STAT 234 Lecture 16B Overview of Confidence Intervals Section 8.1

Yibi Huang Department of Statistics University of Chicago

Section 8.1 Overview of Confidence Intervals

- A plausible range of values for the population parameter is called a *confidence interval*.
- Using only a sample statistic (point estimate) to estimate a parameter is like fishing in a murky lake with a spear, and using a confidence interval is like fishing with a net.

We can throw a spear where we saw a fish but we will probably miss. If we toss a net in that area, we have a good chance of catching the fish.

 If we report a point estimate, we probably won't hit the exact population parameter. If we report a range of plausible values
Photos by Mark Fischer (http://www.fickr.com/photos/istinerrots/7492/91462) and Chris Penny
(http://www.fickr.com/photos/clearlydived/7029109617) on Flickr.

• Suppose we are interested in some numerical characteristic *X* about individuals in a certain population.

- Suppose we are interested in some numerical characteristic *X* about individuals in a certain population.
- If it's possible to interview each individual in the population and record his/her *X* value, we can then make a histogram for the recorded *X*-values and that's the *population distribution*.

- Suppose we are interested in some numerical characteristic *X* about individuals in a certain population.
- If it's possible to interview each individual in the population and record his/her *X* value, we can then make a histogram for the recorded *X*-values and that's the *population distribution*.
- The population distribution is arbitrary (not necessarily normal), with a *population mean* μ and a *population SD* σ.

- Suppose we are interested in some numerical characteristic *X* about individuals in a certain population.
- If it's possible to interview each individual in the population and record his/her *X* value, we can then make a histogram for the recorded *X*-values and that's the *population distribution*.
- The population distribution is arbitrary (not necessarily normal), with a *population mean* μ and a *population SD* σ.
- The goal is to estimate the population mean μ

Population

A (simple) random sample is taken from the population.

The *X*-value for each individual in the sample is recorded. One can make a histogram for the recorded *X*-values.

The population mean μ is estimated by the sample mean \overline{X} , which will change from sample to sample.

The distribution of the sample mean \overline{X} is approx. normal w/ mean μ and SD = σ / \sqrt{n} when *n* is large by CLT.

 σ v.s. σ/\sqrt{n}

- σ is the SD of the population
- $\frac{\sigma}{\sqrt{n}}$ is the SD of the sampling distribution of \overline{X}
 - $\frac{\sigma}{\sqrt{n}}$ is usually called the *standard error (SE)*, to differentiate it from the population SD σ

As a normal random variable will fall within 1.96 SDs from the center 95% of the time, \overline{X} will fall within $1.96 \frac{\sigma}{\sqrt{n}}$ from μ 95% of the time since \overline{X} is approx. $N(\mu, \sigma/\sqrt{n})$ for large *n* by CLT.

As a normal random variable will fall within 1.96 SDs from the center 95% of the time, \overline{X} will fall within $1.96 \frac{\sigma}{\sqrt{n}}$ from μ 95% of the time since \overline{X} is approx. $N(\mu, \sigma/\sqrt{n})$ for large *n* by CLT.

Or equivalently, μ will be within $1.96 \frac{\sigma}{\sqrt{n}}$ from \overline{X} 95% of the time. A 95% confidence interval for μ is hence defined to be

$$\overline{X} \pm 1.96 \frac{\sigma}{\sqrt{n}} = \left(\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}}, \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}}\right)$$

- 1. Take a simple random sample (or i.i.d. sample) of some large enough size *n* and find the sample mean \overline{X} .
- 2. If *n* is large, the 95% confidence interval for μ is given by

$$\overline{X} \pm 1.96 \frac{\sigma}{\sqrt{n}}$$

But σ is usually unknown ...

The unknown population SD σ is replaced by our best guess — *the sample SD s*. So an approximate 95% confidence interval for μ is

$$\overline{X} \pm 1.96 \frac{s}{\sqrt{n}}$$

- However, this replacement is hazardous because
 - s is a poor estimate of σ when the sample size n is small and
 - s is very sensitive to outliers
- So we require n ≥ 30 and sample shouldn't have any outlier nor be too skewed ⇒ Need to check histogram of the data
- We will discuss working with samples where *n* < 30 in the next chapter

Example: Average Number of Exclusive Relationships

A random sample of 50 college students were asked how many exclusive relationships they have been in so far. This sample yielded a mean of 3.2 and a standard deviation of 1.74. Estimate the true average number of exclusive relationships using this sample.

$$\overline{X} = 3.2$$
 $s = 1.74$

The approximate 95% confidence interval is about

$$\overline{X} \pm 1.96 \times SE = \overline{X} \pm 1.96 \times \frac{s}{\sqrt{n}}$$
$$= 3.2 \pm 1.96 \times \frac{1.74}{\sqrt{50}}$$
$$\approx 3.2 \pm 0.5 = (2.7, 3.7)$$

True or False and explain: We are 95% confident that the average number of exclusive relationships college students in this sample have been in is between 2.7 and 3.7.

True or False

True or False and explain: We are 95% confident that the average number of exclusive relationships college students in this sample have been in is between 2.7 and 3.7.

False. The confidence interval $\overline{X} \pm 1.96$ SE definitely (100%) contains the *sample mean* \overline{X} , not just with probability 95%.

True or False

True or False and explain: We are 95% confident that the average number of exclusive relationships college students in this sample have been in is between 2.7 and 3.7.

