STAT 234 Lecture 7
 Continuous Random Variables
 Section 4.1-4.2

Yibi Huang
Department of Statistics
University of Chicago

Coverage:

Continuous Random Variables (Section 4.1-4.2 in MMSA)

- probability density function (pdf)
- cumulative distribution function (cdf)
- expected values, variance (Section 4.2 in MMSA)
- Skip [Approximating the Mean Value and Standard Deviation] and [Moment Generating function] on p.174-177

Continuous Random Variables

Continuous Random Variables (Review)

A random variable X is said to have a continuous distribution if there exists a non-negative function f such that

$$
P(a<X \leq b)=\int_{a}^{b} f(x) d x, \quad \text { for all }-\infty \leq a<b \leq \infty
$$

Here f is called the probability density function (pdf), the density curve, or the density of X.

Conditions of pdf (Review)

A (pdf) $f(x)$ can be of any imaginable shape but must satisfy the following:

- It must be nonnegative

$$
f(x) \geq 0 \text { for all } x
$$

- The total area under the pdf must be 1

$$
\int_{-\infty}^{\infty} f(x) d x=P(-\infty<X \leq \infty)=1
$$

Interpretation of pdf (Review)

Suppose f is the pdf of X. If f is continuous at a point x, then for small δ

$$
P\left(x-\frac{\delta}{2}<X \leq x+\frac{\delta}{2}\right)=\int_{x-\delta / 2}^{x+\delta / 2} f(u) d u=\delta f(x)
$$

- Is the pdf f of a random variable always ≤ 1 ?

Interpretation of pdf (Review)

Suppose f is the pdf of X. If f is continuous at a point x, then for small δ

$$
P\left(x-\frac{\delta}{2}<X \leq x+\frac{\delta}{2}\right)=\int_{x-\delta / 2}^{x+\delta / 2} f(u) d u=\delta f(x)
$$

- Is the pdf f of a random variable always ≤ 1 ?

No, the pdf $f(x)$ itself is not a probability.
It's the area underneath $f(x)$ that represents the probability.

$P(X=x)=0$ If X Is Continuous (Review)

For any continuous random variable X

$$
P(X=x)=\int_{x}^{x} f(u) d u=0
$$

$P(X=x)=0$ If X Is Continuous (Review)

For any continuous random variable X

$$
P(X=x)=\int_{x}^{x} f(u) d u=0
$$

- What percentage of men are 6 -feet tall exactly?

Those that are 6.00001 or 5.99999 feet tall don't count.

$P(X=x)=0$ If X Is Continuous (Review)

For any continuous random variable X

$$
P(X=x)=\int_{x}^{x} f(u) d u=0
$$

- What percentage of men are 6 -feet tall exactly? Those that are 6.00001 or 5.99999 feet tall don't count.
- It doesn't matter whether the end points) of an interval is included when calculating the probability of X falling the interval if X is continuous

$$
P(a<X<b)=P(a \leq X \leq b)=P(a \leq X<b)=P(a<X \leq b)
$$

A pdf $f(x)$ May Not be Continuous

The pdf $f(x)$ of a continuous random variable might not be continuous.

See the example on the next page.

Example 1 (Review)

Consider a continuous random variable X with the pdf

$$
f(x)= \begin{cases}c x & \text { if } 0 \leq x \leq 1 \\ c & \text { if } 1 \leq x \leq 2 \\ 0 & \text { elsewhere }\end{cases}
$$

- Note $f(x)$ is not continuous at $x=2$

Example 1 (Review)

Consider a continuous random variable X with the pdf

$$
f(x)= \begin{cases}c x & \text { if } 0 \leq x \leq 1 \\ c & \text { if } 1 \leq x \leq 2 \\ 0 & \text { elsewhere }\end{cases}
$$

- Note $f(x)$ is not continuous at $x=2$
- What is the value of c ?

