STAT 234 Lecture 18B The General Framework of Hypothesis Testing Section 9.1

Yibi Huang Department of Statistics University of Chicago Dogs Can Smell Cancer | Secret Life of Dogs | BBC

https://youtu.be/e0UK6kkS0_M

Case Study: Can Dogs Smell Bladder Cancer?

- A study¹ by M. Willis et al. considered whether dogs could be trained to detect if a person has bladder cancer by smelling his/her urine.
- 6 dogs of varying breeds were trained to discriminate between urine from patients with bladder cancer and urine from control patients without it.
- The dogs were taught to indicate which among several specimens was from the bladder cancer patient by lying beside it.
- Once trained, the dogs' ability to distinguish cancer patients from controls was tested using urine samples from subjects not previously encountered by the dogs.

¹Olfactory detection of human bladder cancer by dogs: proof of principle study, *British Medical Journal*, vol. 329, September 25, 2004.

Case Study: Can Dogs Smell Bladder Cancer?

- Neither the dog handlers nor the experimental observers knew the identity of urine samples so the dogs couldn't get clue
- Each of the 6 dogs was tested with 9 trials. In each trial, one urine sample from a bladder cancer patient was randomly placed among 6 control urine samples.
- Outcome: In the total of 54 trials with the 6 dogs, the dogs made the correct selection 22 times.
 - The dogs were correct for $22/54 \approx 41\%$ of the time,
 - not fabulous
 - If the dogs just guessed at random, they were only expected to be correct for $1/7\approx 14\%$ of the time
 - Is this difference (41% v.s. 14%) surprising?

Let p be the probability that a dog makes the correct selection on a given trial.

• Null hypothesis (H_0): p = 1/7

"There is nothing going on."

The dogs just guessed at random.

- "null" means "nothing surprising is going on".
- The dogs were just lucky to make more correct selections than expected.

Let p be the probability that a dog makes the correct selection on a given trial.

• Null hypothesis (H_0): p = 1/7

"There is nothing going on."

The dogs just guessed at random.

- "null" means "nothing surprising is going on".
- The dogs were just lucky to make more correct selections than expected.
- Alternative hypothesis (H_A or H_1): p > 1/7

"There is something going on."

Dogs can do better than random guessing.

Weighing Evidence Using a Test Statistic

The next step of hypothesis testing is to weigh the evidence — how likely to observed the data obtained if H_0 was true?

• If the observed result was very unlikely to have occurred under the H₀, then the evidence raises more than a reasonable doubt in our minds about the H₀.

Weighing Evidence Using a Test Statistic

The next step of hypothesis testing is to weigh the evidence — how likely to observed the data obtained if H_0 was true?

 If the observed result was very unlikely to have occurred under the H₀, then the evidence raises more than a reasonable doubt in our minds about the H₀.

The *test statistic* is a summary of the data that best reflects the evidence for or against the hypotheses.

· For this study, the test statistics we choose is

X = the number of correct guesses in the 54 trials

- The larger X, the stronger evidence for H_A and against H_0
- The smaller X, the stronger evidence for H₀ and against H_A

Distribution of the Test Statistics Under H₀

For the "Dogs Smell Cancer" study, if H₀ is true, then

$$X \sim Bin(n = 54, p = 1/7)$$
 (Why?)

which implies

$$P(X=k) = {\binom{54}{k}} {\left(\frac{1}{7}\right)^k} {\left(\frac{6}{7}\right)^{54-k}}, \quad k=0,1,2,\dots,54.$$

A test procedure is specified by the following:

- 1. a test statistic
- 2. a rejection region

The null hypothesis H_0 will be **rejected** if and only if **the test** statistic falls in the rejection region.

A test procedure is specified by the following:

- 1. a test statistic
- 2. a rejection region

The null hypothesis H_0 will be **rejected** if and only if **the test** statistic falls in the rejection region.

E.g., for the "Dogs Smell Cancer" study, as the strength of evidence for the two hypotheses are reflected by the test statistic

X = # of correct guesses in the 54 trials.

A sensible rejection region is of the form

 $X \ge k$ for some cutoff k.

and the test procedure is reject H_0 if $X \ge k$.

