# STAT 234 Lecture 8 Normal Distributions Section 4.3 

Yibi Huang<br>Department of Statistics<br>University of Chicago

## Normal Distributions

A random variable $X$ is said to have a normal distribution (aka.
Gaussian distributions) with a mean $\mu$, and an SD $\sigma$ denoted as

$$
\begin{array}{ll}
X \sim N\left(\mu, \sigma^{2}\right) & \text { in MMSA } \\
X \sim N(\mu, \sigma) & \text { in OpenIntro Statistics }
\end{array}
$$

if its pdf is

$$
f(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$



The density curve is bell-shaped and symmetric about its mean $\mu$. To avoid the confusion, we use $N\left(\mu, \sigma^{2}\right)$ throughout the lectures and assignments

## Expected Value and Variance of Normal Distributions

For the pdf of $X \sim N\left(\mu, \sigma^{2}\right)$

$$
f(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} .
$$

One can show that

- $\int_{-\infty}^{\infty} f(x ; \mu, \sigma) d x=1$ (not a trivial calculation, but can be found in most calculus textbooks)
- $\mathrm{E}(X)=\int_{-\infty}^{\infty} x f(x ; \mu, \sigma) d x=\mu$
- $\operatorname{Var}(X)=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x ; \mu, \sigma) d x=\sigma^{2}$


## Standard Normal Distribution

A normal distribution with $\mu=0$, and $\sigma=1$ is called the standard normal distribution, denoted as $N(0,1)$.

## CDF of the Standard Normal Distribution

The cdf of the standard normal distribution $N(0,1)$ is

$$
\Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}} d u
$$




- The cdf $\Phi(z)$ has no close-form formula
- The normal probability table (on p.792-793 in MMSA) gives the values of the cdf $\Phi(z)$ for different $z$ 's

The normal probability table (on p.792-793 in MMSA) gives

E.g., for $z=-0.83$, look at the row -0.8 and the column 0.03 .

$$
\Phi(-0.83)=P(Z<-0.83)=\frac{\text { all }}{-0.83}=
$$

The normal probability table (on p.792-793 in MMSA) gives

E.g., for $z=-0.83$, look at the row -0.8 and the column 0.03 .

$$
\Phi(-0.83)=P(Z<-0.83)=\frac{\square}{-0.83}=\underline{0.2033}
$$

| Z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\vdots$ |
| 1.3 | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177 |
| 1.4 | .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319 |
| 1.5 | .9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441 |
| 1.6 | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545 |
| 1.7 | .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633 |
| 1.8 | .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706 |
| $\vdots$ |

$\Phi(1.573)=P(Z<1.573)=$


| z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\vdots$ |
| 1.3 | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177 |
| 1.4 | .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319 |
| 1.5 | .9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441 |
| 1.6 | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545 |
| 1.7 | .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633 |
| 1.8 | .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706 |
| $\vdots$ |

[^0]| z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\vdots$ |
| 1.3 | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177 |
| 1.4 | .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319 |
| 1.5 | .9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441 |
| 1.6 | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545 |
| 1.7 | .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633 |
| 1.8 | .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706 |
| $\vdots$ |

$\Phi(1.573)=P(Z<1.573)=$

$=$ between $P(Z<1.57)$ and $P(Z<1.58)$
$=$ between 0.9418 and 0.9429
Any value between 0.9418 and 0.9429 are acceptable in all HWs and exams.

## Find Normal Probabilities in R

The R command pnorm(z) can find $P(Z \leq z)$ for $Z \sim N(0,1)$

```
pnorm(-0.83)
[1] 0.2032694
pnorm(1.573)
[1] 0.9421406
```


## Finding Upper Tail Probabilities

For $Z \sim N(0,1)$

$$
\begin{aligned}
& =1-\Phi(0.83) \\
& \text { = } 1 \text { - }
\end{aligned}
$$

## Finding Upper Tail Probabilities

For $Z \sim N(0,1)$

$$
\begin{aligned}
& \begin{array}{l}
=1-\Phi(0.83) \\
=1-0.2033=0.7967
\end{array}
\end{aligned}
$$

| z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -0.9 | .1841 | .1814 | .1788 | .1762 | .1736 | .1711 | .1685 | .1660 | .1635 | .1611 |
| -0.8 | .2119 | .2090 | .2061 | .2033 | .2005 | .1977 | .1949 | .1922 | .1894 | .1867 |
| -0.7 | .2420 | .2389 | .2358 | .2327 | .2296 | .2266 | .2236 | .2206 | .2177 | .2148 |

