STAT 234 Lecture 20 t Tests About a Population Mean z-Tests About a Population Proportion Section 9.2, 9.3, 9.4

Yibi Huang Department of Statistics University of Chicago

t-Tests about Means

Similar to the normal *z* test, the *t*-statistic for testing H_0 : $\mu = \mu_0$ when σ is unknown is

$$t = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \sim t_{n-1}$$

At the significance level α , we reject $H_0: \mu = \mu_0$ if

•
$$t > t_{\alpha,n-1}$$
 for $H_A: \mu > \mu_0$

- $t < -t_{\alpha,n-1}$ for H_A : $\mu < \mu_0$
- $|t| > t_{\alpha/2,n-1}$ for H_A : $\mu \neq \mu_0$

The calculation of the P-value also depends on H_A .

The bell-shape curve above is the *t*-curve with df = n - 1, not the normal curve. We reject H₀ when *P*-value < α .

Example: Upper One-Sided Rejection Regions

Example 1: To test H₀: $\mu = 10$ v.s. H_A: $\mu > 10$, *t*-stat = 2.23, sample size n = 21, df = n - 1 = 20. The H₀ is rejected at significance level α if

$$t\text{-stat} > t_{\alpha,n-1} = \begin{cases} t_{0.1,20} \approx 1.325 & \text{for } \alpha = 0.1 \\ t_{0.05,20} \approx 1.725 & \text{for } \alpha = 0.05 \\ t_{0.01,20} \approx 2.528 & \text{for } \alpha = 0.01 \end{cases}$$

For the *t*-stat = 2.23,

- H_0 is rejected at levels $\alpha = 0.1$ and 0.05
- H₀ is NOT rejected at level $\alpha = 0.01$

	α	0.1	0.05	0.025	0.01	0.005	0.001	0.0005
v	19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
	20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
	21	1.323	1.721	2.080	2.518	2.831	3.527	3.819

qt(c(0.1,0.05,0.01), df=20, lower.tail=FALSE)
[1] 1.325341 1.724718 2.527977

Example 1. H_0 : $\mu = 10$ v.s. H_A : $\mu > 10$, *t*-stat = 2.23.

one-sided P-value < ____</pre>

In R:

pt(2.23,df=20,lower.tail=F)
[1] 0.01868333

Example 1. H_0 : $\mu = 10$ v.s. H_A : $\mu > 10$, *t*-stat = 2.23.

<u>0.01</u> < one-sided *P*-value < <u>0.025</u>

In R:

pt(2.23,df=20,lower.tail=F)
[1] 0.01868333

Example: Two-Sided Rejection Regions

Example 2: To test H₀: $\mu = 60$ v.s. H_A: $\mu \neq 60$, *t*-stat = 1.8, sample size n = 24, df = n - 1 = 23. The H₀ is rejected at significance level α if

$$|t\text{-stat}| > t_{\alpha/2,n-1} = \begin{cases} t_{0.05,23} \approx 1.714 & \text{for } \alpha = 0.1 \\ t_{0.025,23} \approx 2.069 & \text{for } \alpha = 0.05 \\ t_{0.005,23} \approx 2.807 & \text{for } \alpha = 0.01 \end{cases}$$

For the *t*-stat = 2.23,

- H₀ is rejected at level α = 0.1
- H₀ is NOT rejected at levels $\alpha = 0.05$ and 0.01

	α	0.1	0.05	0.025	0.01	0.005	0.001	0.0005
v	22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
	23	1.319	1.714	2.069	2.500	2.807	3.485	3.768
	24	1.318	1.711	2.064	2.492	2.797	3.467	3.745

qt(c(0.1,0.05,0.01)/2, df=23, lower.tail=FALSE)
[1] 1.713872 2.068658 2.807336

Example 2. H_0 : $\mu = 60$ v.s. H_A : $\mu \neq 60$, *t*-stat = 1.8.

< two-sided *P*-value <

In R:

2*pt(1.8,df=24-1,lower.tail=F)
[1] 0.08499266

Example 2. H_0 : $\mu = 60$ v.s. H_A : $\mu \neq 60$, *t*-stat = 1.8.