A test procedure is specified by the following:

- 1. a test statistic
- 2. a rejection region

The null hypothesis H_0 will be **rejected** if and only if **the test** statistic falls in the rejection region.

E.g., for the "Dogs Smell Cancer" study, as the strength of evidence for the two hypotheses are reflected by the test statistic

X = # of correct guesses in the 54 trials.

A sensible rejection region is of the form

 $X \ge k$ for some cutoff k.

and the test procedure is reject H_0 if $X \ge k$.

How to choose the cutoff value k for the rejection region?

		Decision	
		fail to reject H_0	reject H ₀
Truth	H ₀ true		
	H _A true		

		Decision	
		fail to reject H_0	reject H ₀
Truth	H ₀ true	\checkmark	Type I Error
	H _A true		\checkmark

• A *Type I Error* is rejecting the H_0 when it is true.

		Decision	
		fail to reject H_0	reject H ₀
Truth	H ₀ true	\checkmark	Type I Error
	H _A true	Type II Error	\checkmark

- A *Type I Error* is rejecting the H_0 when it is true.
- A *Type II Error* is failing to reject the H_0 when it is false.

Significance Level $\alpha = P(\text{Type I error})$

The *significance level* α of a test procedure is its probability to reject the null hypothesis H₀ when H₀ is true.

 $\alpha = P(\text{Type I error}) = P(\text{reject H}_0 | H_0 \text{ is true})$

The *significance level* α of a test procedure is its probability to reject the null hypothesis H₀ when H₀ is true.

 $\alpha = P(\text{Type I error}) = P(\text{reject H}_0 \mid H_0 \text{ is true})$

For the "Dog Smell Cancer" Study, if the test procedure is rejecting H₀ if $X \ge 15$, the significance level would be

 $\alpha = P(\text{Type I error}) = P(\text{H}_0 \text{ is rejected when H}_0 (p = 1/7) \text{ is true})$ $= P(X \ge 15 \text{ when } X \sim Bin(n = 54, p = 1/7))$ $= \sum_{k=15}^{54} {\binom{54}{k}} {\binom{1}{7}}^k {\binom{6}{7}}^{54-k} \approx 0.0073$

sum(dbinom(15:54, size = 54, p = 1/7))
[1] 0.007288514

The *significance level* α of a test procedure is its probability to reject the null hypothesis H₀ when H₀ is true.

 $\alpha = P(\text{Type I error}) = P(\text{reject H}_0 \mid H_0 \text{ is true})$

For the "Dog Smell Cancer" Study, if the test procedure is rejecting H₀ if $X \ge 15$, the significance level would be

 $\alpha = P(\text{Type I error}) = P(\text{H}_0 \text{ is rejected when H}_0 (p = 1/7) \text{ is true})$ $= P(X \ge 15 \text{ when } X \sim Bin(n = 54, p = 1/7))$ $= \sum_{k=15}^{54} {\binom{54}{k}} {\binom{1}{7}}^k {\binom{6}{7}}^{54-k} \approx 0.0073$

sum(dbinom(15:54, size = 54, p = 1/7))
[1] 0.007288514

If we reject H_0 when $X \ge 15$, there is a chance of 0.0073 to falsely reject a correct H_0 (Type I error).

For the test procedure: rejecting H_0 when $X \ge k$, the chance of making a Type I error is

 $P(\text{Type I error}) = P(\text{H}_0 \text{ is rejected when H}_0 (p = 1/7) \text{ is true})$ = $P(X \ge k \text{ when } X \sim Bin(n = 54, p = 1/7))$

$$= \sum_{x=k}^{54} \binom{54}{k} \binom{1}{7}^{x} \binom{6}{7}^{54-x} \approx \begin{cases} 0.14 & \text{if } k = 11\\ 0.076 & \text{if } k = 12\\ 0.038 & \text{if } k = 13\\ 0.017 & \text{if } k = 14\\ 0.007 & \text{if } k = 15 \end{cases}$$