False. The confidence interval $\overline{X} \pm 1.96$ SE definitely (100%) contains the *sample mean* \overline{X} , not just with probability 95%.

True or False and explain: 95% of college students have been in 2.7 to 3.7 exclusive relationships.

True or False

True or False and explain: We are 95% confident that the average number of exclusive relationships college students in this sample have been in is between 2.7 and 3.7.

False. The confidence interval $\overline{X} \pm 1.96$ SE definitely (100%) contains the *sample mean* \overline{X} , not just with probability 95%.

True or False and explain: 95% of college students have been in 2.7 to 3.7 exclusive relationships.

False. The confidence interval is for covering the population mean μ , not for covering 95% of the entire population. If 95% of college students have been in 2.7 to 3.7 exclusive relationships, the SD won't be as large as 1.74.

True or False and explain: There is 0.95 probability that the true mean number of exclusive relationships of college students falls in the interval (2.7, 3.7)

True or False and explain: There is 0.95 probability that the true mean number of exclusive relationships of college students falls in the interval (2.7, 3.7)

True or False and explain: The interval (2.7, 3.7) has probability of 0.95 of enclosing the true mean number of exclusive relationships of college students.

True or False and explain: There is 0.95 probability that the true mean number of exclusive relationships of college students falls in the interval (2.7, 3.7)

True or False and explain: The interval (2.7, 3.7) has probability of 0.95 of enclosing the true mean number of exclusive relationships of college students.

Both are False. The population mean μ is a fixed number, not random. It is either in the interval (2.7, 3.7), or not in the interval. There is no uncertainty involved.

What is the thing that has a 95% chance to happen?

- It is the procedure to construct the 95% interval.
- About 95% of the intervals constructed following the procedure (taking a SRS and then calculating $\overline{X} \pm 1.96 \ s/\sqrt{n}$) will cover the true population mean μ .
- After taking the sample and an interval is constructed, the constructed interval either covers μ or it doesn't. We don't know. Only God knows.
- Just like lottery, before you pick the numbers and buy a lottery ticket, you have some chance to win the prize. After you get the ticket, you either win or lose.

True or False and explain: If a new random sample of size 50 is taken, we are 95% confident that the new sample mean will be between 2.7 and 3.7.

True or False and explain: If a new random sample of size 50 is taken, we are 95% confident that the new sample mean will be between 2.7 and 3.7.

False. The confidence interval is for covering the population mean μ , not for covering the mean of another sample. The SE σ / \sqrt{n} or s / \sqrt{n} is a typical distance between the sample mean and population mean, not a typical distance between two sample means.

True or False and explain: This confidence interval $\overline{X} \pm 1.96 \text{ s} / \sqrt{n}$ is not valid since the number of exclusive relationships is integervalued. Neither the population nor sample is normally distributed. True or False and explain: This confidence interval $\overline{X} \pm 1.96 \text{ s} / \sqrt{n}$ is not valid since the number of exclusive relationships is integervalued. Neither the population nor sample is normally distributed.

False. The construction of the Cl $\overline{X} \pm 1.96 \ s/\sqrt{n}$ only uses the normality of the sampling distribution of the sample mean. Neither the population nor the sample is required to be normally distributed. By the central limit theorem, with a large enough sample size we can assume that the sampling distribution is nearly normal and calculate a confidence interval.

Confidence Intervals at Other Confidence Levels

A confidence interval for a population mean μ at confidence level $(1 - \alpha)$ is

sample mean $\pm z_{\alpha/2}SE$

where $z_{\alpha/2}$ is a number such that

$$P(-z_{\alpha/2} < Z < z_{\alpha/2}) = 1 - \alpha$$
 or

where $Z \sim N(0, 1)$.

Commonly used confidence levels:

For the "number of exclusive relationships" example, recall

$$\overline{X} = 3.2$$
, $s = 1.74$, $SE = \frac{s}{\sqrt{n}} = \frac{1.74}{\sqrt{50}} \approx 0.246$

- 90% CI: $\overline{X} \pm 1.645 \times SE = 3.2 \pm 1.645 \times 0.246 \approx 3.2 \pm 0.40$
- 95% CI: $\overline{X} \pm 1.96 \times SE = 3.2 \pm 1.96 \times 0.246 \approx 3.2 \pm 0.48$
- 99% CI: $\overline{X} \pm 2.576 \times SE = 3.2 \pm 2.576 \times 0.246 \approx 3.2 \pm 0.63$

If we want to be more certain that we capture the population parameter, i.e. increase our confidence level, should we use a wider interval or a shorter interval?

How to Choose the Confidence Level?

If we want to be more certain that we capture the population parameter, i.e. increase our confidence level, should we use a wider interval or a shorter interval?

A wider interval.

How to Choose the Confidence Level?

If we want to be more certain that we capture the population parameter, i.e. increase our confidence level, should we use a wider interval or a shorter interval?

A wider interval.

Can you see any drawbacks to using a wider interval?

How to Choose the Confidence Level?

If we want to be more certain that we capture the population parameter, i.e. increase our confidence level, should we use a wider interval or a shorter interval?

A wider interval.

Can you see any drawbacks to using a wider interval?

A wide interval may not be informative.

Image source: http://web.as.uky.edu/statistics/users/earo227/misc/garfield_weather.gif