Example 1 (Review)

Consider a continuous random variable X with the pdf

$$
f(x)= \begin{cases}c x & \text { if } 0 \leq x \leq 1 \\ c & \text { if } 1 \leq x \leq 2 \\ 0 & \text { elsewhere }\end{cases}
$$

- Note $f(x)$ is not continuous at $x=2$
- What is the value of c ?

$$
\begin{aligned}
\text { Total Area } & =\text { Red }+ \text { Green } \\
& =\frac{1 \cdot c}{2}+1 \cdot c=\frac{3}{2} c=1 \\
\Rightarrow \quad c & =\frac{2}{3}
\end{aligned}
$$

Example 1 (Cont'd)

What is $P(X \leq 1.5)$?

Example 1 (Cont'd)

What is $P(X \leq 1.5)$?

$$
\begin{aligned}
P(X \leq 1.5)= & \vdots \\
& \vdots \\
& =\operatorname{Red}+\text { Green } \\
& =\frac{1 \cdot(2 / 3)}{2}+(0.5) \frac{2}{3}=\frac{2}{3}
\end{aligned}
$$

Example 2

Suppose the lifetime T (in days) of a certain type of batteries has the pdf shown on the right.

- Find the value of c so that $f(t)$ is a legitimate pdf.

Example 2

Suppose the lifetime T (in days) of a certain type of batteries has the pdf shown on the right.

- Find the value of c so that $f(t)$ is a legitimate pdf.

$$
\int_{-\infty}^{\infty} f(t) d t=\int_{0}^{\infty} c e^{-2 t} d t=-\left.\frac{c}{2} e^{-2 t}\right|_{t=0} ^{t=\infty}=\frac{c}{2}-0=1
$$

So $c=2$!

Example 2

Suppose the lifetime T (in days) of a certain type of batteries has the pdf shown on the right.

- Find the value of c so that $f(t)$ is a legitimate pdf.

$$
\int_{-\infty}^{\infty} f(t) d t=\int_{0}^{\infty} c e^{-2 t} d t=-\left.\frac{c}{2} e^{-2 t}\right|_{t=0} ^{t=\infty}=\frac{c}{2}-0=1
$$

So $c=2$!

- Observe that $f(0)=2 e^{0}=2>1 \quad$!?!

Can a pdf $f(x)$ exceed 1 ?

Example 2

Suppose the lifetime T (in days) of a certain type of batteries has the pdf shown on the right.

- Find the value of c so that $f(t)$ is a legitimate pdf.

$$
\int_{-\infty}^{\infty} f(t) d t=\int_{0}^{\infty} c e^{-2 t} d t=-\left.\frac{c}{2} e^{-2 t}\right|_{t=0} ^{t=\infty}=\frac{c}{2}-0=1
$$

So $c=2$!

- Observe that $f(0)=2 e^{0}=2>1 \quad$!?!

Can a pdf $f(x)$ exceed 1 ?
Yes, the pdf $f(x)$ itself is not a probability.
It's the area underneath $f(x)$ that represents the probability.

Example 2 (Cont'd)

What is the chance that the battery lasts 0.5 to 1 day?

Example 2 (Cont'd)

What is the chance that the battery lasts 0.5 to 1 day?
$\underbrace{\int_{0.5}^{1} \int_{\mathrm{t}}^{2} P(0.5<T<1)=\int_{0.5}^{1} f(t) d t}_{0}=\int_{2}^{1} 2 e^{-2 t} d t$

Example 2 (Cont'd)

What is the chance that the battery lasts 0.5 to 1 day?
$\underbrace{\int_{0.5}^{1} \int_{\mathrm{t}}^{2} P(0.5<T<1)=\int_{0.5}^{1} f(t) d t}_{0}=\int_{2}^{1} 2 e^{-2 t} d t$
What is the chance that the battery last over one day, $P(T>1)$?

