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Can Dogs Smell Cancer?

Dogs Can Smell Cancer | Secret Life of Dogs | BBC

• https://youtu.be/e0UK6kkS0_M
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Case Study: Can Dogs Smell Bladder Cancer?

• A study1 by M. Willis et al. considered whether dogs could be
trained to detect if a person has bladder cancer by smelling
his/her urine.

• 6 dogs of varying breeds were trained to discriminate between
urine from patients with bladder cancer and urine from control
patients without it.

• The dogs were taught to indicate which among several
specimens was from the bladder cancer patient by lying
beside it.

• Once trained, the dogs’ ability to distinguish cancer patients
from controls was tested using urine samples from subjects
not previously encountered by the dogs.

1Olfactory detection of human bladder cancer by dogs: proof of principle study,
British Medical Journal, vol. 329, September 25, 2004. 3



Case Study: Can Dogs Smell Bladder Cancer?

• Neither the dog handlers nor the experimental observers knew
the identity of urine samples so the dogs couldn’t get clue

• Each of the 6 dogs was tested with 9 trials. In each trial, one
urine sample from a bladder cancer patient was randomly
placed among 6 control urine samples.

• Outcome: In the total of 54 trials with the 6 dogs, the dogs
made the correct selection 22 times.
• The dogs were correct for 22/54 ≈ 41% of the time,

• not fabulous

• If the dogs just guessed at random, they were only expected to
be correct for 1/7 ≈ 14% of the time

• Is this difference (41% v.s. 14%) surprising?
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Two Competing Hypotheses

Let p be the probability that a dog makes the correct selection on a
given trial.

• Null hypothesis (H0): p = 1/7
“There is nothing going on.”
The dogs just guessed at random.
• “null” means “nothing surprising is going on”.
• The dogs were just lucky to make more correct selections than

expected.

• Alternative hypothesis (HA or H1): p > 1/7
“There is something going on.”
Dogs can do better than random guessing.
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Weighing Evidence Using a Test Statistic

The next step of hypothesis testing is to weigh the evidence —

how likely to observed the data obtained if H0 was true?

• If the observed result was very unlikely to have occurred
under the H0, then the evidence raises more than a
reasonable doubt in our minds about the H0.

The test statistic is a summary of the data that best reflects the
evidence for or against the hypotheses.

• For this study, the test statistics we choose is

X = the number of correct guesses in the 54 trials

• The larger X, the stronger evidence for HA and against H0

• The smaller X, the stronger evidence for H0 and against HA
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Distribution of the Test Statistics Under H0

For the “Dogs Smell Cancer” study, if H0 is true, then

X ∼ Bin(n = 54, p = 1/7) (Why?)

which implies

P(X = k) =
(
54
k

) (
1
7

)k (
6
7

)54−k

, k = 0, 1, 2, . . . , 54.

evidence for H0 evidence for HA

X = Number of Correct Selections in 54 Trials
0 10 20 30 40 50

Observed
X = 22
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Test Procedure & Rejection Region

A test procedure is specified by the following:

1. a test statistic
2. a rejection region

The null hypothesis H0 will be rejected if and only if the test
statistic falls in the rejection region.

E.g., for the “Dogs Smell Cancer” study, as the strength of
evidence for the two hypotheses are reflected by the test statistic

X = # of correct guesses in the 54 trials.

A sensible rejection region is of the form

X ≥ k for some cutoff k.

and the test procedure is reject H0 if X ≥ k .

How to choose the cutoff value k for the rejection region?
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Type I and Type II Errors

In a hypothesis test, we make a decision about which of H0 or HA

might be true, but our decision might be incorrect.

Decision
fail to reject H0 reject H0

H0 true

✓ Type I Error

Truth
HA true

Type II Error ✓

• A Type I Error is rejecting the H0 when it is true.

• A Type II Error is failing to reject the H0 when it is false.
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Significance Level α = P(Type I error)

The significance level α of a test procedure is its probability to
reject the null hypothesis H0 when H0 is true.

