# STAT 234 Lecture 16B <br> Overview of Confidence Intervals Section 8.1 

Yibi Huang<br>Department of Statistics<br>University of Chicago

## Section 8.1 Overview of Confidence Intervals

- A plausible range of values for the population parameter is called a confidence interval.
- Using only a sample statistic (point estimate) to estimate a parameter is like fishing in a murky lake with a spear, and using a confidence interval is like fishing with a net.


> We can throw a spear where we saw a fish but we will probably miss. If we toss a net in that area, we have a good chance of catching the fish.


- If we report a point estimate, we probably won't hit the exact population parameter. If we report a range of plausible values Photos wy we have a good shot at capturing the paramet nitum
(http://www.flickr.com/photos/clearlydived/7029109617) on Flickr.


## Variability in Estimation (Review)



- Suppose we are interested in some numerical characteristic $X$ about individuals in a certain population.


## Variability in Estimation (Review)



- Suppose we are interested in some numerical characteristic $X$ about individuals in a certain population.
- If it's possible to interview each individual in the population and record his/her $X$ value, we can then make a histogram for the recorded $X$-values and that's the population distribution.


## Variability in Estimation (Review)



- Suppose we are interested in some numerical characteristic $X$ about individuals in a certain population.
- If it's possible to interview each individual in the population and record his/her $X$ value, we can then make a histogram for the recorded $X$-values and that's the population distribution.
- The population distribution is arbitrary (not necessarily normal), with a population mean $\mu$ and a population $\operatorname{SD} \sigma$.


## Variability in Estimation (Review)



- Suppose we are interested in some numerical characteristic $X$ about individuals in a certain population.
- If it's possible to interview each individual in the population and record his/her $X$ value, we can then make a histogram for the recorded $X$-values and that's the population distribution.
- The population distribution is arbitrary (not necessarily normal), with a population mean $\mu$ and a population $S D \sigma$.
- The goal is to estimate the population mean $\mu$


## Variability in Estimation (Review)

## Population



A (simple) random sample is taken from the population.

## Variability in Estimation (Review)

## Population



The $X$-value for each individual in the sample is recorded. One can make a histogram for the recorded $X$-values.

## Variability in Estimation (Review)

## Population



The population mean $\mu$ is estimated by the sample mean $\bar{X}$, which will change from sample to sample.

## Variability in Estimation (Review)

## Population



The distribution of the sample mean $\bar{X}$ is approx. normal w/ mean $\mu$ and $\operatorname{SD}=\sigma / \sqrt{n}$ when $n$ is large by CLT.


- $\sigma$ is the SD of the population
- $\frac{\sigma}{\sqrt{n}}$ is the SD of the sampling distribution of $\bar{X}$
- $\frac{\sigma}{\sqrt{n}}$ is usually called the standard error (SE), to differentiate it from the population SD $\sigma$

As a normal random variable will fall within 1.96 SD from the center $95 \%$ of the time, $\bar{X}$ will fall within $1.96 \frac{\sigma}{\sqrt{n}}$ from $\mu 95 \%$ of the time since $\bar{X}$ is approx. $N(\mu, \sigma / \sqrt{n})$ for large $n$ by CLT.

Population


As a normal random variable will fall within 1.96 SD from the center $95 \%$ of the time, $\bar{X}$ will fall within $1.96 \frac{\sigma}{\sqrt{n}}$ from $\mu 95 \%$ of the time since $\bar{X}$ is approx. $N(\mu, \sigma / \sqrt{n})$ for large $n$ by CLT.


Or equivalently, $\mu$ will be within $1.96 \frac{\sigma}{\sqrt{n}}$ from $\bar{X} 95 \%$ of the time. A $95 \%$ confidence interval for $\mu$ is hence defined to be

$$
\bar{X} \pm 1.96 \frac{\sigma}{\sqrt{n}}=\left(\bar{X}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right)
$$

## Procedures to Construct a 95\% Confidence Interval for $\mu$

1. Take a simple random sample (or i.i.d. sample) of some large enough size $n$ and find the sample mean $\bar{X}$.
2. If $n$ is large, the $95 \%$ confidence interval for $\mu$ is given by

$$
\bar{X} \pm 1.96 \frac{\sigma}{\sqrt{n}}
$$

But $\sigma$ is usually unknown...

