STAT 234 Lecture 9 Joint Distributions of Random Variables Section 5.1

Yibi Huang Department of Statistics University of Chicago

Why Consider Two or More Random Variables?

- Our focus so far has been on the distribution of a single random variable.
- In many situations, there are two or more variables of interest, and we want to know how they are related. For example, I am interested to know
 - *X*₁: the number of hours spent on studying per week
 - X₂: final grade of stat234.
- Since the *relationship* is important, we cannot study them separately and need to consider them *jointly*.

Joint Probability Distribution for Discrete R.V.

Joint Distribution of Two Discrete Random Variables

The *joint probability mass function (joint pmf)*, or, simply the *joint distribution*, of two discrete r.v. *X* and *Y* is defined as

$$p(x, y) = P(X = x, Y = y) = P(\{X = x\} \cap \{Y = y\}).$$

Joint Distribution of Two Discrete Random Variables

The *joint probability mass function (joint pmf)*, or, simply the *joint distribution*, of two discrete r.v. *X* and *Y* is defined as

$$p(x, y) = P(X = x, Y = y) = P(\{X = x\} \cap \{Y = y\}).$$

Properties of the joint probability distribution:

1.
$$p(x, y) \ge 0$$
.

2. Define the probability for an event A as,

$$P(A) = P((x, y) \in A) = \sum_{(x,y)\in A} p(x, y).$$

3. If we set A = S in (2), then

$$P(S) = \sum_{x} \sum_{y} p(x, y) = 1.$$

Exercise 1 — Gas Station (p.242 in MMSA)

A gas station has both **self-service** and **full-service** islands, each with a single regular unleaded pump with 2 hoses.

X = the # of hoses in use on the self-service island, and

Y = the # of hoses in use on the full-service island

The joint pmf of *X* and *Y*:

		Y (full-service)			
	p(x, y)	0	1	2	
X	0	0.10	0.04	0.02	
self-	1	0.08	0.20	0.06	
service	2	0.06	0.14	0.30	

What is P(X = 2 and Y = 1)?

Exercise 1 — Gas Station (p.242 in MMSA)

A gas station has both **self-service** and **full-service** islands, each with a single regular unleaded pump with 2 hoses.

X = the # of hoses in use on the self-service island, and

Y = the # of hoses in use on the full-service island

The joint pmf of *X* and *Y*:

		Y (full-service)			
	p(x, y)	0	1	2	
X	0	0.10	0.04	0.02	
self-	1	0.08	0.20	0.06	
service	2	0.06	0.14	0.30	

What is P(X = 2 and Y = 1)? p(2, 1) = 0.14

Exercise 1 — Gas Station (2)

		Y (full-service)				
	p(x, y)	0	1	2		
X	0	0.10	0.04	0.02		
self-	1	0.08	0.20	0.06		
service	2	0.06	0.14	0.30		

What is $P(X \le 1 \text{ and } Y \le 1)$?

Exercise 1 — Gas Station (2)

What is $P(X \le 1 \text{ and } Y \le 1)$?

P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 1, Y = 0) + P(X = 1, Y = 1)= p(0, 0) + p(0, 1) + p(1, 0) + p(1, 1) = 0.10 + 0.04 + 0.08 + 0.20 = 0.42

Exercise 1 — Gas Station (3)

		Y (full-service)				
	p(x, y)	0	1	2		
X	0	0.10	0.04	0.02		
self-	1	0.08	0.20	0.06		
service	2	0.06	0.14	0.30		

What is the probability that more self-service hoses in use than full service hoses P(X > Y)?

Exercise 1 — Gas Station (3)

		Y (full-service)			
	p(x, y)	0	1	2	
X	0	0.10	0.04	0.02	
self-	1	0.08	0.20	0.06	
service	2	0.06	0.14	0.30	

What is the probability that more self-service hoses in use than full service hoses P(X > Y)?

