STAT 234 Lecture 11
 Covariance and Correlation Section 5.2

Yibi Huang
Department of Statistics
University of Chicago

Covariance

Covariance

The covariance of X and Y, denoted as $\operatorname{Cov}(X, Y)$ or $\sigma_{X Y}$, is defined as

$$
\operatorname{Cov}(X, Y)=\sigma_{X Y}=\mathrm{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right],
$$

in which $\mu_{X}=\mathrm{E}(X), \mu_{Y}=\mathrm{E}(Y)$

- Covariance is a generalization of variance as the variance of a random variable X is just the covariance of X with itself.

$$
\operatorname{Var}(X)=\operatorname{Cov}(X, X)=\mathrm{E}\left[\left(X-\mu_{X}\right)^{2}\right]
$$

Sign of Covariance Reflects the Direction of (X, Y) Relation

- $\operatorname{Cov}(X, Y)>0$ means a positive relation between X, Y
- When X increases, Y tends to increase
- $\operatorname{Cov}(X, Y)<0$ means a negative relation between X, Y
- When X increases, Y tends to decrease

Shortcut Formula for Covariance

$$
\operatorname{Cov}(X, Y)=\mathrm{E}(X Y)-\mathrm{E}(X) \mathrm{E}(Y)
$$

- Like the Shortcut Formula for Variance $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}$.
- If $X \& Y$ are indep., then $\mathrm{E}(X Y)=\mathrm{E}(X) \mathrm{E}(Y)$, which implies $\operatorname{Cov}(X, Y)=0$.
- However $\operatorname{Cov}(X, Y)=0$ does not imply the independence of X and Y. In this case, we say X and Y are uncorrelated.

Proof of the Shortcut Formula for Covariance

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathrm{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =\mathrm{E}\left(X Y-\mu_{X} Y-\mu_{Y} X+\mu_{X} \mu_{Y}\right) \\
& =\mathrm{E}(X Y)-\mu_{X} \underbrace{\mathrm{E}(Y)}_{=\mu_{Y}}-\mu_{Y} \underbrace{\mathrm{E}(X)}_{=\mu_{X}}+\mu_{X} \mu_{Y} \\
& =\mathrm{E}(X Y)-\mu_{X} \mu_{Y}
\end{aligned}
$$

Example (Gas Station) - E(XY)

For the Gas Station Example in L09, recall the joint pmf is

Example (Gas Station) - E(XY)

For the Gas Station Example in L09, recall the joint pmf is

$$
\begin{aligned}
\mathrm{E}(X Y)= & \sum_{x y} x y p(x, y) \\
= & 0 \cdot 0 \cdot 0.10+0 \cdot 1 \cdot 0.04+0 \cdot 2 \cdot 0.02 \\
& +1 \cdot 0 \cdot 0.08+1 \cdot 1 \cdot 0.20+1 \cdot 2 \cdot 0.06 \\
& +2 \cdot 0 \cdot 0.06+2 \cdot 1 \cdot 0.14+2 \cdot 2 \cdot 0.30 \\
= & 1.8
\end{aligned}
$$

Example (Gas Station) — Covariance

Recall in L09, we obtained the marginal pmfs for X and Y :

x	0	1	2
$p_{X}(x)$	0.16	0.34	0.50

By the shortcut formula, the covariance is

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathrm{E}(X Y)-\mathrm{E}(X) \mathrm{E}(Y) \\
& =1.8-1.34 \times 1.14=0.2724>0
\end{aligned}
$$

When one service island has more hoses in-use, the other also tends to have more in-use.

Example 5.5 (Mixed Nuts) - Covariance

Recall in Lecture 9, the joint pdf for

$$
X=\text { the weight of almonds, and } Y=\text { the weight of cashews }
$$

in a can of mixed nuts is

$$
f(x, y)= \begin{cases}24 x y & \text { if } 0 \leq x, y \leq 1, x+y<1 \\ 0 & \text { otherwise }\end{cases}
$$

Before we calculate it, guess $\operatorname{Cov}(X, Y)>0$ or <0 ?

