STAT 234 Lecture 6A Binomial Distributions, Part 2 Section 3.5

Yibi Huang
Department of Statistics
University of Chicago

Binomial Distribution (Review)

Suppose n independent Bernoulli trials are to be performed, each of which results in

- a success with probability p and
- a failure with probability $1-p$.

If we define

$X=$ the number of successes that occur in the n trials,

then X is said to have a binomial distribution with parameters (n, p), denoted as

$$
X \sim \operatorname{Bin}(n, p)
$$

with the probability mass function (mf)

$$
\mathrm{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n
$$

Binomial Conditions (Review)

Conditions required to apply the binomial formula:

1. each trial outcome must be classified as a success or a failure
2. the probability of success, p, must be the same for each trial
3. the number of trials, n, must be fixed
4. the trials must be independent

- Draws made without replacement from a population are dependent
- However, if the sample size (number of trials/draws) is at most 5% of the population size, the trials (outcomes of draws) are approx. independent.

Example: Driver's License

Suppose 80% of UChicago undergrads have their driver's license. Among a random sample of 10 UChicago undergrads, what is the probability that exactly 6 have license? Exactly 8 ?

Example: Driver's License

Suppose 80\% of UChicago undergrads have their driver's license. Among a random sample of 10 UChicago undergrads, what is the probability that exactly 6 have license? Exactly 8 ?

Let $X=$ the number of undergrads $\mathrm{w} /$ license in a sample of size 10. $X \sim \operatorname{Bin}(n=10, p=0.8)$

$$
\begin{aligned}
& \mathrm{P}(X=6)=\binom{10}{6} \times 0.8^{6} \times 0.2^{4}=210 \times 0.8^{6} \times 0.2^{4} \approx 0.088 \\
& \mathrm{P}(X=8)=\binom{10}{8} \times 0.8^{8} \times 0.2^{2}=45 \times 0.8^{8} \times 0.2^{2} \approx 0.302
\end{aligned}
$$

R command for calculating $P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}$ is dbinom(x, size $=n, p$)
dbinom(6, size $=10, p=0.8)$
[1] 0.08808038
dbinom(8, size $=10, p=0.8)$
[1] 0.3019899

Example: Driver's License (Contd)

In a sample of size 10, what is the probability that 6 to 8 of them have license?

$$
\begin{aligned}
\mathrm{P}(6 \leq X \leq 8) & =\mathrm{P}(X=6)+\mathrm{P}(X=7)+\mathrm{P}(X=8) \\
& =\binom{10}{6} 0.8^{6} 0.2^{4}+\binom{10}{7} 0.8^{7} 0.2^{3}+\binom{10}{8} 0.8^{8} 0.2^{2} \\
& \approx 0.088+0.201+0.302=0.591
\end{aligned}
$$

Expected Value, Variance, and SD of Binomial Distributions

Expected Value, Variance and SD of $\operatorname{Bin}(n=1, p)$

A Binomial random variable $X \sim \operatorname{Bin}(n, p)$ with $n=1$ can only take value 0 or 1 with the distribution below

value of X	0	1
probability	$1-p$	p

The expected value, variance, and SD of $\operatorname{Bin}(n=1, p)$ can be calculated as follows.

$$
\begin{aligned}
\mathrm{E}(X) & =\sum_{x=0,1} x p(x)=0 \cdot(1-p)+1 \cdot p=p, \\
\mathrm{E}\left(X^{2}\right) & =\sum_{x=0,1} x^{2} p(x)=0^{2} \cdot(1-p)+1^{2} \cdot p=p, \\
\operatorname{Var}(X) & =\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}=p-p^{2}=p(1-p) \quad \text { by the shortcut formula } \\
\mathrm{SD}(X) & =\sqrt{\operatorname{Var}(X)}=\sqrt{p(1-p)}
\end{aligned}
$$

Expected Value, Variance and SD of $\operatorname{Bin}(n, p)$

For a Binomial random variable $X \sim \operatorname{Bin}(n, p)$, the mean, variance, and the SD are respectively

$$
\begin{aligned}
\mu=\mathrm{E}(X) & =n p \\
\sigma^{2}=\operatorname{Var}(X) & =n p(1-p) \\
\sigma=\mathrm{SD}(X) & =\sqrt{n p(1-p)}
\end{aligned}
$$

Note the SD increases proportionally to \sqrt{n}, not n.
The proof will be given next week

Suppose 80\% of UChicago undergrads have their driver's license. Among a random sample of 63 UChicago undergrads, how many do you expect to have driver's license? With what SD?

$$
\begin{aligned}
X & \sim \operatorname{Bin}(n=63, p=0.8) \\
\mathrm{E}(X) & =n p=63 \times 0.8=50.4, \\
\mathrm{SD}(X) & =\sqrt{n p(1-p)}=\sqrt{63(0.8)(1-0.8)} \approx 3.175
\end{aligned}
$$

Mean and SD of Binomial distributions might NOT be whole numbers, and that is alright, these values represent what we would expect to see on average. Do NOT round the mean and SD to integers.

99.7\% of the Probability Are Within 3 SDs from Mean

Almost all (99.7\%) the probability of a random variables are within 3 SDs away from the mean (expected value).

From the $\mathrm{E}(X)$ and SD just computed, the possible number of students w/ license in a sample of size 63 is likely between

$$
50.4 \pm(3 \times 3.175) \approx(40.875,59.925)
$$

For $X \sim \operatorname{Bin}(n=63, p=0.8), P(41 \leq X \leq 59) \approx 0.9976$ and $P(40 \leq X \leq 60) \approx 0.9992$.
$\operatorname{sum}(\operatorname{dbinom}(41: 59$, size $=63, p=0.8)$)
[1] 0.9976559
$\operatorname{sum}($ dbinom (40:60, size $=63, p=0.8)$)
[1] 0.9991908

Proof of the Expected Value of Binomial (Optional)

$$
\begin{aligned}
\mathrm{E}(X)=\sum_{x=0}^{n} x P(X=x) & =\sum_{x=0}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =\sum_{x=1}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x}
\end{aligned}
$$

One key step: observe that

$$
x\binom{n}{x}=x \frac{n!}{x!(n-x)!}=\frac{n!}{(x-1)!(n-x)!}=\frac{n \times(n-1)!}{(x-1)!(n-x)!}=n\binom{n-1}{x-1} .
$$

Replacing $x\binom{n}{x}$ in $\mathrm{E}(X)$ with $n\binom{n-1}{x-1}$, we get

$$
\begin{aligned}
\mathrm{E}(X) & =\sum_{x=1}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =\sum_{x=1}^{n} n\binom{n-1}{x-1} p^{x}(1-p)^{n-x} \\
& =n p \sum_{x=1}^{n}\binom{n-1}{x-1} p^{x-1}(1-p)^{n-x} \\
& =n p \sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{n-1-k} \quad \text { let } k=x-1 \\
& =n p(p+1-p)^{n-1}=n p
\end{aligned}
$$

where $\sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{n-1-k}=(p+1-p)^{n-1}$ comes from the Binomial expansion

$$
(a+b)^{N}=\sum_{k=0}^{N}\binom{N}{k} a^{k} b^{N-k}
$$

with $a=p, b=1-p$, and $N=n-1$.

