STAT 234 Lecture 15A Standard Deviation \& Sample Variance (Section 1.4)

Yibi Huang
Department of Statistics
University of Chicago

Standard Deviation (SD) — Another Measure of Variability

To understand how standard deviation (SD) works, let's use a small data set $\{1,2,2,7\}$ as an example.

- Each of these numbers deviates from the mean $\frac{1+2+2+7}{4}=3$ by some amount:

Standard Deviation (Cont'd)

- How should we measure the overall size of these deviations?
- Taking their mean doesn't tell us anything about their magnitude
- $\operatorname{since} \sum_{i}\left(x_{i}-\bar{x}\right)=0$
- One sensible way is take the average of their absolute values:

$$
\frac{|-2|+|-1|+|-1|+|4|}{4}=2
$$

This is called the mean absolute deviation (MAD), not the SD.

- But for a variety of reasons, statisticians prefer using the root-mean-square as a measure of overall size:

$$
\sqrt{\frac{(-2)^{2}+(-1)^{2}+(-1)^{2}+4^{2}}{4}} \approx 2.35
$$

but this is still not the (sample) SD.

The formula for the (sample) standard deviation (SD) is

$$
s=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

Why divide by $n-1$? Not n ?

The formula for the (sample) standard deviation (SD) is

$$
s=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

Why divide by $n-1$? Not n ?

- Short answer: One cannot measure variability with only ONE observation $(n=1)$. We need at least 2.

The formula for the (sample) standard deviation (SD) is

$$
s=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

Why divide by $n-1$? Not n ?

- Short answer: One cannot measure variability with only ONE observation $(n=1)$. We need at least 2.
- Long answer: Dividing by n would underestimate the true (population) standard deviation. Dividing by $n-1$ instead of n corrects some of that bias, which we'll prove shortly after

The formula for the (sample) standard deviation (SD) is

$$
s=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

Why divide by $n-1$? Not n ?

- Short answer: One cannot measure variability with only ONE observation $(n=1)$. We need at least 2.
- Long answer: Dividing by n would underestimate the true (population) standard deviation. Dividing by $n-1$ instead of n corrects some of that bias, which we'll prove shortly after
- The standard deviation of $\{1,2,2,7\}$ is

$$
\sqrt{\frac{(-2)^{2}+(-1)^{2}+(-1)^{2}+4^{2}}{4-1}} \approx 2.71
$$

(recall we get 2.35 when dividing by $n=4$)

(Sample) Variance

The square of the (sample) standard deviation is called the (sample) variance, denoted as

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

which is roughly the average squared deviation from the mean.

- Note the sample variance for a variable in a data set is not the same as the variance for a random variable defined to be

$$
\operatorname{Var}(X)=\mathrm{E}(X-\mu)^{2}= \begin{cases}\sum_{x}(x-\mu)^{2} p(x) & \text { if } X \text { is discrete } \\ \int(x-\mu)^{2} f(x) d x & \text { if } X \text { is continuous }\end{cases}
$$

Shortcut Formula for Sample Variance

Just like the shortcut formula for the variance of a random variable,

$$
\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mu^{2}, \quad \text { where } \mu=\mathrm{E}(X)
$$

the sample variance also has its shortcut formula

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right)-n(\bar{x})^{2}}{n-1} .
$$

Proof of Shortcut Formula for Sample Variance

$$
\begin{aligned}
(n-1) s^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} & =\sum_{i=1}^{n}\left(x_{i}^{2}-2 \bar{x} x_{i}+\bar{x}^{2}\right) \\
& =\left(\sum_{i=1}^{n} x_{i}^{2}\right)-2\left(\sum_{i=1}^{n} x_{i} \bar{x}\right)+\underbrace{\sum_{i=1}^{n} \bar{x}^{2}}_{=n \bar{x}^{2}} \\
& =\left(\sum_{i=1}^{n} x_{i}^{2}\right)-2 \bar{x} \underbrace{\left.\sum_{i=1}^{n} x_{i}\right)}_{=n \bar{x}}+n \bar{x}^{2} \\
& =\left(\sum_{i=1}^{n} x_{i}^{2}\right)-2 n \bar{x}^{2}+n \bar{x}^{2} \\
& =\left(\sum_{i=1}^{n} x_{i}^{2}\right)-n \bar{x}^{2}
\end{aligned}
$$

