STAT 234 Lecture 9 Joint Distributions of Random Variables Section 5.1

Yibi Huang
Department of Statistics
University of Chicago

Why Consider Two or More Random Variables?

- Our focus so far has been on the distribution of a single random variable.
- In many situations, there are two or more variables of interest, and we want to know how they are related. For example, I am interested to know
- X_{1} : the number of hours spent on studying per week
- X_{2} : final grade of stat234.
- Since the relationship is important, we cannot study them separately and need to consider them jointly.

Joint Probability Distribution for Discrete R.V.

Joint Distribution of Two Discrete Random Variables

The joint probability mass function (joint pmf), or, simply the joint distribution, of two discrete r.v. X and Y is defined as

$$
p(x, y)=P(X=x, Y=y)=P(\{X=x\} \cap\{Y=y\}) .
$$

Joint Distribution of Two Discrete Random Variables

The joint probability mass function (joint pmf), or, simply the joint distribution, of two discrete r.v. X and Y is defined as

$$
p(x, y)=P(X=x, Y=y)=P(\{X=x\} \cap\{Y=y\}) .
$$

Properties of the joint probability distribution:

1. $p(x, y) \geq 0$.
2. Define the probability for an event A as,

$$
P(A)=P((x, y) \in A)=\sum_{(x, y) \in A} p(x, y)
$$

3. If we set $A=S$ in (2), then

$$
P(S)=\sum_{x} \sum_{y} p(x, y)=1 .
$$

Exercise 1 - Gas Station (p. 242 in MMSA)

A gas station has both self-service and full-service islands, each with a single regular unleaded pump with 2 hoses.
$X=$ the \# of hoses in use on the self-service island, and
$Y=$ the \# of hoses in use on the full-service island

The joint pmf of X and Y :

		Y (full-service)		
	$p(x, y)$	0	1	2
X	0	0.10	0.04	0.02
self-	1	0.08	0.20	0.06
service	2	0.06	0.14	0.30

What is $P(X=2$ and $Y=1)$?

Exercise 1 - Gas Station (p. 242 in MMSA)

A gas station has both self-service and full-service islands, each with a single regular unleaded pump with 2 hoses.
$X=$ the \# of hoses in use on the self-service island, and
$Y=$ the \# of hoses in use on the full-service island

The joint pmf of X and Y :

		Y (full-service)		
	$p(x, y)$	0	1	2
X	0	0.10	0.04	0.02
self-	1	0.08	0.20	0.06
service	2	0.06	0.14	0.30

What is $P(X=2$ and $Y=1) ? p(2,1)=0.14$

Exercise 1 - Gas Station (2)

		Y (full-service)		
	$p(x, y)$	0	1	2
X	0	0.10	0.04	0.02
self-	1	0.08	0.20	0.06
service	2	0.06	0.14	0.30

What is $P(X \leq 1$ and $Y \leq 1)$?

Exercise 1 - Gas Station (2)

		Y (full-service)		
	$p(x, y)$	0	1	2
X	0	0.10	0.04	0.02
self-	1	0.08	0.20	0.06
service	2	0.06	0.14	0.30

What is $P(X \leq 1$ and $Y \leq 1)$?

$$
\begin{aligned}
& P(X=0, Y=0)+P(X=0, Y=1)+P(X=1, Y=0)+P(X=1, Y=1) \\
= & p(0,0)+p(0,1)+p(1,0)+p(1,1) \\
= & 0.10+0.04+0.08+0.20=0.42
\end{aligned}
$$

Exercise 1 - Gas Station (3)

		Y (full-service)		
	$p(x, y)$	0	1	2
	0	0.10	0.04	0.02
self-	1	0.08	0.20	0.06
service	2	0.06	0.14	0.30

What is the probability that more self-service hoses in use than full service hoses $P(X>Y)$?