Setting Rejection Region Based on the Significance Level

For the dogs study		
r er tre dege etdag;	0.14	if rejecting H_0 when $X \ge 11$
	0.076	if rejecting H_0 when $X \ge 12$
P(Type I error) = -	0.038	if rejecting H_0 when $X \ge 13$
	0.017	if rejecting H_0 when $X \ge 14$
	0.007	if rejecting H_0 when $X \ge 15$

Setting Rejection Region Based on the Significance Level

For the dogs study, $P(\text{Type I error}) = \begin{cases}
0.14 & \text{if rejecting } H_0 \text{ when } X \ge 11 \\
0.076 & \text{if rejecting } H_0 \text{ when } X \ge 12 \\
0.038 & \text{if rejecting } H_0 \text{ when } X \ge 13 \\
0.017 & \text{if rejecting } H_0 \text{ when } X \ge 14 \\
0.007 & \text{if rejecting } H_0 \text{ when } X \ge 15
\end{cases}$

To determine the cutoff value k for the rejection region $\{X \ge k\}$, we can first choose a *significance level* α , which is *the maximal* $P(Type \ I \ error)$ we can tolerate, and then choose the cutoff value so that P(Type I error) does not exceeds the significance level α .

For the dogs study, $P(\text{Type I error}) = \begin{cases}
0.14 & \text{if rejecting } H_0 \text{ when } X \ge 11 \\
0.076 & \text{if rejecting } H_0 \text{ when } X \ge 12 \\
0.038 & \text{if rejecting } H_0 \text{ when } X \ge 13 \\
0.017 & \text{if rejecting } H_0 \text{ when } X \ge 14 \\
0.007 & \text{if rejecting } H_0 \text{ when } X \ge 15
\end{cases}$

To determine the cutoff value k for the rejection region $\{X \ge k\}$, we can first choose a *significance level* α , which is *the maximal* $P(Type \ I \ error)$ we can tolerate, and then choose the cutoff value so that P(Type I error) does not exceeds the significance level α .

- If we can tolerate a α = 5% chance of Type I error, the test procedure can be "rejecting H₀ if X ≥ 13"
- If we can tolerate a α = 1% chance of Type I error, the test procedure can be "rejecting H₀ if X ≥ 15"

smaller significance level \Rightarrow smaller P(Type I error)

smaller significance level \Rightarrow smaller P(Type I error)

 \Rightarrow less likely to reject H₀

smaller significance level \Rightarrow smaller P(Type I error)

- \Rightarrow less likely to reject H₀
- \Rightarrow more likely to make Type II error

smaller significance level \Rightarrow smaller P(Type I error)

- \Rightarrow less likely to reject H₀
- \Rightarrow more likely to make Type II error
- \Rightarrow higher P(Type II error)

smaller significance level \Rightarrow smaller P(Type I error)

- \Rightarrow less likely to reject H₀
- \Rightarrow more likely to make Type II error
- \Rightarrow higher P(Type II error)

Suppose the sample size is fixed and a test statistic is chosen, choosing a rejection region with a smaller P(Type I error) would lead to a larger P(Type II error).

The definition is mouthful. Here are some key points

• The P-value is a probability, and thus it's between 0 and 1

The definition is mouthful. Here are some key points

- The P-value is a probability, and thus it's between 0 and 1
- This probability is calculated *assuming the H*₀ *is true*.

The definition is mouthful. Here are some key points

- The P-value is a probability, and thus it's between 0 and 1
- This probability is calculated *assuming the H*₀ *is true*.
- To determine the *P*-value, we must first decide which values of the test statistic are the evidence for H_A to be stronger than or as as the value obtained from our sample

Example (Dogs Smell Cancer) — P-Value

Example (Dogs Smell Cancer) — P-Value

- Observed X = 22
- Evidence for H_A is stronger than or as strong as the observed X = 22 if $X \ge 22$
- Under H_0 , $X \sim Bin(n = 54, p = 1/7)$

P-value =
$$P(X \ge 22 \mid H_0) = \sum_{k=22}^{54} {\binom{54}{k}} \left(\frac{1}{7}\right)^k \left(\frac{6}{7}\right)^{54-k} \approx 1.86 \times 10^{-6}$$

sum(dbinom(22:54,54,1/7))
[1] 1.861522e-06

The smaller the *P*-value, the stronger the evidence against the H_0 .