Example 5.5 (Mixed Nuts) — E(XY)

$$
\mathrm{E}(X Y)=\iint x y f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{0}^{1} \int_{0}^{1-y} 24 x^{2} y^{2} \mathrm{~d} x \mathrm{~d} y \quad \begin{gathered}
\text { integrate } \mathrm{x} \\
\text { from } 0 \text { to } 1-\mathrm{y}
\end{gathered}
$$

Example 5.5 (Mixed Nuts) — $\mathrm{E}(X Y)$

$$
\begin{aligned}
& \mathrm{E}(X Y)=\iint x y f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{0}^{1} \int_{0}^{1-y} 24 x^{2} y^{2} \mathrm{~d} x \mathrm{~d} y \\
& \text { where } \\
& \text { fix } \mathrm{y} \rightarrow \text { integrate } \mathrm{x} \\
& \text { from 0 to } 1-\mathrm{y}
\end{aligned}
$$

Putting it back to the double integral,

$$
\mathrm{E}(X Y)=\int_{0}^{1} \int_{0}^{1-y} 24 x^{2} y^{2} \mathrm{~d} x \mathrm{~d} y=\int_{0}^{1} 8(1-y)^{3} y^{2} \mathrm{~d} y=\frac{2}{15}
$$

Example 5.5 (Mixed Nuts) — Covariance

Recall in L09, we calculated the marginal pdf's for X and for Y :

$$
f_{X}(x)=12 x(1-x)^{2}, \quad f_{Y}(y)=12 y(1-y)^{2}, \text { for } 0 \leq x, y \leq 1 .
$$

using which we can calculate

$$
\begin{aligned}
\mathrm{E}(X) & =\int_{0}^{1} x f_{X}(x) \mathrm{d} x=\int_{0}^{1} 12 x^{2}(1-x)^{2} \mathrm{~d} x \\
& =\int_{0}^{1} 12 x^{2}-24 x^{3}+12 x^{4} \mathrm{~d} x=4 x^{3}-6 x^{4}+\left.\frac{12}{5} x^{5}\right|_{0} ^{1}=\frac{2}{5}
\end{aligned}
$$

Likewise, $\mathrm{E}(Y)=2 / 5$. By the shortcut formula, the covariance is

$$
\operatorname{Cov}(X, Y)=\mathrm{E}(X Y)-\mathrm{E}(X) \mathrm{E}(Y)=\frac{2}{15}-\frac{2}{5} \times \frac{2}{5}=-\frac{2}{75}
$$

When the amount of almond is increased, the amount of cashew is likely reduced.

$\operatorname{Cov}(a X+c, b Y+d)=a b \operatorname{Cov}(X, Y)$

Recall variance has the scaling property

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

The scaling property for Covariance is

$$
\begin{aligned}
& \operatorname{Cov}(a X+c, b Y+d) \\
& =\mathrm{E}\{[a X+c-\mathrm{E}(a X+c)][b Y+d-\mathrm{E}(b Y+d)]\} \\
& =\mathrm{E}[(a X+c-a \mathrm{E}(X)-c)(b Y+d-b \mathrm{E}(Y)-d)] \\
& =\mathrm{E}[(a X-a \mathrm{E}(X))(b Y-b \mathrm{E}(Y))] \\
& =a b \mathrm{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =a b \operatorname{Cov}(X, Y)
\end{aligned}
$$

Correlation

How Large the Covariance Indicates a Strong Relation?

One can prove the Cauchy Inequality for covariance

$$
[\operatorname{Cov}(X, Y)]^{2} \leq \operatorname{Var}(X) \operatorname{Var}(Y)
$$

How Large the Covariance Indicates a Strong Relation?

One can prove the Cauchy Inequality for covariance

$$
[\operatorname{Cov}(X, Y)]^{2} \leq \operatorname{Var}(X) \operatorname{Var}(Y)
$$

Moreover, the covariance reaches its maximum possible magnitude if and only if X and Y has a perfect linear relation $Y=a X+b, a \neq 0$.

Thus, one can assess the strength of linear relation between X, Y by comparing $\operatorname{Cov}(X, Y)$ with $\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}$.

Correlation

$$
\text { Correlation }=\rho_{X Y}=\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}} .
$$

- $-1 \leq \rho_{X Y} \leq 1$ since $\operatorname{Cov}(X, Y) \leq \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}$
- The closer $\rho_{X Y}$ is to 1 or to -1 , the stronger the linear relation between X and Y

- $\rho_{X Y}=1$ or -1 if and only if $Y=a X+b$ and $a \neq 0$, i.e., X and Y has an perfect linear relation

Covariance Is NOT Scale Invariant but Correlation Is!