Exercise 1 - Gas Station (3)

		Y (full-service)		
	$p(x, y)$	0	1	2
X	0	0.10	0.04	0.02
self-	1	0.08	0.20	0.06
service	2	0.06	0.14	0.30

What is the probability that more self-service hoses in use than full service hoses $P(X>Y)$?

$$
\begin{aligned}
& P(X=1, Y=0)+P(X=2, Y=1)+P(X=2, Y=0) \\
= & p(1,0)+p(2,1)+p(2,1) \\
= & 0.08+0.06+0.14=0.28
\end{aligned}
$$

Marginal Distribution

Obtaining pmf of X From the Joint Distribution of (X, Y)

$p(x, y)$					
		0	Y		Row Sum
	0	0.10	0.04	0.02	
X	1	0.08	0.20	0.06	
	2	0.06	0.14	0.30	

$$
P(X=0)=
$$

Obtaining pmf of X From the Joint Distribution of (X, Y)

$$
\begin{aligned}
& \\
& P(X=0)=P(X=0, Y=0)+P(X=0, Y=1)+P(X=0, Y=2) \\
& =0.10+0.04+0.02=0.16
\end{aligned}
$$

Obtaining pmf of X From the Joint Distribution of (X, Y)

$$
\begin{aligned}
& P(X=0)=P(X=0, Y=0)+P(X=0, Y=1)+P(X=0, Y=2) \\
& =0.10+0.04+0.02=0.16
\end{aligned}
$$

Likewise,

$$
P(X=1)=0.08+0.20+0.06=0.34
$$

Obtaining pmf of X From the Joint Distribution of (X, Y)

$$
\begin{aligned}
& P(X=0)=P(X=0, Y=0)+P(X=0, Y=1)+P(X=0, Y=2) \\
& =0.10+0.04+0.02=0.16
\end{aligned}
$$

Likewise,

$$
\begin{aligned}
& P(X=1)=0.08+0.20+0.06=0.34 \\
& P(X=2)=0.06+0.14+0.30=0.50
\end{aligned}
$$

Obtaining mf of X From the Joint Distribution of (X, Y)

$$
\begin{aligned}
& P(X=0)=P(X=0, Y=0)+P(X=0, Y=1)+P(X=0, Y=2) \\
& =0.10+0.04+0.02=0.16
\end{aligned}
$$

Likewise,

$$
\begin{aligned}
& P(X=1)=0.08+0.20+0.06=0.34 \\
& P(X=2)=0.06+0.14+0.30=0.50
\end{aligned}
$$

The pmf $p_{X}(x)$ of X is thus | x | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $p_{X}(x)$ | 0.16 | 0.34 | 0.50 |

Obtaining pmf of Y From the Joint Distribution of (X, Y)

		Y		
		$p(x, y)$	0	1
	0	0.10	0.04	0.02
X	1	0.08	0.20	0.06
	2	0.06	0.14	0.30
Column				
sum				

$$
P(Y=0)=
$$

Obtaining mf of Y From the Joint Distribution of (X, Y)

$$
\begin{aligned}
& P(Y=0)=P(X=0, Y=0)+P(X=1, Y=0)+P(X=2, Y=0) \\
& =0.10+0.08+0.06=0.24
\end{aligned}
$$

Obtaining pmf of Y From the Joint Distribution of (X, Y)

$$
\begin{aligned}
& P(Y=0)=P(X=0, Y=0)+P(X=1, Y=0)+P(X=2, Y=0) \\
& =0.10+0.08+0.06=0.24
\end{aligned}
$$

Likewise,

$$
P(Y=1)=0.04+0.20+0.14=0.38
$$

Obtaining mf of Y From the Joint Distribution of (X, Y)

$$
\begin{aligned}
& P(Y=0)=P(X=0, Y=0)+P(X=1, Y=0)+P(X=2, Y=0) \\
& =0.10+0.08+0.06=0.24
\end{aligned}
$$

Likewise,

$$
\begin{aligned}
& P(Y=1)=0.04+0.20+0.14=0.38 \\
& P(Y=2)=0.02+0.06+0.30=0.38
\end{aligned}
$$

Obtaining pmf of Y From the Joint Distribution of (X, Y)

$$
\begin{aligned}
& P(Y=0)=P(X=0, Y=0)+P(X=1, Y=0)+P(X=2, Y=0) \\
& =0.10+0.08+0.06=0.24
\end{aligned}
$$

Likewise,

$$
\begin{aligned}
& P(Y=1)=0.04+0.20+0.14=0.38 \\
& P(Y=2)=0.02+0.06+0.30=0.38
\end{aligned}
$$

The pmf $p_{Y}(y)$ of Y is thus | y | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $p_{Y}(y)$ | 0.24 | 0.38 | 0.38 |

Marginal Distribution

The marginal probability mass functions (marginal mf's) of X and of Y are obtained by summing $p(x, y)$ over values of the other variable.