P(X = 1, Y = 0) + P(X = 2, Y = 1) + P(X = 2, Y = 0)= p(1, 0) + p(2, 1) + p(2, 1)= 0.08 + 0.06 + 0.14 = 0.28

Marginal Distribution

		1	Y		Row Sum
	p(x, y)	0	1	2	
	0	0.10	0.04	0.02	
X	1	0.08	0.20	0.06	
	2	0.06	0.14	0.30	

P(X = 0) =

Row Sum		Y			
	2	1	0	p(x, y)	1
0.16	0.02	0.04	0.10	0	_
	0.06	0.20	0.08	1	Χ
	0.30	0.14	0.06	2	
0.16	2 0.02 0.06 0.30	1 0.04 0.20 0.14	0 0.10 0.08 0.06	$ \frac{p(x,y)}{0} $ 1 2	<u> </u> X

P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 0, Y = 2)= 0.10 + 0.04 + 0.02 = 0.16

		1	Y		Row Sum
	p(x, y)	0	1	2	
	0	0.10	0.04	0.02	0.16
X	1	0.08	0.20	0.06	0.34
	2	0.06	0.14	0.30	

P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 0, Y = 2)= 0.10 + 0.04 + 0.02 = 0.16

Likewise,

P(X = 1) = 0.08 + 0.20 + 0.06 = 0.34

		1	Y		Row Sum
	p(x, y)	0	1	2	
	0	0.10	0.04	0.02	0.16
X	1	0.08	0.20	0.06	0.34
	2	0.06	0.14	0.30	0.50

P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 0, Y = 2)= 0.10 + 0.04 + 0.02 = 0.16

Likewise,

$$P(X = 1) = 0.08 + 0.20 + 0.06 = 0.34$$
$$P(X = 2) = 0.06 + 0.14 + 0.30 = 0.50$$

	$p(\mathbf{x}, \mathbf{y})$	0	Y 1	2	Row Sum $p_{x}(x)$
	$\frac{p(x,y)}{0}$	0.10	0.04		$p_X(x)$
	0	0.10	0.04	0.02	0.16
X	1	0.08	0.20	0.06	0.34
	2	0.06	0.14	0.30	0.50

$$P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 0, Y = 2)$$

= 0.10 + 0.04 + 0.02 = 0.16

Likewise,

$$P(X = 1) = 0.08 + 0.20 + 0.06 = 0.34$$
$$P(X = 2) = 0.06 + 0.14 + 0.30 = 0.50$$
The pmf $p_X(x)$ of X is thus $\frac{x | 0 | 1 | 2}{p_X(x) | 0.16 | 0.34 | 0.50}$

			Y	
	p(x, y)	0	1	2
	0	0.10	0.04	0.02
X	1	0.08	0.20	0.06
	2	0.06	0.14	0.30
Columr sum	۱			

P(Y=0) =

			Y	
	p(x, y)	0	1	2
	0	0.10	0.04	0.02
X	1	0.08	0.20	0.06
	2	0.06	0.14	0.30
Colum sum	n	0.24		

P(Y = 0) = P(X = 0, Y = 0) + P(X = 1, Y = 0) + P(X = 2, Y = 0)= 0.10 + 0.08 + 0.06 = 0.24

	Y			
	p(x, y)	0	1	2
	0	0.10	0.04	0.02
X	1	0.08	0.20	0.06
	2	0.06	0.14	0.30
Colum sum	n	0.24	0.38	

P(Y = 0) = P(X = 0, Y = 0) + P(X = 1, Y = 0) + P(X = 2, Y = 0)= 0.10 + 0.08 + 0.06 = 0.24

Likewise,

P(Y = 1) = 0.04 + 0.20 + 0.14 = 0.38

			Y	
	p(x, y)	0	1	2
	0	0.10	0.04	0.02
X	1	0.08	0.20	0.06
	2	0.06	0.14	0.30
Colum sum	า	0.24	0.38	0.38