## But $\sigma$ is usually unknown ...

The unknown population $\mathrm{SD} \sigma$ is replaced by our best guess - the sample SD s. So an approximate $95 \%$ confidence interval for $\mu$ is

$$
\bar{X} \pm 1.96 \frac{s}{\sqrt{n}}
$$

- However, this replacement is hazardous because
- $s$ is a poor estimate of $\sigma$ when the sample size $n$ is small and
- $s$ is very sensitive to outliers
- So we require $n \geq 30$ and sample shouldn't have any outlier nor be too skewed $\Rightarrow$ Need to check histogram of the data
- We will discuss working with samples where $n<30$ in the next chapter


## Example: Average Number of Exclusive Relationships

A random sample of 50 college students were asked how many exclusive relationships they have been in so far. This sample yielded a mean of 3.2 and a standard deviation of 1.74. Estimate the true average number of exclusive relationships using this sample.

$$
\bar{X}=3.2 \quad s=1.74
$$

The approximate $95 \%$ confidence interval is about

$$
\begin{aligned}
\bar{X} \pm 1.96 \times \mathrm{SE} & =\bar{X} \pm 1.96 \times \frac{s}{\sqrt{n}} \\
& =3.2 \pm 1.96 \times \frac{1.74}{\sqrt{50}} \\
& \approx 3.2 \pm 0.5=(2.7,3.7)
\end{aligned}
$$

## True or False

True or False and explain: We are 95\% confident that the average number of exclusive relationships college students in this sample have been in is between 2.7 and 3.7.

## True or False

True or False and explain: We are $95 \%$ confident that the average number of exclusive relationships college students in this sample have been in is between 2.7 and 3.7.

False. The confidence interval $\bar{X} \pm 1.96$ SE definitely (100\%)
contains the sample mean $\bar{X}$, not just with probability $95 \%$.

## True or False

True or False and explain: We are $95 \%$ confident that the average number of exclusive relationships college students in this sample have been in is between 2.7 and 3.7.

False. The confidence interval $\bar{X} \pm 1.96$ SE definitely (100\%)
contains the sample mean $\bar{X}$, not just with probability $95 \%$.

True or False and explain: 95\% of college students have been in 2.7 to 3.7 exclusive relationships.

## True or False

True or False and explain: We are $95 \%$ confident that the average number of exclusive relationships college students in this sample have been in is between 2.7 and 3.7.

False. The confidence interval $\bar{X} \pm 1.96$ SE definitely (100\%)
contains the sample mean $\bar{X}$, not just with probability $95 \%$.

True or False and explain: $95 \%$ of college students have been in 2.7 to 3.7 exclusive relationships.

False. The confidence interval is for covering the population mean $\mu$, not for covering $95 \%$ of the entire population. If $95 \%$ of college students have been in 2.7 to 3.7 exclusive relationships, the SD won't be as large as 1.74.

## True or False

True or False and explain: There is 0.95 probability that the true mean number of exclusive relationships of college students falls in the interval $(2.7,3.7)$

## True or False

True or False and explain: There is 0.95 probability that the true mean number of exclusive relationships of college students falls in the interval $(2.7,3.7)$

True or False and explain: The interval $(2.7,3.7)$ has probability of 0.95 of enclosing the true mean number of exclusive relationships of college students.

## True or False

True or False and explain: There is 0.95 probability that the true mean number of exclusive relationships of college students falls in the interval $(2.7,3.7)$

True or False and explain: The interval $(2.7,3.7)$ has probability of 0.95 of enclosing the true mean number of exclusive relationships of college students.

Both are False. The population mean $\mu$ is a fixed number, not random. It is either in the interval (2.7, 3.7), or not in the interval.
There is no uncertainty involved.

## What does " $95 \%$ confidence" mean?

What is the thing that has a $95 \%$ chance to happen?

