an "average" of the squared deviations from the corresponding means, though the divider is $m+n-2$ not $m+n$.

The Pooled Two-Sample t-Statistic Asumming Equal SDs

The two-sample t-statistic then becomes

$$
t=\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{p}^{2}}{m}+\frac{s_{p}^{2}}{n}}}=\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{s_{p} \sqrt{\frac{1}{m}+\frac{1}{n}}}
$$

which is specifically called the pooled two-sample t-statistic.

- It has an exact t-distribution with $m+n-2$ degrees of freedom when the two populations are normal.
- It is approximately $t_{(m+n-2)}$ for non-normal population $\mathbf{w} /$ equal SDs as long as the sample size m, n is not too small.
- The degrees of freedom, $m+n-2$ is greater than the df of two-sample t-statistic when $\sigma_{1} \neq \sigma_{2}$ (both software formula or the simple formula)

Two Sample Problems w/ Equal but Unknown SD's

A $(1-\alpha) 100 \% \mathrm{Cl}$ for $\mu_{1}-\mu_{2}$ is

$$
(\bar{X}-\bar{Y}) \pm t_{\alpha / 2, m+n-2} s_{p} \sqrt{\frac{1}{m}+\frac{1}{n}}
$$

where $t_{\alpha / 2, m+n-2}$ is the value of the t distribution with $\mathrm{df}=m+n-2$ such that

which can be found in R using the qt () command.
qt(alpha/2, df $=m+n-2$, lower.tail=F)
To test $H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$, we use the pooled 2-sample t-statistic

$$
t=\frac{\bar{X}-\bar{Y}-\Delta_{0}}{s_{p} \sqrt{\frac{1}{m}+\frac{1}{n}}} \sim t_{m+n-2} \quad \text { under } \mathrm{H}_{0}
$$

Young Blood Example Assuming Equal SD's - 95\% CI

Assuming $\sigma_{1}=\sigma_{2}$, the pooled SD is

$$
s_{p}=\sqrt{\frac{(17-1) 23.22^{2}+(13-1) 14.37^{2}}{17+13-2}} \approx 19.915
$$

with $\mathrm{df}=m+n-2=17+13-2=28$. The critical value $t_{0.05 / 2,28} \approx 2.048$ for $95 \% \mathrm{Cl}$ is found in R below.
qt(0.05/2, df=28, lower.tail=F)
\#\# [1] 2.048407

So the $95 \% \mathrm{Cl}$ for $\mu_{Y}-\mu_{O}$ (Young - Old) is

$$
\begin{aligned}
\bar{X}_{Y}-\bar{X}_{O} \pm t_{0.05 / 2,28} s_{p} \sqrt{\frac{1}{m}+\frac{1}{n}} & =56.76-34.69 \pm 2.048 \times 19.915 \times \sqrt{\frac{1}{17}+\frac{1}{13}} \\
& \approx 22.07 \pm 15.03=(7.04,37.10)
\end{aligned}
$$

Observe the Cl is shorter when assuming equal SDs for the greater df.
The greater the df, the smaller the critical value $t_{\alpha / 2, d f}$.

Young Blood Example: Hyp Test Assuming Equal SD's

For testing $\mathrm{H}_{0}: \mu_{Y}-\mu_{O}=0$ v.s. $\mathrm{H}_{a}: \mu_{Y}-\mu_{O} \neq 0$, assuming
$\sigma_{1}=\sigma_{2}$ the pooled t-statistic is

$$
t=\frac{\bar{X}_{Y}-\bar{X}_{O}}{s_{p} \sqrt{1 / m+1 / n}}=\frac{56.76-34.69}{19.915 \sqrt{1 / 17+1 / 13}}=\frac{22.07}{7.337} \approx 3.008
$$

The df is $m+n-2=17+13-2=28$.
The 2-sided P -value can be found in R to be ≈ 0.0055 or using table to be between 0.01 and 0.002 .

2*pt(3.008, df=28, lower.tail=F)
\#\# [1] 0.00550726

	α	0.1	0.05	0.025	0.01	0.005	0.001
v	28	1.313	1.701	2.048	2.467	2.763	3.408

The pooled t-test gives smaller P-value and the result appears more significant.

Two-Sample Tests/Cls in R

```
Young = c(27,28,31,35,39,40,45,46,55,56,59,68,76,90,90,90,90)
Old = c(19,21,22,25,28,29,29,31,36,42,50,51,68)
By default, the R command t.test() does NOT assume }\mp@subsup{\sigma}{1}{}=\mp@subsup{\sigma}{2}{}\mathrm{ .
t.test(Young, Old, conf.level=0.95)
##
## Welch Two Sample t-test
##
## data: Young and Old
## t = 3.1997, df = 27.006, p-value = 0.003502
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 7.918414 36.226383
## sample estimates:
## mean of x mean of y
## 56.76471 34.69231
```

Note R uses the software formula to compute the $\mathrm{df}=27.006$.

Two-Sample Tests/Cls in R

One can force σ_{1}, σ_{2} to be equal by adding var. equal $=\mathrm{T}$.
t.test(Young, Old, conf.level $=0.95$, var.equal $=\mathrm{T}$)
\#\#
\#\# Two Sample t-test
\#\#
\#\# data: Young and 01d
\#\# $t=3.0086, d f=28, p$-value $=0.005499$
\#\# alternative hypothesis: true difference in means is not equal to 0
\#\# 95 percent confidence interval:
\#\# 7.04447437 .100323
\#\# sample estimates:
\#\# mean of x mean of y
\#\# 56.7647134 .69231

Which Two-Sample Tests/Cls to Use?

We have introduced two different two-sample tests/Cls:

- the one assuming $\sigma_{1}=\sigma_{2}$ used the pooled SD.
- the one w/o assuming $\sigma_{1}=\sigma_{2}$ is called Welch's method.

Though in many cases, the two methods agree in the conclusion, but they can provide different answers when:

- the sample SDs are very different, and
- the sizes of the groups are also very different

So which method should I use?

- When σ_{1} and σ_{2} are indeed equal, the method based on pooled SD is more powerful
- However, it is usually hard to check whether $\sigma_{1}=\sigma_{2}$. So it's safer to use Welch's method.

Robustness of Two-Sample t-Procedures (1)

Even when the populations are not normal, the two-sample statistics

$$
t=\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{m}+\frac{s_{2}^{2}}{n}}}
$$

can be well-approximated by t-distributions, as long as the sample sizes are not too small.

This is the so-called robustness of the two-sample t-procedures.

Robustness of Two-Sample t-Procedures (2)

- The t-approximation is generally good if $m+n$ is not too small (both ≥ 15), the data are not strongly skewed, and there are no outliers.
- Check histograms or side-by-side boxplots of the data
- With $m+n$ sufficiently large (say both ≥ 30), the approximation is good even when the data are clearly skewed.
- Given a fixed sum of the sample sizes $m+n$ the t-approximation works the best when the sample sizes are equal $m=n$
- In planning a two-sample study, choose equal sample sizes if you can

[^0]: ${ }^{1}$ Sanders, L., "Young blood proven good for old brain," Science News, 185(11), May 31, 2014