P(Y = 0) = P(X = 0, Y = 0) + P(X = 1, Y = 0) + P(X = 2, Y = 0)= 0.10 + 0.08 + 0.06 = 0.24

Likewise,

P(Y = 1) = 0.04 + 0.20 + 0.14 = 0.38P(Y = 2) = 0.02 + 0.06 + 0.30 = 0.38

				Y		
		p(x, y)	0	1	2	
		0	0.10	0.04	0.02	
	X	1	0.08	0.20	0.06	
		2	0.06	0.14	0.30	
	Column sum	$p_{Y}(y)$	0.24	0.38	0.38	
P(Y=0) = A	P(X=0, X)	Y = 0) +	P(X =	1, Y = 0	() + P(X)	X = 2, Y =
= (0.10 + 0.0	8 + 0.06	= 0.24			
Likewise,	P(Y = 1) = 0.04	+ 0.20	+ 0.14 =	= 0.38	
	P(Y=2) = 0.02	+ 0.06	+ 0.30 =	= 0.38	
The prof n (v)	of V in th	у	0	1	2	
The phili $p_Y(y)$		$p_Y(y)$	y) 0.2	4 0.38	0.38	-

The marginal probability mass functions (marginal pmf's) of *X* and of *Y* are obtained by summing p(x, y) over values of *the other variable*.

$$p_X(x) = \sum_y p(x, y), \quad p_Y(y) = \sum_x p(x, y).$$

Example: Gas Station Row Sum 0 2 p(x, y) $p_X(x)$ 0 0.10 0.04 0.02 0.16X 1 0.08 0.20 0.06 0.34 2 0.06 0.14 0.30 0.50 Column 0.24 0.38 0.38 $p_Y(y)$ sum

We call them **marginal distributions** because they show up at the table margins when the joint distribution is written in a tabular form

Joint Distribution of Continuous Random Variables

Joint Distribution of Two Continuous Random Variables

Let *X* and *Y* be continuous rv. Then f(x, y) is their *joint probability density function* or *joint pdf* for *X* and *Y* if for any two-dimensional set *A*

$$P[(X, Y) \in A] = \iint_{A} f(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

In particular, if A is the two-dimensional rectangle

 $\{a \le x \le b, c \le y \le d\}$, then

$$P[(X,Y) \in A] = P(a \le X \le b, c \le Y \le d) = \int_c^d \int_a^b f(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

Conditions for a joint pdf

- It must be nonnegative: $f(x, y) \ge 0$ for all x and y
- $\iint f(x, y) \,\mathrm{d}x \,\mathrm{d}y = 1$

• Each can of mixed nuts contains *almonds*, *cashews*, and *peanuts*

- Each can of mixed nuts contains *almonds*, *cashews*, and *peanuts*
- Weights of the 3 types of nuts in a can are random but the **total** is **exactly 1 lb**

- Each can of mixed nuts contains *almonds*, *cashews*, and *peanuts*
- Weights of the 3 types of nuts in a can are random but the **total** is **exactly 1 lb**
- In a randomly selected can, let

X = the weight of almonds, and Y = the weight of cashews.

The weight of peanuts in the can is thus (1 - X - Y)

- Each can of mixed nuts contains *almonds*, *cashews*, and *peanuts*
- Weights of the 3 types of nuts in a can are random but the **total** is **exactly 1 lb**
- In a randomly selected can, let

X = the weight of almonds, and Y = the weight of cashews.

The weight of peanuts in the can is thus (1 - X - Y)

• Natural constraints on X & Y:

 $0 \le X \le 1, 0 \le Y \le 1, X + Y < 1$

• Joint pdf of X & Y:

$$f(x,y) = \begin{cases} 24xy & \text{if } 0 \le x \le 1, 0 \le y \le 1, x + y < 1 \\ 0 & \text{otherwise} \end{cases}$$
(1,0)

(0,1)

×,

Checking Conditions on a Joint PDF

Clearly, $f(x, y) \ge 0$. It remains to check $\iint f(x, y) dx dy = 1$.