 $2 \times 0.025 = 0.05$ < two-sided *P*-value < $2 \times 0.05 = 0.1$

In R:

2*pt(1.8,df=24-1,lower.tail=F)
[1] 0.08499266

Example 3. H_0 : $\mu = 20$ v.s. H_A : $\mu < 20$, *t*-stat = -1.25.

one-sided P-value > _____

In R:

pt(-1.25, df=17-1) ## [1] 0.1146372 Example 3. H_0 : $\mu = 20$ v.s. H_A : $\mu < 20$, *t*-stat = -1.25.

one-sided *P*-value > <u>0.1</u>

In R:

pt(-1.25, df=17-1) ## [1] 0.1146372 Example 4. For testing H_0 : $\mu = 20$ vs. H_A : $\mu > 20$ with a sample of size n = 17 and a *t*-statistic = -1.25, which of the following areas represents the correct *P*-value?

Example 4. For testing H_0 : $\mu = 20$ vs. H_A : $\mu > 20$ with a sample of size n = 17 and a *t*-statistic = -1.25, which of the following areas represents the correct *P*-value?

Ans: (D). Note H_A : $\mu > 20$ is upper one-sided. The *P*-value is the upper tail area above the *t*-statistic.

pt(-1.25, df=17-1, lower.tail=F)
[1] 0.8853628

Example 5. H_0 : $\mu = 2.5$ v.s. H_A : $\mu > 2.5$, *t*-stat = 2.8.

	a	0.1	0.05	0.025	0.01	0.005	0.001	0.0005
sample size $n = 57$	v 40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$	50	1.299	1.676	2.009	2.403	2.678	3.261	3.496
dI = 57 - 1 = 56	60	1.296	1.671	2.000	2.390	2.660	3.232	3.460
	120	1.289	1.658	1.980	2.358	2.617	3.160	3.373

• df = 57 - 1 = 56 is not on the table.

Example 5. H_0 : $\mu = 2.5$ v.s. H_A : $\mu > 2.5$, *t*-stat = 2.8.

		α	0.1	0.05	0.025	0.01	0.005	0.001	0.0005
sample size $n = 57$	v 4	10	1.303	1.684	2.021	2.423	2.704	3.307	3.551
	5	50	1.299	1.676	2.009	2.403	2.678	3.261	3.496
dI = 57 - 1 = 56	6	60	1.296	1.671	2.000	2.390	2.660	3.232	3.460
	12	20	1.289	1.658	1.980	2.358	2.617	3.160	3.373

- df = 57 1 = 56 is not on the table.
- df = 56 is between df = 50 and 60 in the table
 lf df = 50, *P*-value would be between 0.001 and 0.005.
 lf df = 60, *P*-value would also be between 0.001 and 0.005.

Example 5. H_0 : $\mu = 2.5$ v.s. H_A : $\mu > 2.5$, *t*-stat = 2.8.

	α	0.1	0.05	0.025	0.01	0.005	0.001	0.0005
sample size $n = 57$	v 40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$	50	1.299	1.676	2.009	2.403	2.678	3.261	3.496
dI = 57 - 1 = 56	60	1.296	1.671	2.000	2.390	2.660	3.232	3.460
	120	1.289	1.658	1.980	2.358	2.617	3.160	3.373

- df = 57 1 = 56 is not on the table.
- df = 56 is between df = 50 and 60 in the table
 lf df = 50, *P*-value would be between 0.001 and 0.005.
 lf df = 60, *P*-value would also be between 0.001 and 0.005.
- So for df = 56, the *P*-value is also between 0.001 and 0.005

Recall the Thermal Conductivity of Glass Example in L17.

Here are measurements of the thermal conductivity of 11 randomly selected pieces of a particular type of glass:

```
1.11, 1.07, 1.11, 1.07, 1.12, 1.08,
1.08, 1.18, 1.18, 1.18, 1.12
```

We want to investigate if the mean conductivity of this type of glass is greater than 1. The hypotheses are

```
H_0: \mu = 1, \quad H_A: \mu > 1.
```

where μ is the mean conductivity of this type of glass.