Example. Let

- $X=$ amount of time studying STAT 234 per week, and
- $Y=$ grade in STAT 234

If X is measured in minutes rather than in hours, $\operatorname{Cov}(X, Y)$ would be 60 times as large.

The strength of $X Y$ relation should be the same no matter X is measured in minutes or in hours.

Correlation $\rho_{X Y}$ is scale invariant and has no unit.

$$
\begin{aligned}
\operatorname{Corr}(a X+c, b Y+d) & =\frac{\operatorname{Cov}(a X+c, b Y+d)}{\sqrt{\operatorname{Var}(a X+c) \operatorname{Var}(b Y+d)}} \\
& =\frac{a b \operatorname{Cov}(X, Y)}{\sqrt{a^{2} \operatorname{Var}(X) b^{2} \operatorname{Var}(Y)}}=(\text { sign of } a b) \operatorname{Corr}(X, Y)
\end{aligned}
$$

Example (Gas Station) - Correlation

Recall in L09, we obtained the marginal pmfs for X and Y :

x	0	1	2					
$p_{X}(x)$	0.16	0.34	0.50	,\quad	y	0	1	2
:---:	:---:	:---:	:---:					
$p_{Y}(y)$	0.24	0.38	0.38					

$$
\begin{aligned}
\mathrm{E}\left(X^{2}\right) & =0^{2} \cdot 0.16+1^{2} \cdot 0.34+2^{2} \cdot 0.5=2.34 \\
\operatorname{Var}(X) & =\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}=2.34-1.34^{2}=0.5444 \\
\mathrm{E}\left(Y^{2}\right) & =0^{2} \cdot 0.24+1^{2} \cdot 0.38+2^{2} \cdot 0.38=1.9 \\
\operatorname{Var}(Y) & =\mathrm{E}\left(Y^{2}\right)-(\mathrm{E}(Y))^{2}=1.9-1.14^{2}=0.6004 \\
\operatorname{Corr}(X, Y) & =\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=\frac{0.2724}{\sqrt{0.5444 \times 0.6004}} \approx 0.476 .
\end{aligned}
$$

Example 5.5 (Mixed Nuts) — Correlation

Recall in L09, we calculated the marginal pdf's for X and for Y :

$$
f_{X}(x)=12 x(1-x)^{2}, \quad f_{Y}(y)=12 y(1-y)^{2}, \text { for } 0 \leq x, y \leq 1 .
$$

using which we can calculate

$$
\begin{aligned}
\mathrm{E}\left(X^{2}\right) & =\int_{0}^{1} x^{2} f_{X}(x) \mathrm{d} x=\int_{0}^{1} 12 x^{3}(1-x)^{2} \mathrm{~d} x \\
& =\int_{0}^{1} 12 x^{3}-24 x^{4}+12 x^{5} \mathrm{~d} x=3 x^{4}-\frac{24 x^{5}}{5}+\left.2 x^{6}\right|_{0} ^{1}=\frac{1}{5} \\
\operatorname{Var}(X) & =\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}=\frac{1}{5}-\left(\frac{2}{5}\right)^{2}=\frac{1}{25}
\end{aligned}
$$

Similar, one can calculate $\operatorname{Var}(Y)=1 / 25$

$$
\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=\frac{-2 / 75}{\sqrt{(1 / 25)(1 / 25)}}=-\frac{2}{3} \approx-0.667 .
$$

More Properties of Covariance

$$
\operatorname{Cov}(X, Y)=\mathrm{E}[(X-\mathrm{E}(X))(Y-\mathrm{E}(Y))]=\mathrm{E}(X Y)-\mathrm{E}(X) \mathrm{E}(Y)
$$

In the following, a, b are constants. X, Y, Z are random variables

- Symmetry: $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
- Homogeneity: $\operatorname{Cov}(a X, b Y)=a b \operatorname{Cov}(X, Y)$
- Right-linearity: $\operatorname{Cov}(X+Y, Z)=\operatorname{Cov}(X, Z)+\operatorname{Cov}(Y, Z)$
- Left-linearity: $\operatorname{Cov}(X, Y+Z)=\operatorname{Cov}(X, Y)+\operatorname{Cov}(X, Z)$
- $\operatorname{Cov}(a, X)=0$.