1 - pnorm (-0.83)
[1] 0.7967306
\# another way to find upper tail area
pnorm(-0.83, lower.tail=FALSE)
[1] 0.7967306

| z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -0.9 | .1841 | .1814 | .1788 | .1762 | .1736 | .1711 | .1685 | .1660 | .1635 | .1611 |
| -0.8 | .2119 | .2090 | .2061 | .2033 | .2005 | .1977 | .1949 | .1922 | .1894 | .1867 |
| -0.7 | .2420 | .2389 | .2358 | .2327 | .2296 | .2266 | .2236 | .2206 | .2177 | .2148 |
| $\vdots$ |
| 1.9 | .9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767 |
| 2.0 | .9772 | .9778 | .9783 | .9788 | .9793 | .9798 | .9803 | .9808 | .9812 | .9817 |
| 2.1 | .9821 | .9826 | .9830 | .9834 | .9838 | .9842 | .9846 | .9850 | .9854 | .9857 |

$$
\begin{aligned}
& =P(Z<2)-P(Z<-0.83) \\
& =\Phi(2)-\Phi(-0.83) \\
& =0.9772-0.2033=0.7739
\end{aligned}
$$

pnorm(2) - pnorm(-0.83)
[1] 0.7739805

## Percentile

For $0<p<1$, the ( $\mathbf{1 0 0} \mathbf{p}$ )th percentile of a continuous random variable $X$ is a value $x$ such that

$$
p=P(X \leq x) .
$$



## Example: Percentiles of the Standard Normal (1)

Find the 25th percentile of the standard normal, i.e., the $z$ such that

$$
\Phi(z)=P(Z<z)=\text { shaded area in }
$$



We need to search in the body of the normal table for the values closest to 0.25 , which are 0.2514 and 0.2483 , and find the $z$ corresponding to those values, which are -0.67 and -0.68 .

| z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\vdots$ |
| -0.7 | .2420 | .2389 | .2358 | .2327 | .2296 | .2266 | .2236 | .2206 | .2177 | .2148 |
| -0.6 | .2743 | .2709 | .2676 | .2643 | .2611 | .2578 | .2546 | .2514 | .2483 | .2451 |
| -0.5 | .3085 | .3050 | .3015 | .2981 | .2946 | .2912 | .2877 | .2843 | .2810 | .2776 |
| $\vdots$ |

## Example: Percentiles of the Standard Normal (1)

Find the 25th percentile of the standard normal, i.e., the $z$ such that

$$
\Phi(z)=P(Z<z)=\text { shaded area in }
$$



We need to search in the body of the normal table for the values closest to 0.25 , which are 0.2514 and 0.2483 , and find the $z$ corresponding to those values, which are -0.67 and -0.68 .

| z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\vdots$ |
| -0.7 | .2420 | .2389 | .2358 | .2327 | .2296 | .2266 | .2236 | .2206 | .2177 | .2148 |
| -0.6 | .2743 | .2709 | .2676 | .2643 | .2611 | .2578 | .2546 | 2514 | 2483 | .2451 |
| -0.5 | .3085 | .3050 | .3015 | .2981 | .2946 | .2912 | .2877 | .2843 | .2810 | .2776 |
| $\vdots$ |

## Example: Percentiles of the Standard Normal (1)

Find the 25th percentile of the standard normal, i.e., the $z$ such that

$$
\Phi(z)=P(Z<z)=\text { shaded area in }
$$



We need to search in the body of the normal table for the values closest to 0.25 , which are 0.2514 and 0.2483 , and find the $z$ corresponding to those values, which are -0.67 and -0.68 .

| $z$ | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\vdots$ |
| -0.7 | .2420 | .2389 | .2358 | .2327 | .2296 | .2266 | .2236 | .2206 | .2177 | .2148 |
| -0.6 | .2743 | .2709 | .2676 | .2643 | .2611 | .2578 | .2546 | 2514 | 2483 | .2451 |
| -0.5 | .3085 | .3050 | .3015 | .2981 | .2946 | .2912 | .2877 | .2843 | .2810 | .2776 |
| $\vdots$ |

The 25th percentile of $N(0,1)$ is between -0.67 and -0.68 .

## Example: Percentiles of the Standard Normal (2)

The 95th percentile of the standard normal is the $z$ such that


| z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.5 | .9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441 |
| 1.6 | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545 |
| 1.7 | .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633 |

The values closest to 0.95 in the body of the normal table are 0.9495 and 0.9505 , with corresponding $z$-values are 1.64 and 1.65 .

The 95th percentile is thus between 1.64 and 1.65.

## Finding Standard Normal Percentiles in R

The R command qnorm(p) finds the (100p)th percentile for the Standard normal distribution, i.e., the $z$ such that

$$
P(Z<z)=p \quad \text { for } Z \sim N(0,1) .
$$

E.g., the 25th percentile of $N(0,1)$ is

```
qnorm(0.25)
```

[1] -0.6744898
E.g., the 95th percentile of $N(0,1)$ is

```
qnorm(1-0.05)
[1] 1.644854
qnorm(0.05, lower.tail=F) # alternative way
[1] 1.644854
```


## Scaling Property of Normal Distributions

- If $X \sim N\left(\mu, \sigma^{2}\right)$, its standardized $z$-score $Z=\frac{X-\mu}{\sigma} \sim N(0,1)$
- Conversely, if $Z \sim N(0,1)$, then $X=\mu+\sigma Z \sim N\left(\mu, \sigma^{2}\right)$.
- This is because all normal distributions have the same shape; differ only in:
- position given by the mean $\mu$.
- scale given by the standard deviation $\sigma$.