Checking Conditions on a Joint PDF

Clearly, $f(x, y) \ge 0$. It remains to check $\iint f(x, y) dx dy = 1$.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \mathrm{d}x \mathrm{d}y = \int_{0}^{1} \int_{0}^{1-y} 24xy \, \mathrm{d}x \, \mathrm{d}y$$

To compute the double integral above,

1. hold one variable fixed (e.g., y)

Checking Conditions on a Joint PDF

Clearly, $f(x, y) \ge 0$. It remains to check $\iint f(x, y) dx dy = 1$.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \mathrm{d}x \mathrm{d}y = \int_{0}^{1} \int_{0}^{1-y} 24xy \, \mathrm{d}x \, \mathrm{d}y$$

To compute the double integral above,

- 1. hold one variable fixed (e.g., y)
- 2. integrate the other variable x along the line of the fixed y
 - key: express the end points of the line in terms of the fixed y, which will be the upper and lower limits for the integral over x

$$\int_0^{1-y} 24xy \, dx = 12x^2 y \Big|_{x=0}^{x=1-y} = 12(1-y)^2 y$$

fix v

3. integrate the variable *y* that is fixed in the prior steps

$$\int_0^1 \int_0^{1-y} 24xy \, dx \, dy = \int_0^1 12(1-y)^2 y \, dy = 6y^2 - 8y^3 + 3y^4 \Big|_0^1 = 1.$$

integrate x from 0 to 1–y

1–v.v)

х

What is P(X > 0.3) = P(at least 30% almonds in a can)?

What is P(X > 0.3) = P(at least 30% almonds in a can)?

$$P(X > 0.3) = \iint_{x > 0.3} f(x, y) dx dy$$
$$= \int_{0}^{0.7} \int_{0.3}^{1-y} 24xy \, dx dy$$

ł

What is P(X > 0.3) = P(at least 30% almonds in a can)?

$$P(X > 0.3) = \iint_{x > 0.3} f(x, y) dx dy$$
$$= \int_0^{0.7} \int_{0.3}^{1-y} 24xy \, dx dy$$

where

$$\begin{aligned} & \sum_{3}^{1-y} 24xy \, dx = 12x^2 y \Big|_{x=0.3}^{x=1-y} & 0 & 0.3 & 1-y1 \\ & = 12((1-y)^2 - 0.3^2)y = 12(0.91y - 2y^2 + y^3). \end{aligned}$$

What is P(X > 0.3) = P(at least 30% almonds in a can)?

4

$$P(X > 0.3) = \iint_{x > 0.3} f(x, y) dx dy$$
$$= \int_{0}^{0.7} \int_{0.3}^{1-y} 24xy \, dx dy$$

where

$$\begin{aligned} & \sum_{x=0.3}^{x=1-y} 24xy \, dx = 12x^2 y \Big|_{x=0.3}^{x=1-y} & 0 & 0.3 & 1-y \\ & = 12((1-y)^2 - 0.3^2)y = 12(0.91y - 2y^2 + y^3). \end{aligned}$$

Putting it back to the double integral, we get

$$\int_{0}^{0.7} \int_{0.3}^{1-y} 24xy \, dx \, dy = \int_{0}^{0.7} 12(0.91y - 2y^2 + y^3) dy$$
$$= 5.46y^2 - 8y^3 + 3y^4 \Big|_{0}^{0.7} = 0.6517.$$

What is the probability that less than 30% are peanuts in a randomly selected can?

P(less than 30% are Peanuts)

=

=

What is the probability that less than 30% are peanuts in a randomly selected can?

P(less than 30% are Peanuts)

=

=

= P(at least 70% are almonds or cashews)

What is the probability that less than 30% are peanuts in a randomly selected can?

P(less than 30% are Peanuts)

= P(at least 70% are almonds or cashews)

$$= P(X + Y > 0.7)$$

=

What is the probability that less than 30% are peanuts in a randomly selected can?