$$
p_{X}(x)=\sum_{y} p(x, y), \quad p_{Y}(y)=\sum_{x} p(x, y)
$$

Example: Gas Station

We call them marginal distributions because they show up at the table margins when the joint distribution is written in a tabular form

Joint Distribution of Continuous Random Variables

Joint Distribution of Two Continuous Random Variables

Let X and Y be continuous rv. Then $f(x, y)$ is their joint probability density function or joint pdf for X and Y if for any two-dimensional set A

$$
P[(X, Y) \in A]=\iint_{A} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

In particular, if A is the two-dimensional rectangle $\{a \leq x \leq b, c \leq y \leq d\}$, then

$$
P[(X, Y) \in A]=P(a \leq X \leq b, c \leq Y \leq d)=\int_{c}^{d} \int_{a}^{b} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

Conditions for a joint pdf

- It must be nonnegative: $f(x, y) \geq 0$ for all x and y
- $\iint f(x, y) \mathrm{d} x \mathrm{~d} y=1$

Example 5.5 on p.237-238 of MMSA

- Each can of mixed nuts contains almonds, cashews, and peanuts

Example 5.5 on p.237-238 of MMSA

- Each can of mixed nuts contains almonds, cashews, and peanuts
- Weights of the 3 types of nuts in a can are random but the total is exactly 1 lb

Example 5.5 on p.237-238 of MMSA

- Each can of mixed nuts contains almonds, cashews, and peanuts
- Weights of the 3 types of nuts in a can are random but the total is exactly 1 lb
- In a randomly selected can, let
$X=$ the weight of almonds, and $Y=$ the weight of cashews.
The weight of peanuts in the can is thus $(1-X-Y)$

Example 5.5 on p.237-238 of MMSA

- Each can of mixed nuts contains almonds, cashews, and peanuts
- Weights of the 3 types of nuts in a can are random but the total is exactly 1 lb
- In a randomly selected can, let
$X=$ the weight of almonds, and $Y=$ the weight of cashews.
The weight of peanuts in the can is thus $(1-X-Y)$
- Natural constraints on $X \& Y$:

$$
0 \leq X \leq 1,0 \leq Y \leq 1, X+Y<1
$$

- Joint pdf of X \& Y :

$$
f(x, y)= \begin{cases}24 x y & \text { if } 0 \leq x \leq 1,0 \leq y \leq 1, x+y<1 \\ 0 & \text { otherwise }\end{cases}
$$

Checking Conditions on a Joint PDF

Clearly, $f(x, y) \geq 0$. It remains to check $\iint f(x, y) \mathrm{d} x \mathrm{~d} y=1$.

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{0}^{1} \int_{0}^{1-y} 24 x y \mathrm{~d} x \mathrm{~d} y
$$

Checking Conditions on a Joint PDF

Clearly, $f(x, y) \geq 0$. It remains to check $\iint f(x, y) \mathrm{d} x \mathrm{~d} y=1$.
$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{0}^{1} \int_{0}^{1-y} 24 x y \mathrm{~d} x \mathrm{~d} y$
To compute the double integral above,

1. hold one variable fixed (e.g., y)

Checking Conditions on a Joint PDF

Clearly, $f(x, y) \geq 0$. It remains to check $\iint f(x, y) \mathrm{d} x \mathrm{~d} y=1$.
$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{0}^{1} \int_{0}^{1-y} 24 x y \mathrm{~d} x \mathrm{~d} y$
To compute the double integral above,

1. hold one variable fixed (e.g., y)

2. integrate the other variable x along the line of the fixed y

- key: express the end points of the line in terms of the fixed y, which will be the upper and lower limits for the integral over x

$$
\int_{0}^{1-y} 24 x y \mathrm{~d} x=\left.12 x^{2} y\right|_{x=0} ^{x=1-y}=12(1-y)^{2} y
$$

3. integrate the variable y that is fixed in the prior steps

$$
\int_{0}^{1} \int_{0}^{1-y} 24 x y \mathrm{~d} x \mathrm{~d} y=\int_{0}^{1} 12(1-y)^{2} y \mathrm{~d} y=6 y^{2}-8 y^{3}+\left.3 y^{4}\right|_{0} ^{1}=1
$$

Finding Probabilities From the Joint PDF $P(X>0.3)$

What is $P(X>0.3)=P($ at least 30% almonds in a can $)$?