Example: Thermal Conductivity of Glass — t-Statistic

```
The sample mean and sample SD are

\overline{x} \approx 1.1182, and s \approx 0.04378.

conduct = c(1.11,1.07,1.11,1.07,1.12,1.08,1.08,

1.18,1.18,1.18,1.12)

mean(conduct)

## [1] 1.118182

sd(conduct)

## [1] 0.04377629
```

The *t*-statistics is

$$t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}} = \frac{1.118 - 1}{0.04378/\sqrt{11}} \approx 8.95,$$

with 11 - 1 = 10 degrees of freedom. Here $\mu_0 = 1$ since $\mu = 1$ in H₀.

Example: Thermal Conductivity of Glass — *P*-value

Using *t*-table:

t-stat = 8.95 > 4.587

 \Rightarrow one sided *P*-value < 0.0005

In R:

pt(8.95, df=10, lower.tail=F)
[1] 2.175242e-06

Conclusion: The tiny *P*-value 2.175×10^{-6} provides convincing evidence that the mean conductivity of this type of glass is > 1

Hypothesis Testing for a Proportion (Section 9.3)

Hypothesis Testing for a Proportion

Suppose we want to test H_0 : $p = p_0$ for some fixed value p_0 .

Here *n* should be so large that $np_0 \ge 10$, and $n(1 - p_0) \ge 10$.

Recall for confidence intervals, we use

$$\mathsf{SE} = \sqrt{\frac{\widehat{p}(1-\widehat{p}\,)}{n}}$$

but for hypothesis testing we use

$$\mathsf{SE} = \sqrt{\frac{p_0(1-p_0)}{n}}$$

Why?

- Recall by CLT when *n* is large $\widehat{p} \sim N(p, \sqrt{p(1-p)/n})$
- When constructing CIs for $p,\,p$ is unknown, so we estimate $\sqrt{p(1-p)/n}$ by $\sqrt{\widehat{p}(1-\widehat{p})/n}$
- Under H₀ : $p = p_0$, p is known to be p_0 . There is no need to estimate p and the $\sqrt{p(1-p)/n}$ is simply $\sqrt{p_0(1-p_0)/n}$.

An observational study was conducted at Chicago Children's Museum to determine the age at which a child's preferred play partner switched from gender-neutral to a same-sex peer

- For 5-year old children, 78 of 162 preferred to interact with a same-sex peer (48%)
- For 6-year old children, 59 of 97 preferred to interact with a same-sex peer (61%)

Under the *null hypothesis* of *no preference*, the probability that a child select a same-sex peer is p = 0.5

We want to test if 6-year old children had a preference interacting with a same-sex peer.

We want to test H_0 : p = 1/2 versus H_a : $p \neq 1/2$

- Is the *z* test appropriate? Check whether $np_0 > 10$ and $n(1 - p_0) > 10$? (Yes; $np_0 = 97(0.5) = 48.5 > 10$ and $n(1 - p_0) = 48.5 > 10$)
- Test statistic

$$z = \frac{\widehat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}} = \frac{0.61 - 0.5}{\sqrt{0.5(1 - 0.5)/97}} = \frac{0.11}{0.0508} = 2.17$$

- *p*-value is $2P(z > 2.17) = 2(0.015) = 0.03 < \alpha = 0.05$
- Conclude: 6-year old children prefer to interact with same-sex peers rather than gender-neutral

Conditions Required for Using the Large-Sample CI and Tests for Proportions

- The observations are (nearly) i.i.d. from the population studied.
 - If SRS, the sample size is at most 10% of the population size.
- The sample size *n* is large enough. A rule of thumb is that
 - to use the large-sample CI: $n\widehat{p}$ and $n(1 \widehat{p})$ need to be both ≥ 10
 - to use the large-sample test for the H₀ of $p = p_0$: np_0 and $n(1 - p_0)$ need to be both ≥ 10