What is the probability that less than 30% are peanuts in a randomly selected can?

where

P(X + Y > 0.7) = integral of f(x, y) over the **gray** region P(X + Y < 0.7) = integral of f(x, y) over the **green** region

$$P(X + Y < 0.7) = \iint_{x+y<0.7} f(x, y) dx dy$$

$$= \int_{0}^{0.7} \int_{0}^{0.7-y} 24xy dx dy$$

where

$$\int_{0}^{0.7-y} 24xy dx = 12x^2 y \Big|_{x=0}^{x=0.7-y} = 12(0.7 - y)^2 y$$

$$= 12(0.7 - y)^2 y$$

$$= 12(0.7 - y)^2 y$$

$$P(X + Y < 0.7) = \iint_{x+y<0.7} f(x, y) dx dy$$

$$= \int_{0}^{0.7} \int_{0}^{0.7-y} 24xy dx dy$$

where

$$\int_{0}^{0.7-y} 24xy dx = 12x^2 y \Big|_{x=0}^{x=0.7-y} = 12(0.7 - y)^2 y$$

$$= 12(0.7 - y)^2 y$$

$$= 12(0.7 - y)^2 y$$

$$= 12(0.7 - y)^2 y$$

Putting it back to the double integral, we get

$$\int_{0}^{0.7} \int_{0}^{0.7-y} 24xy \, dx \, dy = \int_{0}^{0.7} 12(0.7-y)^2 y \, dy = \int_{0}^{0.7} (-4y) d(0.7-y)^3$$
$$= -4y(0.7-y)^3 \Big|_{0}^{0.7} + \int_{0}^{0.7} 4(0.7-y)^3 \, dy$$
$$= 0 - (0.7-y)^4 \Big|_{0}^{0.7} = (0.7)^4 = 0.2401.$$

Hence, P(less than 30% peanut) = 1 - 0.2401 = 0.7599.

Obtaining Marginal PDF's From Joint PDF

Given the joint pdf f(x, y) of two continuous random variables, the *marginal probability density function* (*p*), or simply the *marginal density*, of *X* and *Y*, can be obtained by *integrating the joint pdf over the other variable*.

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy, \quad \text{for } -\infty < x < \infty,$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, dx, \quad \text{for } -\infty < y < \infty.$$

Recall the **marginal pmf's** of discrete random variables are obtained by *summing the joint pmf over values of the other variable*.

$$p_X(x) = \sum_y p(x, y), \quad p_Y(y) = \sum_x p(x, y).$$

Back to Example 5.5

The marginal pdfs of X (almond) is

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

=
$$\int_{0}^{1-x} 24xy dy = 12xy^2 \Big|_{y=0}^{y=1-x}$$

=
$$12x(1-x)^2, \text{ for } 0 \le x \le 1.$$

Back to Example 5.5

The marginal pdfs of X (almond) is

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

= $\int_{0}^{1-x} 24xy dy = 12xy^2 \Big|_{y=0}^{y=1-x}$
= $12x(1-x)^2$, for $0 \le x \le 1$.

The marginal pdfs of Y (cashew) is

$$f_Y(y) = \int_{\infty}^{\infty} f(x, y) dx$$

=
$$\int_{0}^{1-y} 24xy dx = 12x^2 y \Big|_{x=0}^{x=1-y}$$

=
$$12y(1-y)^2, \text{ for } 0 \le y \le 1.$$

Independent Random Variables

Independent Random Variables

• Recall that two events A and B are *independent* if

 $P(A \cap B) = P(A)P(B)$

• Two random variables X and Y are *independent* if

 $P(X \in A, Y \in B) = P(X \in A) P(Y \in B)$

for any sets A and B.

• It can be show that two random variables *X* and *Y* are *independent* if and only if

 $p(x, y) = p_X(x)p_Y(y)$ if X and Y are discrete $f(x, y) = f_X(x)f_Y(y)$ if X and Y are continuous

for all *x* and *y*, i.e., the joint distribution of *X* and *Y* is the product of their marginal distribution.

