STAT 234 Lecture 6B
 Continuous Random Variables Section 4.1

Yibi Huang
Department of Statistics
University of Chicago

Coverage

Continuous Random Variables (Section 4.1 of MMSA)

- probability density function (pdf)
- cumulative distribution function (cdf)

Continuous Random Variables

Continuous Random Variables

A random variable X is said to have a continuous distribution if there exists a non-negative function f such that

$$
P(a<X \leq b)=\int_{a}^{b} f(x) d x, \quad \text { for all }-\infty \leq a<b \leq \infty
$$

Here f is called the probability density function (pdf), the density curve, or the density of X.

Conditions of pdf

A pdf $f(x)$ can be of any imaginable shape but must satisfy the following:

- It must be nonnegative

$$
f(x) \geq 0 \text { for all } x
$$

- The total area under the pdf must be 1

$$
\int_{-\infty}^{\infty} f(x) d x=P(-\infty<X \leq \infty)=1
$$

For each of plots below, determine whether it's a valid probability density function (pdf).

Interpretation of a pdf

Suppose f is the pdf of X. If f is continuous at a point x, then for small δ

$$
P\left(x-\frac{\delta}{2}<X \leq x+\frac{\delta}{2}\right)=\int_{x-\delta / 2}^{x+\delta / 2} f(u) d u=\delta f(x)
$$

- Is the pdf f of a random variable always ≤ 1 ?

Interpretation of a pdf

Suppose f is the pdf of X. If f is continuous at a point x, then for small δ

$$
P\left(x-\frac{\delta}{2}<X \leq x+\frac{\delta}{2}\right)=\int_{x-\delta / 2}^{x+\delta / 2} f(u) d u=\delta f(x)
$$

- Is the pdf f of a random variable always ≤ 1 ?

No, the pdf $f(x)$ itself is not a probability.
It's the area underneath $f(x)$ that represents the probability.

Interpretation of a pdf

Suppose f is the pdf of X. If f is continuous at a point x, then for small δ

$$
P\left(x-\frac{\delta}{2}<X \leq x+\frac{\delta}{2}\right)=\int_{x-\delta / 2}^{x+\delta / 2} f(u) d u=\delta f(x)
$$

- Is the pdf f of a random variable always ≤ 1 ?

No, the pdf $f(x)$ itself is not a probability.
It's the area underneath $f(x)$ that represents the probability.

- For any continuous random variable X

$$
P(X=x)=\int_{x}^{x} f(u) d u=0
$$

Interpretation of a pdf

Suppose f is the pdf of X. If f is continuous at a point x, then for small δ

$$
P\left(x-\frac{\delta}{2}<X \leq x+\frac{\delta}{2}\right)=\int_{x-\delta / 2}^{x+\delta / 2} f(u) d u=\delta f(x)
$$

- Is the pdf f of a random variable always ≤ 1 ?

No, the pdf $f(x)$ itself is not a probability.
It's the area underneath $f(x)$ that represents the probability.

- For any continuous random variable X

$$
P(X=x)=\int_{x}^{x} f(u) d u=0
$$

- What percentage of men are 6 -feet tall exactly?

Those that are 6.00001 or 5.99999 feet tall don't count.

Interpretation of a pdf

Suppose f is the pdf of X. If f is continuous at a point x, then for small δ

$$
P\left(x-\frac{\delta}{2}<X \leq x+\frac{\delta}{2}\right)=\int_{x-\delta / 2}^{x+\delta / 2} f(u) d u=\delta f(x)
$$

- Is the pdf f of a random variable always ≤ 1 ?

No, the pdf $f(x)$ itself is not a probability.
It's the area underneath $f(x)$ that represents the probability.

- For any continuous random variable X

$$
P(X=x)=\int_{x}^{x} f(u) d u=0
$$

- What percentage of men are 6-feet tall exactly?

Those that are 6.00001 or 5.99999 feet tall don't count.