Remark. Not all distributions have scaling properties, ex., $(X-a) / b$ is not Binomial even if $X$ is Binomial

## CDF of $N\left(\mu, \sigma^{2}\right)$

If $X \sim N\left(\mu, \sigma^{2}\right)$, then by definition, the CDF of $X$ is

$$
F(x)=P(X \leq x)=P\left(\frac{X-\mu}{\sigma} \leq \frac{x-\mu}{\sigma}\right)=\Phi\left(\frac{x-\mu}{\sigma}\right)
$$

since $\frac{X-\mu}{\sigma} \sim N(0,1)$.

## Example: SAT (1)

The distribution of SAT scores was about $N\left(\mu=1500, \sigma^{2}=300^{2}\right)$.
What percent of students scored below 1800 on the SAT?


Sol. Let $X=$ SAT scores of a randomly selected test taker. We know $X \sim N\left(\mu=1500, \sigma^{2}=300^{2}\right)$.

$$
P(X \leq 1800)=P\left(\frac{X-1500}{300} \leq \frac{1800-1500}{300}\right)=P(Z \leq 1)
$$

where $Z=\frac{X-1500}{300} \sim N(0,1)$.

From the table below, we can see that $P(Z<1)=0.8413$. So about $84 \%$ of students score below 1800 on the SAT.

| $Z$ | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0.9 | .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389 |
| 1.0 | 8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621 |
| 1.1 | .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 | .8810 | .8830 |

In R:

```
pnorm((1800-1500)/300)
[1] 0.8413447
pnorm(1800, mean = 1500, sd = 300)
[1] 0.8413447
```


## Example: SAT (2)

What proportion of SAT takers scored between 1650 and 1800 ?

$$
\begin{aligned}
P(1650 \leq X \leq 1800) & =P\left(\frac{1650-1500}{300} \leq \frac{X-1500}{300} \leq \frac{1800-1500}{300}\right) \\
& =P(0.5 \leq Z \leq 1) \\
& =\Phi(1)-\Phi(0.5) \\
& =0.8413-0.6915=0.1498 .
\end{aligned}
$$

as the normal table gives $\Phi(1)=0.8413$ and $\Phi(0.5)=0.6915$.
pnorm(1)-pnorm(0.5)
[1] 0.1498823
pnorm(1800, $\mathrm{m}=1500, \mathrm{~s}=300$ )-pnorm(1650, $\mathrm{m}=1500, \mathrm{~s}=300$ )
[1] 0.1498823

## Example: What is the SAT score at the $90 \%$ percentile?

Want a score $x$ such that $P(X<x)=0.9$ for $X \sim N(\mu=1500, \sigma=300)$.

$$
\begin{aligned}
P(X<x)=P\left(\frac{X-1500}{300}<\frac{x-1500}{300}\right) & =P\left(Z<\frac{x-1500}{300}\right) \\
& =\Phi(z)=0.9, \text { where } z=\frac{x-1500}{300} .
\end{aligned}
$$

What is the $z$ such that $\Phi(z)=0.9$ ?

| $z$ | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
| :---: | :---: | :---: | :---: | :---: | :---: |$\quad$ So $z=\frac{x-1500}{300} \approx 1.28$

The 90th percentile of the SAT score is 1884.

```
qnorm(0.9, mean=1500, sd = 300)
```

[1] 1884.465

## Example: What is the SAT score at the $90 \%$ percentile?

Want a score $x$ such that $P(X<x)=0.9$ for $X \sim N(\mu=1500, \sigma=300)$.

$$
\begin{aligned}
P(X<x)=P\left(\frac{X-1500}{300}<\frac{x-1500}{300}\right) & =P\left(Z<\frac{x-1500}{300}\right) \\
& =\Phi(z)=0.9, \text { where } z=\frac{x-1500}{300} .
\end{aligned}
$$

What is the $z$ such that $\Phi(z)=0.9 ? z \approx 1.28$

| $z$ | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
| :---: | :---: | :---: | :---: | :---: | :---: |$\quad$ So $z=\frac{x-1500}{300} \approx 1.28$

The 90th percentile of the SAT score is 1884.

```
qnorm(0.9, mean=1500, sd = 300)
```

[1] 1884.465

## 68-95-99.7\% Rule for the Normal Distributions



In terms of the standard normal CDF $\Phi(z)$ :

$$
\begin{aligned}
& P(-1<Z<1)=\Phi(1)-\Phi(-1) \approx 0.6827 \\
& P(-2<Z<2)=\Phi(2)-\Phi(-2) \approx 0.9545 \\
& P(-3<Z<3)=\Phi(3)-\Phi(-3) \approx 0.9973
\end{aligned}
$$


[^0]:    $\Phi(1.573)=P(Z<1.573)=$
    
    $=$ between $P(Z<1.57)$ and $P(Z<1.58)$