Example 2 (Cont'd)

What is the chance that the battery lasts 0.5 to 1 day?
$\underbrace{\int_{0.5}^{1} \int_{\mathrm{t}}^{2} P(0.5<T<1)=\int_{0.5}^{1} f(t) d t}_{0}=\int_{2}^{1} 2 e^{-2 t} d t$
What is the chance that the battery last over one day, $P(T>1)$?
$\underbrace{2 \rightarrow}_{0} \frac{P(T>1)=\int_{1}^{\infty} f(x) d x=\int_{1}^{\infty} 2 e^{-2 x} d x}{1}=-\left.e^{-2 x}\right|_{t=1} ^{t=\infty}=e^{-2}$.

Cumulative Distribution Function

(cdf)

Cumulative Distribution Function (cdf)

For any random variable X, its cumulative distribution function (cdf) is the function defined by

$$
F(x)=F_{X}(x)=P(X \leq x) .
$$

One get the cdf of a random variable from its pdf by integration:

$$
F(x)=\int_{-\infty}^{x} f(u) d u
$$

Cumulative Distribution Function (cdf)

For any random variable X, its cumulative distribution function (cdf) is the function defined by

$$
F(x)=F_{X}(x)=P(X \leq x) .
$$

One get the cdf of a random variable from its pdf by integration:

$$
F(x)=\int_{-\infty}^{x} f(u) d u
$$

Example 1 (cdf)

$$
f(x)= \begin{cases}2 x / 3 & \text { if } 0 \leq x \leq 1 \\ 2 / 3 & \text { if } 1 \leq x \leq 2 \\ 0 & \text { elsewhere }\end{cases}
$$

Let's find the cdf $F(x)$ for the density in Example 1 piece by piece.

- For $x<0, F(x)=\int_{-\infty}^{x} f(u) d u=0$ since $f(u)=0$ for $u<0$.
- For $0 \leq x<1$,

$$
\begin{aligned}
F(x)=P(X \leq x) & =\int_{\infty}^{x} f(u) d u \\
& =\text { shaded area of } \\
& =\frac{x \cdot(2 x / 3)}{2}=\frac{x^{2}}{3}
\end{aligned}
$$

For $1 \leq x \leq 2$,

$$
\begin{array}{rlr}
F(x)=P(X \leq x) & =\int_{\infty}^{x} f(u) d u & 2 / 3 \\
& =\text { shaded area of } \\
& =\text { Red }+ \text { Green } & 0 \\
& =\frac{1 \cdot(2 / 3)}{2}+\frac{2}{3} \cdot(x-1)=\frac{1}{3}+\frac{2}{3}(x-1)
\end{array}
$$

For $x>2, F(x)=\int_{\infty}^{x} f(u) d u=1$ since the entire area is included.
To sum up, the cdf is

Example 2 (cdf)

Recall the pdf for the lifetime T (in

The cdf $F(t)$ is

$$
F(t)=\left\{\begin{array}{l}
0 \quad \text { if } t<0 \\
\int_{-\infty}^{t} f(x) d x=\int_{0}^{t} 2 e^{-2 u} d u=-\left.e^{-2 u}\right|_{0} ^{t}=1-e^{-2 t} \quad \text { for } t \geq 0
\end{array}\right.
$$

Obtaining the PDF from the CDF

The PDF can be obtained from the cdf by differentiation.

$$
f(x)=\frac{d}{d x} F(x) .
$$

Example 1

$$
F(x)=\left\{\begin{array}{ll}
0 & \text { if } x<0 \\
\frac{1}{3} x^{2} & \text { if } 0 \leq x \leq 1 \\
\frac{1}{3}+\frac{2}{3}(x-1) & \text { if } 1 \leq x \leq 2 \\
1 & \text { if } x>2
\end{array} \Rightarrow \frac{d}{d x} F(x)= \begin{cases}0 & \text { if } x<0 \\
\frac{2}{3} x & \text { if } 0 \leq x \leq 1 \\
\frac{2}{3} & \text { if } 1 \leq x \leq 2 \\
0 & \text { if } x>2\end{cases}\right.
$$