Finding Probabilities From the Joint PDF $P(X>0.3)$

What is $P(X>0.3)=P($ at least 30% almonds in a can $)$?

$$
\begin{aligned}
P(X>0.3) & =\iint_{x>0.3} f(x, y) \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{0.7} \int_{0.3}^{1-y} 24 x y \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

Finding Probabilities From the Joint PDF $P(X>0.3)$

What is $P(X>0.3)=P($ at least 30% almonds in a can $)$?

$$
\begin{aligned}
P(X>0.3) & =\iint_{x>0.3} f(x, y) \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{0.7} \int_{0.3}^{1-y} 24 x y \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

where

$$
=12\left((1-y)^{2}-0.3^{2}\right) y=12\left(0.91 y-2 y^{2}+y^{3}\right) .
$$

Finding Probabilities From the Joint PDF $P(X>0.3)$

What is $P(X>0.3)=P($ at least 30% almonds in a can $)$?

$$
\begin{aligned}
P(X>0.3) & =\iint_{x>0.3} f(x, y) \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{0.7} \int_{0.3}^{1-y} 24 x y \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

where

$$
\begin{aligned}
\int_{0.3}^{1-y} 24 x y \mathrm{~d} x & =\left.12 x^{2} y\right|_{x=0.3} ^{x=1-y} \quad 0 \quad 0.31-\mathrm{y} 1 \\
& =12\left((1-y)^{2}-0.3^{2}\right) y=12\left(0.91 y-2 y^{2}+y^{3}\right)
\end{aligned}
$$

Putting it back to the double integral, we get

$$
\begin{aligned}
\int_{0}^{0.7} \int_{0.3}^{1-y} 24 x y \mathrm{~d} x \mathrm{~d} y & =\int_{0}^{0.7} 12\left(0.91 y-2 y^{2}+y^{3}\right) \mathrm{d} y \\
& =5.46 y^{2}-8 y^{3}+\left.3 y^{4}\right|_{0} ^{0.7}=0.6517
\end{aligned}
$$

Finding Probabilities From the Joint PDF $P(X+Y>0.7)$

What is the probability that less than 30% are peanuts in a randomly selected can?
P (less than 30\% are Peanuts)
$=$
=
=

Finding Probabilities From the Joint PDF $P(X+Y>0.7)$

What is the probability that less than 30% are peanuts in a randomly selected can?
P (less than 30\% are Peanuts)
$=P($ at least 70% are almonds or cashews $)$
$=$

Finding Probabilities From the Joint PDF $P(X+Y>0.7)$

What is the probability that less than 30% are peanuts in a randomly selected can?
P (less than 30\% are Peanuts)
$=P($ at least 70% are almonds or cashews $)$
$=P(X+Y>0.7)$
=

Finding Probabilities From the Joint PDF $P(X+Y>0.7)$

What is the probability that less than 30% are peanuts in a randomly selected can?
P (less than 30\% are Peanuts)
$=P($ at least 70% are almonds or cashews $)$
$=P(X+Y>0.7)$
$=1-P(X+Y \leq 0.7)$ by Complement Rule

Finding Probabilities From the Joint PDF $P(X+Y>0.7)$

What is the probability that less than 30% are peanuts in a randomly selected can?
P (less than 30\% are Peanuts)
$=P($ at least 70% are almonds or cashews $)$
$=P(X+Y>0.7)$
$=1-P(X+Y \leq 0.7)$ by Complement Rule

where

$$
\begin{aligned}
& P(X+Y>0.7)=\text { integral of } f(x, y) \text { over the gray region } \\
& P(X+Y<0.7)=\text { integral of } f(x, y) \text { over the green region }
\end{aligned}
$$

Finding Probabilities From the Joint PDF $P(X+Y>0.7)$ (Cont'd)

$$
\begin{aligned}
& \begin{aligned}
P(X+Y<0.7) & =\iint_{x+y<0.7} f(x, y) \mathrm{d} x \mathrm{~d} y
\end{aligned} \\
& =\int_{0}^{0.7} \int_{0}^{0.7-y} 24 x y \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

Finding Probabilities From the Joint PDF $P(X+Y>0.7)$ (Cont'd)

$$
\begin{aligned}
P(X+Y<0.7) & =\iint_{x+y<0.7} f(x, y) \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{0.7} \int_{0}^{0.7-y} 24 x y \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

where

$$
\int_{0}^{0.7-y} 24 x y \mathrm{~d} x=\left.12 x^{2} y\right|_{x=0} ^{x=0.7-y}=12(0.7-y)^{2} y \quad 0 \quad 0.7-y 0.7 \quad 1 \quad \mathrm{x}
$$

