## STAT 234 Lecture 20

t Tests About a Population Mean
z-Tests About a Population Proportion
Section 9.2, 9.3, 9.4

Yibi Huang
Department of Statistics
University of Chicago

## t-Tests about Means

## One-sample $t$-Test of a Population Mean (Rejection Region)

Similar to the normal $z$ test, the $t$-statistic for testing $\mathrm{H}_{0}: \mu=\mu_{0}$ when $\sigma$ is unknown is

$$
t=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}} \sim t_{n-1}
$$

At the significance level $\alpha$, we reject $\mathrm{H}_{0}: \mu=\mu_{0}$ if

- $t>t_{\alpha, n-1}$ for $\mathrm{H}_{A}: \mu>\mu_{0}$
- $t<-t_{\alpha, n-1}$ for $\mathrm{H}_{A}: \mu<\mu_{0}$
- $|t|>t_{\alpha / 2, n-1}$ for $\mathrm{H}_{A}: \mu \neq \mu_{0}$


## One-sample $t$-Test of a Population Mean ( $P$-value)

The calculation of the P-value also depends on $\mathrm{H}_{A}$.

| $\mathrm{H}_{\text {A }}$ | $\begin{gathered} \text { two-sided } \\ \mu \neq \mu_{0} \end{gathered}$ | lower one-sided $\mu<\mu_{0}$ | upper one-sided $\mu>\mu_{0}$ |
| :---: | :---: | :---: | :---: |
| P-value |  |  |  |
|  | $-\|t\| \quad\|t\|$ |  |  |

The bell-shape curve above is the $t$-curve with $\mathrm{df}=n-1$, not the normal curve. We reject $\mathrm{H}_{0}$ when $P$-value $<\alpha$.

## Example: Upper One-Sided Rejection Regions

Example 1: To test $\mathrm{H}_{0}: \mu=10$ v.s. $\mathrm{H}_{A}: \mu>10$,
$t$-stat $=2.23$, sample size $n=21, \mathrm{df}=n-1=20$.
The $\mathrm{H}_{0}$ is rejected at significance level $\alpha$ if

$$
t \text {-stat }>t_{\alpha, n-1}= \begin{cases}t_{0.1,20} \approx 1.325 & \text { for } \alpha=0.1 \\ t_{0.05,20} \approx 1.725 & \text { for } \alpha=0.05 \\ t_{0.01,20} \approx 2.528 & \text { for } \alpha=0.01\end{cases}
$$

For the $t$-stat $=2.23$,

- $\mathrm{H}_{0}$ is rejected at levels $\alpha=0.1$ and 0.05
- $\mathrm{H}_{0}$ is NOT rejected at level $\alpha=0.01$

|  | $\alpha$ | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $v$ | 19 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 3.579 |
|  | 20 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.552 |
|  | 21 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | 3.527 |

qt(c(0.1,0.05,0.01), df=20, lower.tail=FALSE)
\#\# [1] 1.3253411 .7247182 .527977

## Finding Upper One-Sided $P$-Values in R

Example 1. $\mathrm{H}_{0}: \mu=10$ v.s. $\mathrm{H}_{A}: \mu>10, t$-stat $=2.23$.

$\ldots \quad$ < one-sided $P$-value $<$ $\qquad$
In R:
pt(2.23,df=20,lower.tail=F)
\#\# [1] 0.01868333

## Finding Upper One-Sided $P$-Values in R

Example 1. $\mathrm{H}_{0}: \mu=10$ v.s. $\mathrm{H}_{A}: \mu>10, t$-stat $=2.23$.

$\underline{0.01}<$ one-sided $P$-value $<\underline{0.025}$
In R:
pt(2.23,df=20,lower.tail=F)
\#\# [1] 0.01868333

## Example: Two-Sided Rejection Regions

Example 2: To test $\mathrm{H}_{0}: \mu=60$ v.s. $\mathrm{H}_{A}: \mu \neq 60$,
$t$-stat $=1.8$, sample size $n=24$, df $=n-1=23$.
The $\mathrm{H}_{0}$ is rejected at significance level $\alpha$ if

$$
\mid t \text {-stat } \left\lvert\,>t_{\alpha / 2, n-1}= \begin{cases}t_{0.05,23} \approx 1.714 & \text { for } \alpha=0.1 \\ t_{0.025,23} \approx 2.069 & \text { for } \alpha=0.05 \\ t_{0.005,23} \approx 2.807 & \text { for } \alpha=0.01\end{cases}\right.
$$

For the $t$-stat $=2.23$,

- $\mathrm{H}_{0}$ is rejected at level $\alpha=0.1$
- $\mathrm{H}_{0}$ is NOT rejected at levels $\alpha=0.05$ and 0.01

|  | $\alpha$ | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | 0.0005 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $v$ | 22 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | 3.505 | 3.792 |
|  | 23 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 3.485 | 3.768 |
|  | 24 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | 3.467 | 3.745 |

qt(c(0.1,0.05,0.01)/2, df=23, lower.tail=FALSE)
\#\# [1] 1.713872 2.068658 2.807336

## Finding Two-Sided $P$-Values

Example 2. $\mathrm{H}_{0}: \mu=60$ v.s. $\mathrm{H}_{A}: \mu \neq 60, t$-stat $=1.8$.