			У		
Ĵ	f(x, y)	1	2	3	
	1	0.05	0.10	0.05	
x	2	0.10	0.40	0.10	
	3	0.05	0.10	0.05	
_					

			У		
	f(x, y)	1	2	3	$f_X(x)$
	1	0.05	0.10	0.05	0.20
X	2	0.10	0.40	0.10	0.60
	3	0.05	0.10	0.05	0.20
	$f_Y(y)$	0.20	0.60	0.20	

1. Find the marginal distributions

			У		
	f(x, y)	1	2	3	$f_X(x)$
	1	0.05	0.10	0.05	0.20
x	2	0.10	0.40	0.10	0.60
	3	0.05	0.10	0.05	0.20
	$f_Y(y)$	0.20	0.60	0.20	

- 1. Find the marginal distributions
- 2. Check whether

 $p(x, y) = p_X(x)p_Y(y)$

			У		
	f(x, y)	1	2	3	$f_X(x)$
	1	0.05	0.10	0.05	0.20
x	2	0.10	0.40	0.10	0.60
	3	0.05	0.10	0.05	0.20
	$f_Y(y)$	0.20	0.60	0.20	

- 1. Find the marginal distributions
- 2. Check whether

$$p(x, y) = p_X(x)p_Y(y)$$

for all possible *x*, *y* pairs.

- $p(1,1) = 0.05 \neq 0.2 \times 0.2 = p_X(1)p_Y(1)$.
- X and Y are NOT independent.

Given the marginal pmfs of two **independent** r.v.'s, *X* and *Y*, find their joint pmf.

- 1. $p(1, 1) = p_X(1)p_Y(1) = 0.2 \times 0.2 = 0.04$
- 2. also $p(1, 2) = p_X(1)p_Y(2) = 0.2 \times 0.6 = 0.12$.
- 3. Repeat filling the blank for p(x, y) by $p_X(x)p_Y(y)$ for all x, y pairs.

Given the marginal pmfs of two **independent** r.v.'s, *X* and *Y*, find their joint pmf.

- 1. $p(1, 1) = p_X(1)p_Y(1) = 0.2 \times 0.2 = 0.04$
- 2. also $p(1, 2) = p_X(1)p_Y(2) = 0.2 \times 0.6 = 0.12$.
- 3. Repeat filling the blank for p(x, y) by $p_X(x)p_Y(y)$ for all x, y pairs.

Given the marginal pmfs of two **independent** r.v.'s, *X* and *Y*, find their joint pmf.

			у		
ŀ	p(x, y)	1	2	3	$f_X(x)$
_	1	0.04	0.12		0.2
х	2				0.6
	3				0.2
	$f_Y(y)$	0.2	0.6	0.2	

- 1. $p(1, 1) = p_X(1)p_Y(1) = 0.2 \times 0.2 = 0.04$
- 2. also $p(1,2) = p_X(1)p_Y(2) = 0.2 \times 0.6 = 0.12$.
- 3. Repeat filling the blank for p(x, y) by $p_X(x)p_Y(y)$ for all x, y pairs.

Given the marginal pmfs of two **independent** r.v.'s, X and Y, find their joint pmf.

			9		
	p(x, y)	1	2	3	$f_X(x)$
	1	0.04	0.12	0.04	0.2
Х	2	0.12	0.36	0.12	0.6
	3	0.04	0.12	0.04	0.2
	$f_Y(y)$	0.2	0.6	0.2	

- 1. $p(1, 1) = p_X(1)p_Y(1) = 0.2 \times 0.2 = 0.04$
- 2. also $p(1,2) = p_X(1)p_Y(2) = 0.2 \times 0.6 = 0.12$.
- 3. Repeat filling the blank for p(x, y) by $p_X(x)p_Y(y)$ for all x, y pairs.

If X and Y are independent with marginal pdfs

$$f_X(x) = e^{-x}$$
 and $f_Y(y) = 2e^{-2y}$,

for $0 < x, y < \infty$, then their joint pdf is

$$f(x, y) = f_X(x)f_Y(y) = 2e^{-(x+2y)}, \quad 0 < x, y < \infty.$$