 A P-value of 0.25 says that if the H₀ was true, then we would obtain a result like the observed data 1 in 4 of the time; ⇒ the data look consistent with H₀

The smaller the *P*-value, the stronger the evidence against the H_0 .

- A P-value of 0.25 says that if the H₀ was true, then we would obtain a result like the observed data 1 in 4 of the time; ⇒ the data look consistent with H₀
- A *P*-value of 0.001 says that if the H₀ was true, then only 1 out of every 1,000 similar experiments would give result like the observed one; ⇒ the H₀ looks doubtful

The smaller the *P*-value, the stronger the evidence against the H_0 .

- A P-value of 0.25 says that if the H₀ was true, then we would obtain a result like the observed data 1 in 4 of the time; ⇒ the data look consistent with H₀
- A *P*-value of 0.001 says that if the H₀ was true, then only 1 out of every 1,000 similar experiments would give result like the observed one; ⇒ the H₀ looks doubtful

The smaller the *P*-value, the stronger the evidence against the H_0 .

- A *P*-value of 0.25 says that if the H₀ was true, then we would obtain a result like the observed data 1 in 4 of the time; ⇒ the data look consistent with H₀
- A *P*-value of 0.001 says that if the H₀ was true, then only 1 out of every 1,000 similar experiments would give result like the observed one; ⇒ the H₀ looks doubtful

For the dogs study, if the dogs just guessed at random, there is less than 2 out of 1 million chance to be correct 22 or more times in 54 trials

 The observed result was very unlikely to have occurred under the H₀ — strong evidence to disbelieve H₀. As an alternative to test procedures based on rejection regions, one can use test procedures based on *P*-values

- 1. Select a significance level α (as before, the desired P(type I error)).
- 2. Then
 - reject H_0 if the *P*-value $\leq \alpha$
 - do not reject H₀ if the *P*-value > α

"Rejection Region" and "P-value" Approaches Are Equivalent

Using the Dogs study example, for a chosen significance level α , the rejection rejection { $X \ge k$ } must satisfy

 $P(X \ge k) \le \alpha$ and $P(X \ge k - 1) > \alpha$,

If the observed test statistic is $X = x_0$, the *P*-value would be

P-value = $P(X \ge x_0)$

"Rejection Region" and "P-value" Approaches Are Equivalent

Using the Dogs study example, for a chosen significance level α , the rejection rejection { $X \ge k$ } must satisfy

 $P(X \ge k) \le \alpha$ and $P(X \ge k - 1) > \alpha$,

If the observed test statistic is $X = x_0$, the *P*-value would be

P-value = $P(X \ge x_0)$

• If the observed $X = x_0$ falls in the rejection region $X \ge k$, then

P-value = $P(X \ge x_0) \le P(X \ge k) \le \alpha$ since $x_0 \ge k$,

then H₀ would be rejected by both test procedures.

"Rejection Region" and "P-value" Approaches Are Equivalent

Using the Dogs study example, for a chosen significance level α , the rejection rejection $\{X \ge k\}$ must satisfy

 $P(X \ge k) \le \alpha$ and $P(X \ge k - 1) > \alpha$,

If the observed test statistic is $X = x_0$, the *P*-value would be

P-value = $P(X \ge x_0)$

• If the observed $X = x_0$ falls in the rejection region $X \ge k$, then

P-value = $P(X \ge x_0) \le P(X \ge k) \le \alpha$ since $x_0 \ge k$,

then H₀ would be rejected by both test procedures.

If the observed X = x₀ is NOT in the rejection region X ≥ k,
 i.e., x₀ ≤ k − 1, then

 $P\text{-value} = P(X \ge x_0) \ge P(X \ge k - 1) > \alpha \quad \text{since } x_0 \le k - 1,$

then H₀ would NOT be rejected by either approach.

The *P*-value is the smallest significance level α at which the H₀ can be rejected.