α = P(Type I error) = P(reject H0 | H0 is true)

For the “Dog Smell Cancer” Study, if the test procedure is
rejecting H0 if X ≥ 15 , the significance level would be

α = P(Type I error) = P(H0 is rejected when H0 (p = 1/7) is true)

= P(X ≥ 15 when X ∼ Bin(n = 54, p = 1/7))

=

54∑
k=15

(
54
k

) (
1
7

)k (
6
7

)54−k

≈ 0.0073

sum(dbinom(15:54, size = 54, p = 1/7))

[1] 0.007288514

If we reject H0 when X ≥ 15, there is a chance of 0.0073 to falsely
reject a correct H0 (Type I error).
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Example (Dogs Smell Cancer)

For the test procedure: rejecting H0 when X ≥ k , the chance of
making a Type I error is

P(Type I error) = P(H0 is rejected when H0 (p = 1/7) is true)

= P(X ≥ k when X ∼ Bin(n = 54, p = 1/7))

=

54∑
x=k

(
54
k

) (
1
7

)x (
6
7

)54−x

≈



0.14 if k = 11
0.076 if k = 12
0.038 if k = 13
0.017 if k = 14
0.007 if k = 15
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Setting Rejection Region Based on the Significance Level

For the dogs study,

P(Type I error) =



0.14 if rejecting H0 when X ≥ 11
0.076 if rejecting H0 when X ≥ 12
0.038 if rejecting H0 when X ≥ 13
0.017 if rejecting H0 when X ≥ 14
0.007 if rejecting H0 when X ≥ 15

To determine the cutoff value k for the rejection region {X ≥ k}, we
can first choose a significance level α , which is the maximal
P(Type I error) we can tolerate, and then choose the cutoff value
so that P(Type I error) does not exceeds the significance level α.

• If we can tolerate a α = 5% chance of Type I error, the test
procedure can be “rejecting H0 if X ≥ 13”

• If we can tolerate a α = 1% chance of Type I error, the test
procedure can be “rejecting H0 if X ≥ 15”
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A Smaller Significance Level Leads to a Higher P(Type II Error)

One might want to avoid a Type I error as much as possible by
setting a tiny significance level. However,

smaller significance level⇒ smaller P(Type I error)

⇒ less likely to reject H0

⇒ more likely to make Type II error

⇒ higher P(Type II error)

Suppose the sample size is fixed and a test statistic is chosen,
choosing a rejection region with a smaller P(Type I error) would
lead to a larger P(Type II error).
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P-values

The P-value of test is the probability of obtaining a test statistic
such that the evidence for the alternative hypothesis HA is at
least as strong as our observed data, assuming the H0 is true.

The definition is mouthful. Here are some key points

• The P-value is a probability, and thus it’s between 0 and 1
• This probability is calculated assuming the H0 is true.
• To determine the P-value, we must first decide which values

of the test statistic are the evidence for HA to be stronger than
or as as the value obtained from our sample
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Example (Dogs Smell Cancer) — P-Value

evidence for H0 evidence for HA

X = Number of Correct Selections in 54 Trials
0 10 20 30 40 50

Observed
X = 22

• Observed X = 22
• Evidence for HA is stronger than or as strong as the observed

X = 22 if X ≥ 22
• Under H0, X ∼ Bin(n = 54, p = 1/7)

P-value = P(X ≥ 22 | H0) =
54∑

k=22

(
54
k

) (
1
7

)k (
6
7

)54−k

≈ 1.86×10−6

sum(dbinom(22:54,54,1/7))

[1] 1.861522e-06
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P-Value as Strength of Evidence Against H0

The smaller the P-value, the stronger the evidence against the H0.

• A P-value of 0.25 says that if the H0 was true, then we would
obtain a result like the observed data 1 in 4 of the time;⇒ the
data look consistent with H0

• A P-value of 0.001 says that if the H0 was true, then only 1 out
of every 1,000 similar experiments would give result like the
observed one;⇒ the H0 looks doubtful

For the dogs study, if the dogs just guessed at random, there is
less than 2 out of 1 million chance to be correct 22 or more times
in 54 trials

• The observed result was very unlikely to have occurred under
the H0 — strong evidence to disbelieve H0.
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Test Procedure Based on the P-value

As an alternative to test procedures based on rejection regions,
one can use test procedures based on P-values

1. Select a significance level α (as before, the desired P(type I
error)).

2. Then
• reject H0 if the P-value ≤ α
• do not reject H0 if the P-value > α
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“Rejection Region” and “P-value” Approaches Are Equivalent