In R:
2*pt(1.8,df=24-1,lower.tail=F)
\#\# [1] 0.08499266

## Finding Two-Sided $P$-Values

Example 2. $\mathrm{H}_{0}: \mu=60$ v.s. $\mathrm{H}_{A}: \mu \neq 60, t$-stat $=1.8$.


In R:
2*pt(1.8, df=24-1,lower.tail=F)
\#\# [1] 0.08499266

## Finding Lower One-Sided $P$-Values

Example 3. $\mathrm{H}_{0}: \mu=20$ v.s. $\mathrm{H}_{A}: \mu<20, t$-stat $=-1.25$.

one-sided $P$-value > $\qquad$
In R:
pt $(-1.25, \mathrm{df}=17-1)$
\#\# [1] 0.1146372

## Finding Lower One-Sided $P$-Values

Example 3. $\mathrm{H}_{0}: \mu=20$ v.s. $\mathrm{H}_{A}: \mu<20, t$-stat $=-1.25$.

one-sided $P$-value $>\underline{0.1}$
In R:
pt $(-1.25, d f=17-1)$
\#\# [1] 0.1146372

Example 4. For testing $H_{0}: \mu=20$ vs. $H_{A}: \mu>20$ with a sample of size $n=17$ and a $t$-statistic $=-1.25$, which of the following areas represents the correct $P$-value?





Example 4. For testing $H_{0}: \mu=20$ vs. $H_{A}: \mu>20$ with a sample of size $n=17$ and a $t$-statistic $=-1.25$, which of the following areas represents the correct $P$-value?



Ans: (D). Note $H_{A}: \mu>20$ is upper one-sided. The $P$-value is the upper tail area above the $t$-statistic.

pt(-1.25, df=17-1, lower.tail=F)
\#\# [1] 0. 8853628

## Cannot Find the Df on the $t$-Table?

Example 5. $\mathrm{H}_{0}: \mu=2.5$ v.s. $\mathrm{H}_{A}: \mu>2.5, t$-stat $=2.8$.

|  | $\alpha$ | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | 0.0005 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{ll}v & 40\end{array}$ | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 3.307 | 3.551 |
|  | 50 | 1.299 | 1.676 | 2.009 | 2.403 | 2.678 | 3.261 | 3.496 |
| df $=57-1=56$ | 60 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 | 3.232 | 3.460 |
|  | 120 | 1.289 | 1.658 | 1.980 | 2.358 | 2.617 | 3.160 | 3.373 |

- $\mathrm{df}=57-1=56$ is not on the table.


## Cannot Find the Df on the $t$-Table?

Example 5. $\mathrm{H}_{0}: \mu=2.5$ v.s. $\mathrm{H}_{A}: \mu>2.5, t$-stat $=2.8$.

| sample size $n=57$$\mathrm{df}=57-1=56$ | $\alpha$ | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | 0.0005 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 40 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 3.307 | 3.551 |
|  | 50 | 1.299 | 1.676 | 2.009 | 2.403 | 2.678 | 3.261 | 3.496 |
|  | 60 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 | 3.232 | 3.460 |
|  | 120 | 1.289 | 1.658 | 1.980 | 2.358 | 2.617 | 3.160 | 3.373 |

- $\mathrm{df}=57-1=56$ is not on the table.
- $\mathrm{df}=56$ is between $\mathrm{df}=50$ and 60 in the table If $\mathrm{df}=50, P$-value would be between 0.001 and 0.005 . If $\mathrm{df}=60, P$-value would also be between 0.001 and 0.005 .


## Cannot Find the Df on the $t$-Table?

Example 5. $\mathrm{H}_{0}: \mu=2.5$ v.s. $\mathrm{H}_{A}: \mu>2.5, t$-stat $=2.8$.

| sample size $n=57$ <br> $\mathrm{df}=57-1=56$ | $\alpha$ | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | 0.0005 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 40 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 3.307 | 3.551 |
|  | 50 | 1.299 | 1.676 | 2.009 | 2.403 | 2.678 | 3.261 | 3.496 |
|  | 60 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 | 3.232 | 3.460 |
|  | 120 | 1.289 | 1.658 | 1.980 | 2.358 | 2.617 | 3.160 | 3.373 |

- $\mathrm{df}=57-1=56$ is not on the table.
- $\mathrm{df}=56$ is between $\mathrm{df}=50$ and 60 in the table If $\mathrm{df}=50, P$-value would be between 0.001 and 0.005 . If $\mathrm{df}=60, P$-value would also be between 0.001 and 0.005 .
- So for $\mathrm{df}=56$, the $P$-value is also between 0.001 and 0.005


## Example: Thermal Conductivity of Glass (Revisit)

Recall the Thermal Conductivity of Glass Example in L17.
Here are measurements of the thermal conductivity of 11 randomly selected pieces of a particular type of glass:
$1.11,1.07,1.11,1.07,1.12,1.08$,
$1.08,1.18,1.18,1.18,1.12$

We want to investigate if the mean conductivity of this type of glass is greater than 1. The hypotheses are

$$
\mathrm{H}_{0}: \mu=1, \quad \mathrm{H}_{A}: \mu>1 .
$$

where $\mu$ is the mean conductivity of this type of glass.