Observe $\frac{d}{d x} F(x)$ is exactly the pdf $f(x)$.
Example 2. For the cdf of the battery life distribution

$$
F(t)=\left\{\begin{array}{l}
0 \text { if } t<0 \\
1-e^{-2 t} \text { for } t \geq 0
\end{array} \quad \Rightarrow \frac{d}{d x} F(x)=\left\{\begin{array}{l}
0 \text { if } t<0 \\
2 e^{-2 t} \text { for } t \geq 0
\end{array}\right.\right.
$$

Using the cdf to Compute Probabilities

Let X be a continuous rv with $\operatorname{pdf} f(x)$ and $\operatorname{cdf} F(x)$. Then for any number a,

$$
P(X>a)=1-F(a)
$$

and for any two numbers a and b with $a<b$,

$$
P(a \leq X \leq b)=F(b)-F(a)
$$

Recall in Example 2, we computed $P(0.5<T<1)$ by integrating the pdf. We can also compute using the cdf, $F(t)=1-e^{-2 t}, t>0$.

$$
P(0.5<T<1)=F(1)-F(0.5)=\left(1-e^{-2}\right)-\left(1-e^{-1}\right)=e^{-1}-e^{-2}
$$

which agrees with our prior calculation.

Properties of cdfs

- The $\operatorname{cdf} F(x)=P(X \leq x)$ is a probability, and hence it must be between 0 and 1 .

$$
0 \leq F(x) \leq 1
$$

- cdfs are always non-decreasing. For $a<b$

$$
F(b)-F(a)=P(X \leq b)-P(X \leq a)=P(a<X \leq b) \geq 0
$$

- The cdf of a continuous r.v. must be continuous. As $\delta \rightarrow 0$

$$
F(x+\delta)-F(x)=\int_{x}^{x+\delta} f(u) d u \rightarrow 0
$$

Expected Values

Expected Values

Let X be a continuous random variable with density f_{X}, then the expectation of X is

$$
\mathrm{E}(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

Suppose $Y=g(X)$ is a function of X. The expectation of Y is

$$
\mathrm{E}(Y)=\mathrm{E}(g(X))=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

Variance and Standard Deviation

The variance of a continuous r.v. X, with density $f(x)$, and mean μ, is denoted as $\operatorname{Var}(X), \sigma_{X}^{2}$, or simply σ^{2}, is defined as

$$
\operatorname{Var}(X)=\mathrm{E}(X-\mu)^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x ., \quad \text { where } \mu=\mathrm{E}(X)
$$

The standard deviation (SD) is the square root of the variance,

$$
\mathrm{SD}(X)=\sigma=\sqrt{\operatorname{Var}(X)}
$$

Properties of the Expected Value and Variance

Property 1 . The shortcut formula to find the variance remains valid for continuous random variables.

$$
\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mu^{2} .
$$

Property 2. For any constants a and b, the following identities are also valid for continuous r.v. X.

- $\mathrm{E}(a X+b)=a \mathrm{E}(X)+b$
- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$
- $\operatorname{SD}(a X+b)=|a| \operatorname{SD}(X)$

The proofs are similar to the ones for the discrete case, just replacing the summation \sum with the integral \int, and hence are omitted.