Putting it back to the double integral, we get

$$
\begin{aligned}
\int_{0}^{0.7} \int_{0}^{0.7-y} 24 x y \mathrm{~d} x \mathrm{~d} y & =\int_{0}^{0.7} 12(0.7-y)^{2} y \mathrm{~d} y=\int_{0}^{0.7}(-4 y) \mathrm{d}(0.7-y)^{3} \\
& =-\left.4 y(0.7-y)^{3}\right|_{0} ^{0.7}+\int_{0}^{0.7} 4(0.7-y)^{3} \mathrm{~d} y \\
& =0-\left.(0.7-y)^{4}\right|_{0} ^{0.7}=(0.7)^{4}=0.2401
\end{aligned}
$$

Hence, $P($ less than 30% peanut $)=1-0.2401=0.7599$.

Obtaining Marginal PDF's From Joint PDF

Given the joint pdf $f(x, y)$ of two continuous random variables, the marginal probability density function (p), or simply the marginal density, of X and Y, can be obtained by integrating the joint pdf over the other variable.

$$
\begin{aligned}
& f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y, \quad \text { for }-\infty<x<\infty, \\
& f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} x, \quad \text { for }-\infty<y<\infty .
\end{aligned}
$$

Recall the marginal pmf's of discrete random variables are obtained by summing the joint pmf over values of the other variable.

$$
p_{X}(x)=\sum_{y} p(x, y), \quad p_{Y}(y)=\sum_{x} p(x, y) .
$$

Back to Example 5.5

The marginal pdfs of X (almond) is

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y \\
& =\int_{0}^{1-x} 24 x y \mathrm{~d} y=\left.12 x y^{2}\right|_{y=0} ^{y=1-x} \\
& =12 x(1-x)^{2}, \text { for } 0 \leq x \leq 1 .
\end{aligned}
$$

Back to Example 5.5

The marginal pdfs of X (almond) is

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y \\
& =\int_{0}^{1-x} 24 x y \mathrm{~d} y=\left.12 x y^{2}\right|_{y=0} ^{y=1-x} \\
& =12 x(1-x)^{2}, \text { for } 0 \leq x \leq 1 .
\end{aligned}
$$

The marginal pdfs of Y (cashew) is

$$
\begin{aligned}
f_{Y}(y) & =\int_{\infty}^{\infty} f(x, y) \mathrm{d} x \\
& =\int_{0}^{1-y} 24 x y \mathrm{~d} x=\left.12 x^{2} y\right|_{x=0} ^{x=1-y} \\
& =12 y(1-y)^{2}, \text { for } 0 \leq y \leq 1 .
\end{aligned}
$$

Independent Random Variables

Independent Random Variables

- Recall that two events A and B are independent if

$$
P(A \cap B)=P(A) P(B)
$$

- Two random variables X and Y are independent if

$$
P(X \in A, Y \in B)=P(X \in A) P(Y \in B)
$$

for any sets A and B.

- It can be show that two random variables X and Y are independent if and only if

$$
\begin{array}{lr}
p(x, y)=p_{X}(x) p_{Y}(y) & \text { if } X \text { and } Y \text { are discrete } \\
f(x, y)=f_{X}(x) f_{Y}(y) & \text { if } X \text { and } Y \text { are continuous }
\end{array}
$$

for all x and y, i.e., the joint distribution of X and Y is the product of their marginal distribution.

Are X and Y Independent?

		y			
	$f(x, y)$	1	2	3	
	1	0.05	0.10	0.05	
	2	0.10	0.40	0.10	
	3	0.05	0.10	0.05	

Are X and Y Independent?

$f(x, y)$	y			
	1	2	3	$f_{X}(x)$
1	0.05	0.10	0.05	0.20
$\times 2$	0.10	0.40	0.10	0.60
3	0.05	0.10	0.05	0.20
$f_{Y}(y)$	0.20	0.60	0.20	

1. Find the marginal distributions

Are X and Y Independent?