Now we have proved the shortcut formula for sample variance

$$
s^{2}=\frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right)-n \bar{x}^{2}}{n-1}
$$

The 68% and 95% Rule of SD

- Roughly 68% of the observations will be within 1 SD away from the mean
- Roughly 95% will be with 2 SD away from the mean

The value 68\% and 95\% comes from the standard normal distribution that

$$
P(-1<Z<1) \approx 0.68 \quad \text { and } \quad P(-2<Z<2) \approx 0.95 \quad \text { if } Z \sim N(0,1) .
$$

The 68% and 95% rule work very well for bell-shaped data, and reasonably well for unimodal and not seriously skewed data, but not for all data.

68\% Rule for the FEV Data

proportion within

Sex/Smoke	Mean	SD	Count	1 SD from mean
Female Nonsmoker	2.379	0.639	279	$170 / 279 \approx 60.9 \%$
Female Smoker	2.966	0.423	39	$27 / 39 \approx 69.2 \%$
Male Nonsmoker	2.734	0.974	310	$203 / 310 \approx 65.5 \%$
Male Smoker	3.743	0.889	26	$17 / 26 \approx 65.4 \%$

95% Rule for the FEV Data

proportion within

Sex/Smoke	Mean	SD	Count	2 SDs from mean
Female Nonsmoker	2.379	0.639	279	$270 / 279 \approx 96.8 \%$
Female Smoker	2.966	0.423	39	$38 / 39 \approx 97.4 \%$
Male Nonsmoker	2.734	0.974	310	$298 / 310 \approx 96.1 \%$
Male Smoker	3.743	0.889	26	$24 / 26 \approx 92.3 \%$

Exercise

Is the SD of the histogram below closest to 5,15 , or 50 ?

Exercise

Is the SD of the histogram below closest to 5,15 , or 50 ?

Exercise

Is the SD of the histogram below closest to 5,15 , or 50 ?

Exercise

Is the SD of the histogram below closest to 5,15 , or 50 ?

Properties of Standard Deviation (SD)

- When $S D=0$, what do the data look like?
- what if $\operatorname{IQR}=0$?

Properties of Standard Deviation (SD)

- When $S D=0$, what do the data look like?
- what if $\operatorname{IQR}=0$?
- and what if $\mathrm{SD}<0$?

Properties of Standard Deviation (SD)

- When $S D=0$, what do the data look like?
- what if $\operatorname{IQR}=0$?
- and what if $\mathrm{SD}<0$?
- SD is very sensitive to outliers.

Properties of Standard Deviation (SD)

- When $S D=0$, what do the data look like?
- what if $\operatorname{IQR}=0$?
- and what if $\mathrm{SD}<0$?
- SD is very sensitive to outliers.
- SD has the same units of measurement as the original observations, while the variances in the square of these units.

Linear Transformation and Sample SD/Variance

Sample SD/variance has the same scaling properties as the SD/variance of random variables.

If $y_{i}=a x_{i}+b$ for all $i=1,2, \ldots, n$, then

- $s_{y}^{2}=a^{2} s_{x}^{2}$
- $s_{y}=|a| s_{x}$

Recap: Graphical Summaries Numerical Variables

Histograms

- Shape (skewness, modality), outlier, center, spread

Box-plots

- Graphical display of the five-number summary + 1.5 IQR rule
- can reveal skewness but not modality

Recap: Numerical Summaries of Numerical Variables

Common measure of center:

- Mean
- Median

Common measure spread:

- Range: max - min
- SD
- $\operatorname{IQR}=Q_{3}-Q_{1}$

Center and spread are important summaries of a distribution. But they don't tell us about the modality and skewness of a distribution, and whether there are outliers.
Always check the histogram!

