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Section 8.1 Overview of Confidence Intervals

• A plausible range of values for the population parameter is
called a confidence interval.

• Using only a sample statistic (point estimate) to estimate a
parameter is like fishing in a murky lake with a spear, and
using a confidence interval is like fishing with a net.

We can throw a spear where we
saw a fish but we will probably
miss. If we toss a net in that
area, we have a good chance of
catching the fish.

• If we report a point estimate, we probably won’t hit the exact
population parameter. If we report a range of plausible values
we have a good shot at capturing the parameter.

Photos by Mark Fischer (http://www.flickr.com/photos/fischerfotos/7439791462) and Chris Penny
(http://www.flickr.com/photos/clearlydived/7029109617) on Flickr.

2

http://www.flickr.com/photos/fischerfotos/7439791462
http://www.flickr.com/photos/clearlydived/7029109617


Variability in Estimation (Review)

Population

µ − σ µ µ + σ

Population
Distribution

• Suppose we are interested in some numerical characteristic X
about individuals in a certain population.

• If it’s possible to interview each individual in the population
and record his/her X value, we can then make a histogram for
the recorded X-values and that’s the population distribution.

• The population distribution is arbitrary (not necessarily
normal), with a population mean µ and a population SD σ.

• The goal is to estimate the population mean µ
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Variability in Estimation (Review)

Population

Sample

µ − σ µ µ + σ

Population
Distribution

A (simple) random sample is taken from the population.
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Variability in Estimation (Review)

Population
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3.4
4.2 4.8

3.23.1
4.7

0.2
1.7

4.2

0.6

µx

Histogram of
the Sample

µ − σ µ µ + σ

Population
Distribution

The X-value for each individual in the sample is recorded. One can
make a histogram for the recorded X-values.
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Variability in Estimation (Review)
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The population mean µ is estimated by the sample mean X, which
will change from sample to sample.
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Variability in Estimation (Review)
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the Sample
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Sampling Distribution
of the Sample Mean

when n is large
X ~ N(µ, SD=σ n)

The distribution of the sample mean X is approx. normal w/ mean
µ and SD = σ/

√
n when n is large by CLT.
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σ v.s. σ/
√

n

µ − σ µ µ + σ

Population
Distribution

µ +
σ

n
µ −

σ

n

Population
mean µ

Sampling Distribution
of the Sample Mean

for large n
X ~ N(µ, SD=σ n)

σσ

σ

n

σ

n

• σ is the SD of the population
•
σ
√

n
is the SD of the sampling distribution of X

•
σ
√

n
is usually called the standard error (SE), to differentiate it

from the population SD σ
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As a normal random variable will fall within 1.96 SDs from the
center 95% of the time, X will fall within 1.96 σ√

n
from µ 95% of

the time since X is approx. N(µ, σ/
√

n) for large n by CLT.

µµ − σ µ + σ

Population
Distribution

µ + 1.96
σ

n
µ − 1.96

σ

n

Population
mean µSampling Distribution

of the Sample Mean

for large n
X ~ N(µ, σ n)

95%

Or equivalently, µ will be within 1.96 σ√
n

from X 95% of the time.
A 95% confidence interval for µ is hence defined to be

X ± 1.96
σ
√

n
=

(
X − 1.96

σ
√

n
, X + 1.96

σ
√

n

)

6



As a normal random variable will fall within 1.96 SDs from the
center 95% of the time, X will fall within 1.96 σ√

n
from µ 95% of

the time since X is approx. N(µ, σ/
√

n) for large n by CLT.

µµ − σ µ + σ

Population
Distribution

µ + 1.96
σ

n
µ − 1.96

σ

n

Population
mean µSampling Distribution

of the Sample Mean

for large n
X ~ N(µ, σ n)

95%

x + 1.96
σ

n
x − 1.96

σ

n
x

Or equivalently, µ will be within 1.96 σ√
n

from X 95% of the time.
A 95% confidence interval for µ is hence defined to be

X ± 1.96
σ
√

n
=

(
X − 1.96

σ
√

n
, X + 1.96

σ
√

n

)
6



Procedures to Construct a 95% Confidence Interval for µ

1. Take a simple random sample (or i.i.d. sample) of some large
enough size n and find the sample mean X.

2. If n is large, the 95% confidence interval for µ is given by

X ± 1.96
σ
√

n

Butσis usually unknown . . .
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But σ is usually unknown . . .

The unknown population SD σ is replaced by our best guess — the
sample SD s. So an approximate 95% confidence interval for µ is

X ± 1.96
s
√

n

• However, this replacement is hazardous because
• s is a poor estimate of σ when the sample size n is small and
• s is very sensitive to outliers

• So we require n ≥ 30 and sample shouldn’t have any outlier
nor be too skewed⇒ Need to check histogram of the data

• We will discuss working with samples where n < 30 in the next
chapter
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Example: Average Number of Exclusive Relationships

A random sample of 50 college students were asked how many ex-
clusive relationships they have been in so far. This sample yielded
a mean of 3.2 and a standard deviation of 1.74. Estimate the true
average number of exclusive relationships using this sample.