Proofs for Properties of Covariance

The proofs for these propertie are all straightforward from definition. We just prove the Right-linearity as an example.

$$
\begin{aligned}
\operatorname{Cov}(X+Y, Z) & =\mathrm{E}((X+Y) Z)-\mathrm{E}(X+Y) \mathrm{E}(Z) \\
& =\mathrm{E}(X Z)+\mathrm{E}(Y Z)-[\mathrm{E}(X)+\mathrm{E}(Y)] \mathrm{E}(Z) \\
& =\underbrace{\mathrm{E}(X Z)-\mathrm{E}(X) \mathrm{E}(Z)}_{\operatorname{Cov}(X, Z)}+\underbrace{\mathrm{E}(Y Z)-\mathrm{E}(Y) \mathrm{E}(Z)}_{\operatorname{Cov}(Y, Z)} \\
& =\operatorname{Cov}(X, Z)+\operatorname{Cov}(Y, Z)
\end{aligned}
$$

Note in the proof above, we used the property of expected value that

$$
\begin{aligned}
\mathrm{E}(X+Y) & =\mathrm{E}(X)+\mathrm{E}(Y) \\
\mathrm{E}(X Z+Y Z) & =\mathrm{E}(X Z)+\mathrm{E}(Y Z)
\end{aligned}
$$

Variance of Linear Combinations of Two Random Variables

Recall that expectation has the following linear property:

$$
\mathrm{E}(a X+b Y)=a \mathrm{E}(X)+b \mathrm{E}(Y)
$$

We also have shown that $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$.

How about $\operatorname{Var}(a X+b Y)$?

$$
\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+2 a b \operatorname{Cov}(X, Y)+b^{2} \operatorname{Var}(Y)
$$

- If X is independent of Y, $\operatorname{Var}(X \pm Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Proof of $\operatorname{Var}(a X+b Y)$

$$
\begin{array}{ll}
\operatorname{Var}(a X+b Y)=\operatorname{Cov}(a X+b Y, a X+b Y) \\
=\underbrace{\operatorname{Cov}(a X, a X+b Y)}_{\downarrow}+\underbrace{\operatorname{Cov}(b Y, a X+b Y)} & \text { (right-linearity) } \\
=\overbrace{\operatorname{Cov}(a X, a X)+\operatorname{Cov}(a X, b Y)}^{\operatorname{Con}}+\overbrace{\operatorname{Cov}(b Y, a X)+\operatorname{Cov}(b Y, b Y)} & \text { (left-linearity) } \\
=\operatorname{Var}(a X)+2 \operatorname{Cov}(a X, b Y)+\operatorname{Var}(b Y) & \text { (symmetry) } \\
=a^{2} \operatorname{Var}(X)+2 a b \operatorname{Cov}(X, Y)+b^{2} \operatorname{Var}(Y) & \text { (homogeneity) }
\end{array}
$$

Linear Combinations of Random Variables

For any random variables $X_{1}, X_{2}, \ldots, X_{n}$., a linear combination of $X_{1}, X_{2}, \ldots, X_{n}$ is

$$
a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are constant numbers. For example,

- The sum $X_{1}+X_{2}+\cdots+X_{n}$ is a linear combination of X_{1}, \ldots, X_{n} with all a_{i} 's $=1$.
- The average

$$
\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

is a linear combination of $X_{1}, X_{2}, \ldots, X_{n}$ with all a_{i} 's $=1 / n$.

- The difference $X-Y$ is a linear combination of X and Y with

$$
a_{1}=1, a_{2}=-1
$$

Example (Total Bus Fare)

Suppose the bus fare is
$\$ 2$ for senior citizens, $\$ 1$ for children, and $\$ 3$ for all other people

Let
$X=$ the number of senior citizens on the bus,
$Y=$ the number of children on the bus,
$Z=$ the number of all other passengers on the bus
The total amount of bus fares collected is then

$$
2 X+Y+3 Z
$$

which is a linear combination of X, Y, Z.