$f(x, y)$	y			
	1	2	3	$f_{X}(x)$
1	0.05	0.10	0.05	0.20
$x 2$	0.10	0.40	0.10	0.60
3	0.05	0.10	0.05	0.20
$f_{Y}(y)$	0.20	0.60	0.20	

1. Find the marginal distributions
2. Check whether

$$
p(x, y)=p_{X}(x) p_{Y}(y)
$$

Are X and Y Independent?

$f(x, y)$	y			
	1	2	3	$f_{X}(x)$
1	0.05	0.10	0.05	0.20
$x 2$	0.10	0.40	0.10	0.60
3	0.05	0.10	0.05	0.20
$f_{Y}(y)$	0.20	0.60	0.20	

1. Find the marginal distributions
2. Check whether

$$
p(x, y)=p_{X}(x) p_{Y}(y)
$$

for all possible x, y pairs.

- $p(1,1)=0.05 \neq 0.2 \times 0.2=p_{X}(1) p_{Y}(1)$.
- X and Y are NOT independent.

Finding Joint pmf From Marginal pmf's When Independent

Given the marginal pmfs of two independent r.v.'s, X and Y, find their joint pmf.

	y			
$p(x, y)$	1	2	3	$f_{X}(x)$
1				0.2
$\times 2$				0.6
3				0.2
$f_{Y}(y)$	0.2	0.6	0.2	

Since X and Y are independent,

1. $p(1,1)=p_{X}(1) p_{Y}(1)=0.2 \times 0.2=0.04$
2. also $p(1,2)=p_{X}(1) p_{Y}(2)=0.2 \times 0.6=0.12$.
3. Repeat filling the blank for $p(x, y)$ by $p_{X}(x) p_{Y}(y)$ for all x, y pairs.

Finding Joint pmf From Marginal pmf's When Independent

Given the marginal pmfs of two independent r.v.'s, X and Y, find their joint pmf.

	y			
$p(x, y)$	1	2	3	$f_{X}(x)$
1	0.04			0.2
$\times 2$				0.6
3				0.2
$f_{Y}(y)$	0.2	0.6	0.2	

Since X and Y are independent,

1. $p(1,1)=p_{X}(1) p_{Y}(1)=0.2 \times 0.2=0.04$
2. also $p(1,2)=p_{X}(1) p_{Y}(2)=0.2 \times 0.6=0.12$.
3. Repeat filling the blank for $p(x, y)$ by $p_{X}(x) p_{Y}(y)$ for all x, y pairs.

Finding Joint pmf From Marginal pmf's When Independent

Given the marginal pmfs of two independent r.v.'s, X and Y, find their joint pmf.

	y			
$p(x, y)$	1	2	3	$f_{X}(x)$
1	0.04	0.12		0.2
$\times 2$				0.6
3				0.2
$f_{Y}(y)$	0.2	0.6	0.2	

Since X and Y are independent,

1. $p(1,1)=p_{X}(1) p_{Y}(1)=0.2 \times 0.2=0.04$
2. also $p(1,2)=p_{X}(1) p_{Y}(2)=0.2 \times 0.6=0.12$.
3. Repeat filling the blank for $p(x, y)$ by $p_{X}(x) p_{Y}(y)$ for all x, y pairs.

Finding Joint pmf From Marginal pmf's When Independent

Given the marginal pmfs of two independent r.v.'s, X and Y, find their joint pmf.

		y		
$p(x, y)$	1	2	3	$f_{X}(x)$
1	0.04	0.12	0.04	0.2
$\times 2$	0.12	0.36	0.12	0.6
3	0.04	0.12	0.04	0.2
$f_{Y}(y)$	0.2	0.6	0.2	

Since X and Y are independent,

1. $p(1,1)=p_{X}(1) p_{Y}(1)=0.2 \times 0.2=0.04$
2. also $p(1,2)=p_{X}(1) p_{Y}(2)=0.2 \times 0.6=0.12$.
3. Repeat filling the blank for $p(x, y)$ by $p_{X}(x) p_{Y}(y)$ for all x, y pairs.

Finding Joint pdf From Marginal pdf's When Independent

If X and Y are independent with marginal pdfs

$$
f_{X}(x)=e^{-x} \quad \text { and } \quad f_{Y}(y)=2 e^{-2 y}
$$

for $0<x, y<\infty$, then their joint pdf is

$$
f(x, y)=f_{X}(x) f_{Y}(y)=2 e^{-(x+2 y)}, \quad 0<x, y<\infty .
$$