X = 3.2 s = 1.74

The approximate 95% confidence interval is about

X ± 1.96 × SE = X ± 1.96 ×
s
√

n

= 3.2 ± 1.96 ×
1.74
√

50
≈ 3.2 ± 0.5 = (2.7, 3.7)
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True or False

True or False and explain: We are 95% confident that the average
number of exclusive relationships college students in this sample
have been in is between 2.7 and 3.7.

False. The confidence interval X± 1.96 SE definitely (100%)
contains the sample mean X, not just with probability 95%.

True or False and explain: 95% of college students have been in
2.7 to 3.7 exclusive relationships.

False. The confidence interval is for covering the population mean
µ, not for covering 95% of the entire population. If 95% of college
students have been in 2.7 to 3.7 exclusive relationships, the SD
won’t be as large as 1.74.
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True or False

True or False and explain: There is 0.95 probability that the true
mean number of exclusive relationships of college students falls in
the interval (2.7, 3.7)

True or False and explain: The interval (2.7, 3.7) has probability of
0.95 of enclosing the true mean number of exclusive relationships
of college students.

Both are False. The population mean µ is a fixed number, not
random. It is either in the interval (2.7, 3.7), or not in the interval.
There is no uncertainty involved.
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What does “95% confidence” mean?

What is the thing that has a 95% chance to happen?

• It is the procedure to construct the 95% interval.
• About 95% of the intervals constructed following the

procedure (taking a SRS and then calculating X ± 1.96 s/
√

n)
will cover the true population mean µ.

• After taking the sample and an interval is constructed, the
constructed interval either covers µ or it doesn’t. We don’t
know. Only God knows.

• Just like lottery, before you pick the numbers and buy a lottery
ticket, you have some chance to win the prize. After you get
the ticket, you either win or lose.
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µµ − σ µ + σ

Population
Distribution

µ − 1.96
σ

n
µ + 1.96

σ

n

Population
mean µ

Sampling Distribution
of the Sample Mean

for large n
X ~ N(µ, σ n)

95%

Green CIs cover µ.

Red CIs miss µ.
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True or False

True or False and explain: If a new random sample of size 50 is
taken, we are 95% confident that the new sample mean will be be-
tween 2.7 and 3.7.

False. The confidence interval is for covering the population mean
µ, not for covering the mean of another sample. The SE σ/

√
n or

s/
√

n is a typical distance between the sample mean and
population mean, not a typical distance between two sample
means.
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True or False

True or False and explain: This confidence interval X ± 1.96 s/
√

n
is not valid since the number of exclusive relationships is integer-
valued. Neither the population nor sample is normally distributed.

False. The construction of the CI X ± 1.96 s/
√

n only uses the
normality of the sampling distribution of the sample mean. Neither
the population nor the sample is required to be normally
distributed. By the central limit theorem, with a large enough
sample size we can assume that the sampling distribution is nearly
normal and calculate a confidence interval.
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Confidence Intervals at Other Confidence Levels

A confidence interval for a population mean µ at confidence level
(1 − α) is

sample mean ± zα/2SE

where zα/2 is a number such that

− zα 2 zα 2

α 2α 2
1 − αP(−zα/2 < Z < zα/2) = 1 − α or

where Z ∼ N(0, 1).

Commonly used confidence levels:

90% CI, α = 0.1 95% CI, α = 0.05 99% CI, α = 0.01
z0.1/2 ≈ 1.645 z0.05/2 ≈ 1.960 z0.01/2 ≈ 2.576

−1.645 1.645

0.050.05
0.9

−1.96 1.96

0.0250.025
0.95

−2.576 2.576

0.0050.005
0.99
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Example

For the “number of exclusive relationships” example, recall

X = 3.2, s = 1.74, SE =
s
√

n
=

1.74
√

50
≈ 0.246

• 90% CI: X ± 1.645 × SE = 3.2 ± 1.645 × 0.246 ≈ 3.2 ± 0.40
• 95% CI: X ± 1.96 × SE = 3.2 ± 1.96 × 0.246 ≈ 3.2 ± 0.48
• 99% CI: X ± 2.576 × SE = 3.2 ± 2.576 × 0.246 ≈ 3.2 ± 0.63
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How to Choose the Confidence Level?

If we want to be more certain that we capture the population pa-
rameter, i.e. increase our confidence level, should we use a wider
interval or a shorter interval?

A wider interval.

Can you see any drawbacks to using a wider interval?

A wide interval may not be informative.

Image source: http://web.as.uky.edu/statistics/users/earo227/misc/garfield_weather.gif
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