## Example: Thermal Conductivity of Glass - $t$-Statistic

The sample mean and sample SD are

$$
\bar{x} \approx 1.1182, \quad \text { and } \quad s \approx 0.04378
$$

$\begin{aligned} & \text { conduct }=\mathrm{c}(1.11,1.07,1.11,1.07,1.12,1.08,1.08, \\ &1.18,1.18,1.18,1.12)\end{aligned}$
mean(conduct)
\#\# [1] 1.118182
sd(conduct)
\#\# [1] 0.04377629
The $t$-statistics is

$$
t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}=\frac{1.118-1}{0.04378 / \sqrt{11}} \approx 8.95
$$

with $11-1=10$ degrees of freedom.
Here $\mu_{0}=1$ since $\mu=1$ in $\mathrm{H}_{0}$.

## Example: Thermal Conductivity of Glass — $P$-value

Using $t$-table:

| $\alpha$ | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | 0.0005 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $v$ | 9 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 4.297 |
| 10 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 4.144 | 4.587 |
| 11 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 4.025 | 4.437 |



In R:
pt(8.95, df=10, lower.tail=F)
\#\# [1] 2.175242e-06
Conclusion: The tiny $P$-value $2.175 \times 10^{-6}$ provides convincing evidence that the mean conductivity of this type of glass is $>1$

Hypothesis Testing for a Proportion (Section 9.3)

## Hypothesis Testing for a Proportion

Suppose we want to test $\mathrm{H}_{0}: p=p_{0}$ for some fixed value $p_{0}$.
Under $\mathrm{H}_{0}, z=\frac{\widehat{p}-p_{0}}{\mathrm{SE}} \dot{\sim} N(0,1)$, where SE $=\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}$
P-value

Here $n$ should be so large that $n p_{0} \geq 10$, and $n\left(1-p_{0}\right) \geq 10$.

Recall for confidence intervals, we use

$$
\mathrm{SE}=\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}
$$

but for hypothesis testing we use

$$
\mathrm{SE}=\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}} .
$$

Why?

- Recall by CLT when $n$ is large $\widehat{p} \dot{\sim} N(p, \sqrt{p(1-p) / n})$
- When constructing Cls for $p, p$ is unknown, so we estimate $\sqrt{p(1-p) / n}$ by $\sqrt{\widehat{p}(1-\widehat{p}) / n}$
- Under $\mathrm{H}_{0}: p=p_{0}, p$ is known to be $p_{0}$. There is no need to estimate $p$ and the $\sqrt{p(1-p) / n}$ is simply $\sqrt{p_{0}\left(1-p_{0}\right) / n}$.


## Example: Children's Play Preference (1)

An observational study was conducted at Chicago Children's Museum to determine the age at which a child's preferred play partner switched from gender-neutral to a same-sex peer

- For 5-year old children, 78 of 162 preferred to interact with a same-sex peer (48\%)
- For 6-year old children, 59 of 97 preferred to interact with a same-sex peer (61\%)

Under the null hypothesis of no preference, the probability that a child select a same-sex peer is $p=0.5$

We want to test if 6-year old children had a preference interacting with a same-sex peer.

## Example: Children's Play Preference (2)

We want to test $\mathrm{H}_{0}: p=1 / 2$ versus $\mathrm{H}_{a}: p \neq 1 / 2$

- Is the $z$ test appropriate?

Check whether $n p_{0}>10$ and $n\left(1-p_{0}\right)>10$ ?
(Yes; $n p_{0}=97(0.5)=48.5>10$ and $\left.n\left(1-p_{0}\right)=48.5>10\right)$

- Test statistic

$$
z=\frac{\widehat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}}=\frac{0.61-0.5}{\sqrt{0.5(1-0.5) / 97}}=\frac{0.11}{0.0508}=2.17
$$

- $p$-value is $2 P(z>2.17)=2(0.015)=0.03<\alpha=0.05$
- Conclude: 6-year old children prefer to interact with same-sex peers rather than gender-neutral


## Conditions Required for Using the Large-Sample CI and Tests for Proportions

- The observations are (nearly) i.i.d. from the population studied.
- If SRS, the sample size is at most $10 \%$ of the population size.
- The sample size $n$ is large enough. A rule of thumb is that
- to use the large-sample CI:
$n \widehat{p}$ and $n(1-\widehat{p})$ need to be both $\geq 10$
- to use the large-sample test for the $\mathrm{H}_{0}$ of $p=p_{0}$ : $n p_{0}$ and $n\left(1-p_{0}\right)$ need to be both $\geq 10$