Using the Dogs study example, for a chosen significance level α,
the rejection rejection {X ≥ k} must satisfy

P(X ≥ k) ≤ α and P(X ≥ k − 1) > α,

If the observed test statistic is X = x0, the P-value would be

P-value = P(X ≥ x0)

• If the observed X = x0 falls in the rejection region X ≥ k, then

P-value = P(X ≥ x0) ≤ P(X ≥ k) ≤ α since x0 ≥ k,

then H0 would be rejected by both test procedures.
• If the observed X = x0 is NOT in the rejection region X ≥ k,

i.e., x0 ≤ k − 1, then

P-value = P(X ≥ x0) ≥ P(X ≥ k − 1) > α since x0 ≤ k − 1,

then H0 would NOT be rejected by either approach.
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P-value is the Smallest Significance Level to Reject H0

The P-value is the smallest significance level α at which the H0

can be rejected.

• e.g., the P-value for the dog study is 1.86 × 10−6.
The H0 won’t be rejected unless the significance level is as
small as 1.86 × 10−6

Because of this, the P-value is alternatively referred to as the
observed significance level for the data.
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Failing to Reject H0 , Accepting H0

When the evidence is not strong enough to reject the H0,
we say “we fail to reject the H0” not “we accept the H0”

• When we fail to reject the H0, we might have made a Type II
error

• P(Type II error) can be quite high as it’s not controlled.
• Recall so far we’ve only controlled P(Type I error) by the

significance level but haven’t taken any measure to control
P(Type II error)
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True or False

If H0 is rejected, then we can be certain that H0 is false.

False. Even if H0 is true, 5% of the time the experiment will give a
result with a P-value < 5% so that H0 is rejected.

If H0 is rejected at 5% level, there is less than a 5% chance for H0

to be true.

False. A P-value does not give the chance of H0 being true. In fact,
the P-value is computed assuming H0 is true.

P-value = P(data | H0 is true), not P(H0 is true | data).
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Always Report the P-Value

Don’t simply report the conclusion of whether H0 is rejected.
Always report the P-value

• A P-value of 0.04 and a P-value of 0.000001 are not at all the
same thing, even though H0 will be rejected at 0.05 level in
both cases, but the strength of evidence are very different

• Simply reporting whether H0 is rejected without P-value is like
reporting the temperature as “cold” or “hot”

• It’s much better to report the P-value and let people choose
their own significance level, just like telling someone the
temperature and let them decide for themselves whether they
want to wear a coat
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Conclusion of the Dogs Smell Bladder Cancer Study

• There is strong evidence that dogs have some ability to smell
bladder cancer,

• However, the dogs were only correct 40% of the time, too low
for practical application

• Another study (M. McCulloch et al., Integrative Cancer
Therapies, vol 5, p. 30, 2006.) considered whether dogs could
be trained to detect whether a person has lung cancer by
smelling the subjects’ breath. In one test with 83 Stage I lung
cancer samples, the dogs correctly identified the cancer
sample 81 times.
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Recap: Hypothesis Testing Framework

1. We start with a null hypothesis (H0) that represents the status
quo.

2. We also have an alternative hypothesis (HA) that represents
our research question, i.e. what we’re testing for.

3. We then collect data and often summarize the data as a test
statistic, which is usually a measure gauging whether H0 or
HA are more plausible

4. We then predict what the test statistic would be around under
the assumption that the H0 is true.

5. If the test statistic is too far away from what the H0 predicts,
we then reject the H0 in favor of the HA.
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Recap: Hypothesis Testing Framework (Cont’d)

Using the “Rejection Region” Approach,

6. we choose a significance level α = maximal P(Type I error)
that we can tolerate

7. we select the rejection region based on the significance level
8. we reject H0 if the test statistic falls in the rejection region, and

do not reject otherwise

Using the “P-value” Approach,

6. we calculate the P-value based on the test statistic
7. (optional) we choose significance level α = maximal P(Type I

error) that we can tolerate and reject H0 if the P-value ≤ α and
not to reject otherwise.
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This lecture just introduces the general framework of hypotheses
testing.

In the next several lectures, we will introduce several hypotheses
tests for various types of problems.
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