Expected Values for Linear Combinations of RV's

For the linear combination

$$
a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n},
$$

the expected value is

$$
\begin{aligned}
& \mathrm{E}\left(a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}\right) \\
= & \mathrm{E}\left(a_{1} X_{1}\right)+\mathrm{E}\left(a_{2} X_{2}\right)+\cdots+\mathrm{E}\left(a_{n} X_{n}\right) \\
= & a_{1} \mathrm{E}\left(X_{1}\right)+a_{2} \mathrm{E}\left(X_{2}\right)+\cdots+a_{n} \mathrm{E}\left(X_{n}\right)
\end{aligned}
$$

Variance of a Linear Combination of RV's

$$
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

- There is a covariance term for every pair of X_{i} and X_{j}
- When X_{1}, \ldots, X_{n} are independent, then

$$
\operatorname{Var}\left(X_{1}+X_{2}+\ldots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\ldots+\operatorname{Var}\left(X_{n}\right)
$$

- When $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$ for $i=1, \ldots, n$, and $\operatorname{Cov}\left(X_{i}, X_{j}\right)=\rho$ for $1 \leq i \neq j \leq n$, then

$$
\operatorname{Var}\left(X_{1}+\ldots+X_{n}\right)=n \sigma^{2}+n(n-1) \rho .
$$

Example: Variance of the Binomial Distribution

In Lecture 6A, we computed the expected value for the Binomial distribution $\operatorname{Bin}(n, p)$, but the variance is given without proof.

$$
\mu=E(X)=n p, \quad \sigma^{2}=\operatorname{Var}(X)=n p(1-p) .
$$

Here we will to prove the formulas using linear combinations.
First for the special case $n=1, X \sim \operatorname{Bin}(n=1, p), X$ only takes value 0 and 1 with the pmf below

x	0	1
$p(x)$	$1-p$	p

Hence

$$
\begin{aligned}
\mathrm{E}(X) & =\sum_{x=0,1} x p(x)=0 \cdot(1-p)+1 \cdot p=p \\
\mathrm{E}\left(X^{2}\right) & =\sum_{x=0,1} x^{2} p(x)=0^{2} \cdot(1-p)+1^{2} \cdot p=p \\
\operatorname{Var}(X) & =\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}=p-p^{2}=p(1-p)
\end{aligned}
$$

For general n, recall a Binomial random variable $X \sim \operatorname{Bin}(n, p)$ is the total number of successes obtained in n independent Bernoulli trials. For each of the n trials, define

$$
X_{i}=\left\{\begin{array}{ll}
1 & \text { if success in the } i \text { th trial } \\
0 & \text { if failure in the } i \text { th trial }
\end{array} \quad \Rightarrow X_{i} \sim \operatorname{Bin}(n=1, p)\right.
$$

Then $X=$ the number of successes obtained in the n trials

$$
=X_{1}+X_{2}+\ldots+X_{n},
$$

The expected value and variance of X are thus

$$
\begin{aligned}
& \mathrm{E}(X)=\underbrace{\mathrm{E}\left(X_{1}\right)}_{=p}+\cdots+\underbrace{\mathrm{E}\left(X_{n}\right)}_{=p}=n p \\
& \operatorname{Var}(X)=\underbrace{\operatorname{Var}\left(X_{1}\right)}_{=p(1-p)}+\cdots+\underbrace{\operatorname{Var}\left(X_{n}\right)}_{=p(1-p)}=n p(1-p)
\end{aligned}
$$

since X_{i} 's are indep. and each with mean p and variance $p(1-p)$ as $X_{i} \sim \operatorname{Bin}(n=1, p)$.

Example (Sample Mean)

Suppose X_{1}, \ldots, X_{n} are i.i.d. rv's with mean μ and variance σ^{2}.

- i.i.d. = "independent and have an identical distribution"

Consider the sample mean

$$
\bar{X}=\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)
$$

Then

$$
\begin{aligned}
\mathrm{E}(\bar{X}) & =\frac{1}{n}\left[\mathrm{E}\left(X_{1}\right)+\ldots+\mathrm{E}\left(X_{n}\right)\right]=\frac{1}{n}(\underbrace{\mu+\ldots+\mu}_{n \text { copies }})=\mu . \\
\operatorname{Var}(\bar{X}) & =\frac{1}{n^{2}} \operatorname{Var}\left(X_{1}+X_{2}+\ldots+X_{n}\right) \quad \text { since } \operatorname{Var}(a X)=a^{2} V(X) \\
& =\frac{1}{n^{2}}\left[\operatorname{Var}\left(X_{1}\right)+\ldots+\operatorname{Var}\left(X_{n}\right)\right] \quad \text { as all } X_{i} \text { 's are indep. } \\
& =\frac{1}{n^{2}}(\underbrace{\sigma^{2}+\ldots+\sigma^{2}}_{n \text { copies }})=\frac{n \sigma^{2}}{n^{2}}=\frac{\sigma^{2}}{n}
\end{aligned}
$$