Example 1 (Mean, Variance, SD)

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{lll}
2 x / 3 & \text { if } 0 \leq x \leq 1 \\
2 / 3 & \text { if } 1 \leq x \leq 2 \\
0 & \text { elsewhere }
\end{array}\right. \\
& \begin{aligned}
\mathrm{E}(X)=\int_{-\infty}^{\infty} x f(x) d x & =\int_{0}^{1} x \frac{2 x}{3} d x+\int_{1}^{2} x \frac{2}{3} d x
\end{aligned} \\
&=\left.\frac{2 x^{3}}{9}\right|_{0} ^{1}+\left.\frac{x^{2}}{3}\right|_{1} ^{2}=\frac{2}{9}+\frac{4}{3}-\frac{1}{3}=\frac{11}{9} \\
& \mathrm{E}\left(X^{2}\right)==\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{0}^{1} x^{2} \frac{2 x}{3} d x+\int_{1}^{2} x^{2} \frac{2}{3} d x \\
&=\left.\frac{x^{4}}{6}\right|_{0} ^{1}+\left.\frac{2 x^{3}}{9}\right|_{1} ^{2}=\frac{1}{6}+\frac{16}{9}-\frac{2}{9}=\frac{31}{18}
\end{aligned}
$$

$\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}=\frac{31}{18}-\left(\frac{11}{9}\right)^{2}=\frac{37}{162}$ by the shortcut formula. $\mathrm{SD}(X)=\sqrt{37 / 162} \approx 0.478$.

Example 2 (Expected Value)

For the pdf $f(t)=2 e^{-2 t}, t>0$, the expected value is
$\mathrm{E}(T)=\int_{-\infty}^{\infty} t f(t) d t=\int_{0}^{\infty} 2 t e^{-2 t} d t$

To find $\mathrm{E}(T)$, we need to use integration by part.

$$
\int_{a}^{b} g(t) h^{\prime}(t) d t=\int_{a}^{b} g(t) d h(t)=\left.g(t) h(t)\right|_{a} ^{b}-\int_{a}^{b} h(t) g^{\prime}(t) d t
$$

With $h(t)=e^{-2 t}$ and $g(t)=-t$, we get

$$
\begin{aligned}
\mathrm{E}(T)=\int_{0}^{\infty} 2 t e^{-2 t} d t=\int_{0}^{\infty}-t d e^{-2 t} & =-\left.t e^{-2 t}\right|_{0} ^{\infty}-\int_{0}^{\infty} e^{-2 t} d(-t) \\
& =0+\int_{0}^{\infty} e^{-2 t} d t=-\left.\frac{1}{2} e^{-2 t}\right|_{0} ^{\infty}=\frac{1}{2}
\end{aligned}
$$

Example 2 (Variance by the Shortcut Formula)

$$
\mathrm{E}\left(T^{2}\right)=\int_{-\infty}^{\infty} t^{2} f(t) d t=\int_{0}^{\infty} 2 t^{2} e^{-2 t} d t
$$

To find $\mathrm{E}\left(T^{2}\right)$, we need to do integration by part again. With $h(t)=e^{-2 t}$ and $g(t)=-t^{2}$, we get

$$
\begin{aligned}
\mathrm{E}\left(T^{2}\right)=\int_{0}^{\infty} 2 t^{2} e^{-2 t} d t & =\int_{0}^{\infty}-t^{2} d\left(e^{-2 t}\right) \\
& =-\left.t^{2} e^{-2 t}\right|_{0} ^{\infty}-\int_{0}^{\infty} e^{-2 t} \underbrace{d\left(-t^{2}\right)}_{=-2 t} \\
& =0+\int_{0}^{\infty} 2 t e^{-2 t} d t
\end{aligned}
$$

Observe $\int_{0}^{\infty} 2 t e^{-2 t} d t$ is exactly $\mathrm{E}(T)=1 / 2$ we just calculated, and hence $\mathrm{E}\left(T^{2}\right)=1 / 2$.

We can then use $\mathrm{E}\left(T^{2}\right)$ to find the variance.

$$
\operatorname{Var}(T)=\mathrm{E}\left(T^{2}\right)-(\mathrm{E}(T))^{2}=\frac{1}{2}-\left(\frac{1}{2}\right)^{2}=\frac{1}{4}
$$

and $\operatorname{SD}(T)=\sqrt{\operatorname{Var}(T)}=\sqrt{1 / 4}=1 / 2$.