- It is the procedure to construct the $95 \%$ interval.
- About $95 \%$ of the intervals constructed following the procedure (taking a SRS and then calculating $\bar{X} \pm 1.96 \mathrm{~s} / \sqrt{n}$ ) will cover the true population mean $\mu$.
- After taking the sample and an interval is constructed, the constructed interval either covers $\mu$ or it doesn't. We don't know. Only God knows.
- Just like lottery, before you pick the numbers and buy a lottery ticket, you have some chance to win the prize. After you get the ticket, you either win or lose.


Green Cls cover $\mu$.
Red Cls miss $\mu$.

## True or False

True or False and explain: If a new random sample of size 50 is taken, we are $95 \%$ confident that the new sample mean will be between 2.7 and 3.7.

## True or False

True or False and explain: If a new random sample of size 50 is taken, we are 95\% confident that the new sample mean will be between 2.7 and 3.7.

False. The confidence interval is for covering the population mean $\mu$, not for covering the mean of another sample. The SE $\sigma / \sqrt{n}$ or $s / \sqrt{n}$ is a typical distance between the sample mean and population mean, not a typical distance between two sample means.

## True or False

True or False and explain: This confidence interval $\bar{X} \pm 1.96 s / \sqrt{n}$ is not valid since the number of exclusive relationships is integervalued. Neither the population nor sample is normally distributed.

## True or False

True or False and explain: This confidence interval $\bar{X} \pm 1.96 s / \sqrt{n}$ is not valid since the number of exclusive relationships is integervalued. Neither the population nor sample is normally distributed.

False. The construction of the $\mathrm{CI} \bar{X} \pm 1.96 s / \sqrt{n}$ only uses the normality of the sampling distribution of the sample mean. Neither the population nor the sample is required to be normally distributed. By the central limit theorem, with a large enough sample size we can assume that the sampling distribution is nearly normal and calculate a confidence interval.

## Confidence Intervals at Other Confidence Levels

A confidence interval for a population mean $\mu$ at confidence level $(1-\alpha)$ is

$$
\text { sample mean } \pm z_{\alpha / 2} \mathrm{SE}
$$

where $z_{\alpha / 2}$ is a number such that

$$
P\left(-z_{\alpha / 2}<Z<z_{\alpha / 2}\right)=1-\alpha \text { or }
$$

where $Z \sim N(0,1)$.


Commonly used confidence levels:

$$
\begin{array}{ccc}
90 \% \mathrm{Cl}, \alpha=0.1 & 95 \% \mathrm{Cl}, \alpha=0.05 & 99 \% \mathrm{Cl}, \alpha=0.01 \\
z_{0.1 / 2} \approx 1.645 & z_{0.05 / 2} \approx 1.960 & z_{0.01 / 2} \approx 2.576
\end{array}
$$



## Example

For the "number of exclusive relationships" example, recall

$$
\bar{X}=3.2, \quad s=1.74, \quad \mathrm{SE}=\frac{s}{\sqrt{n}}=\frac{1.74}{\sqrt{50}} \approx 0.246
$$

- $90 \% \mathrm{Cl}: \bar{X} \pm 1.645 \times \mathrm{SE}=3.2 \pm 1.645 \times 0.246 \approx 3.2 \pm 0.40$
- $95 \% \mathrm{Cl}: \bar{X} \pm 1.96 \times \mathrm{SE}=3.2 \pm 1.96 \times 0.246 \approx 3.2 \pm 0.48$
- $99 \% \mathrm{CI}: \bar{X} \pm 2.576 \times \mathrm{SE}=3.2 \pm 2.576 \times 0.246 \approx 3.2 \pm 0.63$


## How to Choose the Confidence Level?

If we want to be more certain that we capture the population parameter, i.e. increase our confidence level, should we use a wider interval or a shorter interval?

## How to Choose the Confidence Level?

If we want to be more certain that we capture the population parameter, i.e. increase our confidence level, should we use a wider interval or a shorter interval?
A wider interval.

## How to Choose the Confidence Level?

If we want to be more certain that we capture the population parameter, i.e. increase our confidence level, should we use a wider interval or a shorter interval?
A wider interval.
Can you see any drawbacks to using a wider interval?


## How to Choose the Confidence Level?

If we want to be more certain that we capture the population parameter, i.e. increase our confidence level, should we use a wider interval or a shorter interval?
A wider interval.
Can you see any drawbacks to using a wider interval?


## A wide interval may not be informative.