- A pdf $f(x)$ may not be continuous

Example 1

Consider a continuous random variable X with the pdf

$$
f(x)= \begin{cases}c x & \text { if } 0 \leq x \leq 1 \\ c & \text { if } 1 \leq x \leq 2 \\ 0 & \text { elsewhere }\end{cases}
$$

- Note $f(x)$ is not continuous at $x=2$

Example 1

Consider a continuous random variable X with the pdf

$$
f(x)= \begin{cases}c x & \text { if } 0 \leq x \leq 1 \\ c & \text { if } 1 \leq x \leq 2 \\ 0 & \text { elsewhere }\end{cases}
$$

- Note $f(x)$ is not continuous at $x=2$
- What is the value of c ?

Example 1

Consider a continuous random variable X with the pdf

$$
f(x)= \begin{cases}c x & \text { if } 0 \leq x \leq 1 \\ c & \text { if } 1 \leq x \leq 2 \\ 0 & \text { elsewhere }\end{cases}
$$

- Note $f(x)$ is not continuous at $x=2$
- What is the value of c ?

$$
\begin{aligned}
\text { Total Area } & =\text { Red }+ \text { Green } \\
& =\frac{1 \cdot c}{2}+1 \cdot c=\frac{3}{2} c=1 \\
\Rightarrow \quad c & =\frac{2}{3}
\end{aligned}
$$

Example 1 (Cont'd)

What is $P(X \leq 1.5)$?

Example 1 (Cont'd)

What is $P(X \leq 1.5)$?

$$
\begin{aligned}
P(X \leq 1.5)= & \vdots \\
& =\text { Red }+ \text { Green } \\
& =\frac{1 \cdot(2 / 3)}{2}+(0.5) \frac{2}{3}=\frac{2}{3}
\end{aligned}
$$

Example 2

Suppose the lifetime T (in days) of a certain type of batteries has the pdf shown on the right.

- Find the value of c so that $f(t)$ is a legitimate pdf.

Example 2

Suppose the lifetime T (in days) of a certain type of batteries has the pdf shown on the right.

- Find the value of c so that $f(t)$ is a legitimate pdf.

$$
\int_{-\infty}^{\infty} f(t) d t=\int_{0}^{\infty} c e^{-2 t} d t=-\left.\frac{c}{2} e^{-2 t}\right|_{t=0} ^{t=\infty}=\frac{c}{2}-0=1
$$

So $c=2$!

Example 2

Suppose the lifetime T (in days) of a certain type of batteries has the pdf shown on the right.

- Find the value of c so that $f(t)$ is a legitimate pdf.

$$
\int_{-\infty}^{\infty} f(t) d t=\int_{0}^{\infty} c e^{-2 t} d t=-\left.\frac{c}{2} e^{-2 t}\right|_{t=0} ^{t=\infty}=\frac{c}{2}-0=1
$$

So $c=2$!

- Observe that $f(0)=2 e^{0}=2>1 \quad$!?!

Can a pdf $f(x)$ exceed 1 ?

Example 2

Suppose the lifetime T (in days) of a certain type of batteries has the pdf shown on the right.

- Find the value of c so that $f(t)$ is a legitimate pdf.

$$
\int_{-\infty}^{\infty} f(t) d t=\int_{0}^{\infty} c e^{-2 t} d t=-\left.\frac{c}{2} e^{-2 t}\right|_{t=0} ^{t=\infty}=\frac{c}{2}-0=1
$$

So $c=2$!

- Observe that $f(0)=2 e^{0}=2>1 \quad$!?!

Can a pdf $f(x)$ exceed 1 ?
Yes, the pdf $f(x)$ itself is not a probability.
It's the area underneath $f(x)$ that represents the probability.

Example 2 (Cont'd)

What is the chance that the battery lasts 0.5 to 1 day?

Example 2 (Cont'd)

What is the chance that the battery lasts 0.5 to 1 day?
$\underbrace{\int_{0.5}^{1} \int_{\mathrm{t}}^{2} P(0.5<T<1)=\int_{0.5}^{1} f(t) d t}_{0}=\int_{2}^{1} 2 e^{-2 t} d t$
What is the chance that the battery last over one day, $P(T>1)$?

Example 2 (Cont'd)

What is the chance that the battery lasts 0.5 to 1 day?
$\underbrace{\int_{0.5}^{1} \int_{\mathrm{t}}^{2} P(0.5<T<1)=\int_{0.5}^{1} f(t) d t}_{0}=\int_{2}^{1} 2 e^{-2 t} d t$
What is the chance that the battery last over one day, $P(T>1)$?