• e.g., the *P*-value for the dog study is 1.86×10^{-6} . The H₀ won't be rejected unless the significance level is as small as 1.86×10^{-6}

Because of this, the *P*-value is alternatively referred to as the *observed significance level* for the data.

When the evidence is not strong enough to reject the H_0 , we say "we *fail to reject* the H_0 " not "we *accept* the H_0 "

• When we fail to reject the H₀, we might have made a Type II error

When the evidence is not strong enough to reject the H_0 , we say "we *fail to reject* the H_0 " not "we *accept* the H_0 "

- When we fail to reject the H₀, we might have made a Type II error
- P(Type II error) can be quite high as it's not controlled.

When the evidence is not strong enough to reject the H_0 , we say "we *fail to reject* the H_0 " not "we *accept* the H_0 "

- When we fail to reject the H₀, we might have made a Type II error
- P(Type II error) can be quite high as it's not controlled.
- Recall so far we've only controlled P(Type I error) by the significance level but haven't taken any measure to control P(Type II error)

If H_0 is rejected, then we can be certain that H_0 is false.

If H_0 is rejected at 5% level, there is less than a 5% chance for H_0 to be true.

If H_0 is rejected, then we can be certain that H_0 is false.

False. Even if H_0 is true, 5% of the time the experiment will give a result with a *P*-value < 5% so that H_0 is rejected.

If H_0 is rejected at 5% level, there is less than a 5% chance for H_0 to be true.

If H_0 is rejected, then we can be certain that H_0 is false.

False. Even if H_0 is true, 5% of the time the experiment will give a result with a *P*-value < 5% so that H_0 is rejected.

If H_0 is rejected at 5% level, there is less than a 5% chance for H_0 to be true.

False. A *P*-value does not give the chance of H_0 being true. In fact, the *P*-value is computed assuming H_0 is true.

P-value = $P(data | H_0 is true)$, not $P(H_0 is true | data)$.

Don't simply report the conclusion of whether H_0 is rejected. Always report the *P*-value

- A *P*-value of 0.04 and a *P*-value of 0.000001 are not at all the same thing, even though H₀ will be rejected at 0.05 level in both cases, but the strength of evidence are very different
- Simply reporting whether H₀ is rejected without *P*-value is like reporting the temperature as "cold" or "hot"
- It's much better to report the *P*-value and let people choose their own significance level, just like telling someone the temperature and let them decide for themselves whether they want to wear a coat

Conclusion of the Dogs Smell Bladder Cancer Study

- There is strong evidence that dogs have some ability to smell bladder cancer,
- However, the dogs were only correct 40% of the time, too low for practical application
- Another study (M. McCulloch et al., Integrative Cancer Therapies, vol 5, p. 30, 2006.) considered whether dogs could be trained to detect whether a person has lung cancer by smelling the subjects' breath. In one test with 83 Stage I lung cancer samples, the dogs correctly identified the cancer sample 81 times.

Recap: Hypothesis Testing Framework

- 1. We start with a *null hypothesis* (*H*₀) that represents the status quo.
- 2. We also have an *alternative hypothesis* (H_A) that represents our research question, i.e. what we're testing for.
- 3. We then collect data and often summarize the data as a *test statistic*, which is usually a measure gauging whether H_0 or H_A are more plausible
- 4. We then predict what the *test statistic* would be around under the assumption that the H₀ is true.
- 5. If the *test statistic* is too far away from what the H_0 predicts, we then reject the H_0 in favor of the H_A .

Using the "Rejection Region" Approach,

- 6. we choose a *significance level* α = maximal P(Type I error) that we can tolerate
- 7. we select the rejection region based on the significance level
- 8. we reject H_0 if the test statistic falls in the rejection region, and do not reject otherwise

Using the "P-value" Approach,

- 6. we calculate the *P*-value based on the test statistic
- 7. (optional) we choose *significance level* α = maximal P(Type I error) that we can tolerate and reject H₀ if the *P*-value $\leq \alpha$ and not to reject otherwise.

This lecture just introduces the general framework of hypotheses testing.

In the next several lectures, we will introduce several hypotheses tests for various types of problems.