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Coverage

Lecture 5 covers Section 3.5 of MMSA

Please skip

• Moment General Function for Binomial on p.135 in Section 3.5
• Section 3.4 Moment Generating Functions
• Section 3.6 Hypergeometric and Negative Binomial

Distributions
• Section 3.7 Poisson Distributions
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The Binomial Distribution



Five draws are made at random with replacement from a box con-
taining one red ball and 9 green balls.

What is the probability that the first two draws are Red and the next
3 are Green?

P(R R G G G) = P(R) · P(R) · P(G) · P(G) · P(G)

= 0.1 × 0.1 × 0.9 × 0.9 × 0.9.

As the draws are made with replacement,
the outcomes of the 5 draws are independent.
The multiplication rule for independent events can be applied.
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What is the probability of getting exactly two Reds in 5 draws?
Is it also equal to

0.1 × 0.1 × 0.9 × 0.9 × 0.9?
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There are 10 possible orderings of the 2 Reds and the 3 Greens.

Possible Orders Probability
R R G G G 0.1 × 0.1 × 0.9 × 0.9 × 0.9 = (0.1)2(0.9)3

R G R G G 0.1 × 0.9 × 0.1 × 0.9 × 0.9 = (0.1)2(0.9)3

R G G R G 0.1 × 0.9 × 0.9 × 0.1 × 0.9 = (0.1)2(0.9)3

R G G G R 0.1 × 0.9 × 0.9 × 0.9 × 0.1 = (0.1)2(0.9)3

G R R G G 0.9 × 0.1 × 0.1 × 0.9 × 0.9 = (0.1)2(0.9)3

G R G R G 0.9 × 0.1 × 0.9 × 0.1 × 0.9 = (0.1)2(0.9)3

G R G G R 0.9 × 0.1 × 0.9 × 0.9 × 0.1 = (0.1)2(0.9)3

G G R R G 0.9 × 0.9 × 0.1 × 0.1 × 0.9 = (0.1)2(0.9)3

G G R G R 0.9 × 0.9 × 0.1 × 0.9 × 0.1 = (0.1)2(0.9)3

G G G R R 0.9 × 0.9 × 0.9 × 0.1 × 0.1 = (0.1)2(0.9)3

P(exactly 2 Reds in 5 draws) is the sum of the probabilities of the
10 cases above because the 10 cases are disjoint. So

P(exactly 2 Reds in 5 draws) = 10 × (0.1)2(0.9)3.
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What is P(getting exactly k Reds in n draws)?

Consider all possible ways to order the k Reds and the n − k
Greens.

Possible Orders Probability
RRR . . .R︸      ︷︷      ︸

k

G . . .G︸  ︷︷  ︸
n−k

0.1 × . . . × 0.1︸            ︷︷            ︸
k

× 0.9 × . . . × 0.9︸            ︷︷            ︸
n−k

= (0.1)k(0.9)n−k

RGR . . .R G . . .G 0.1 · 0.9 · 0.1 . . . 0.1 × 0.9 . . . 0.9 = (0.1)k(0.9)n−k

...
...

Note

• the events for different orderings are disjoint, and
• each occurs with identical probability (0.1)k(0.9)n−k.

By the Addition Rule, P(exactly k Reds in n draws) equals

(# of ways to order k Reds and n − k Greens) × (0.1)k(0.9)n−k
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Factorial

The notation n!, read n factorial, is defined as

n! = 1 × 2 × 3 × . . . × (n − 1) × n

e.g.,

1 ! = 1, 3 ! = 1 × 2 × 3 = 6,
2 ! = 1 × 2 = 2, 4 ! = 1 × 2 × 3 × 4 = 24.

By convention,

0 ! = 1.
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Binomial Coefficients

The number of ways to order k Reds and n − k Greens equals(
n
k

)
=

n!
k!(n − k)!

•

(
n
k

)
is read as “n choose k”, also denoted as nCk, or Cn

k .

e.g., (
5
2

)
=

5 !
2 ! × (5 − 2) !

=
5 × 4 × 3 × 2 × 1
(2 × 1)(3 × 2 × 1)

=
5 × 4
2 × 1

= 10,(
n
n

)
=

n !
n ! × 0 !

=
n !

n ! × 1
= 1

You can also use R for these calculations:

choose(5,2)

[1] 10
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•

(
n
0

)
=

n !
0 ! × n !

= 1

⇒ there is only 1 way to order 0 Reds and n Greens

•

(
n
n

)
=

n !
n ! × 0 !

= 1

⇒ there is only 1 way to order n Reds and 0 Green

•

(
n
1

)
=

n !
1 ! × (n − 1) !

= n

⇒ there are n ways to order 1 Red and n − 1 Greens

•

(
n

n − 1

)
=

n !
(n − 1) ! × 1 !

= n

⇒ there are n ways to order n − 1 Reds and 1 Green
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Summary of All the Calculations So Far

When n draws are made at random with replacement from a box
contains one red ball and 9 green ones,

the probability to get exactly k Reds (and n − k Greens) equals(
n
k

)
(0.1)k(0.9)n−k.

Such calculations can be generalized to other similar problems and
the general formula is called the Binomial Formula.

10



Bernoulli Trials

A random trial having only 2 possible outcomes (Success, Failure)
is called a Bernoulli trial, e.g.,

• whether a coin lands heads or tails when tossing a coin
• whether one gets a six or not a six when rolling a die
• whether a drug works on a patient or not
• whether a electronic device is defected
• whether a subject answers Yes or No to a survey question
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Binomial Formula

Suppose n independent Bernoulli trials are to be performed, each
of which results in

• a success with probability p and
• a failure with probability 1 − p.

The probability of getting k successes and n − k failures in n
Bernoulli trials is given by

(# of ways to order the k successes and n − k failures) × pk(1 − p)n−k

=

(
n
k

)
pk(1 − p)n−k
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Binomial Distribution

Suppose n independent Bernoulli trials are to be performed, each
of which results in

• a success with probability p and
• a failure with probability 1 − p.

If we define

X = the number of successes that occur in the n trials,

then X is said to have a binomial distribution with parameters
(n, p), denoted as

X ∼ Bin(n, p).

with the probability mass function (pmf)

P(X = k) =
(
n
k

)
pk(1 − p)n−k, k = 0, 1, . . . , n
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Does the Binomial Probabilities Add Up to 1?

Recall the Binomial expansion in math:

(a + b)n =

n∑
k=0

(
n
k

)
akbn−k

which is valid for all real numbers a and b.

Applying the Binomial expansion with a = p and b = 1 − p, we get
n∑

k=0

P(X = k) =
n∑

k=0

(
n
k

)
pk(1 − p)n−k = (p + 1 − p)n = 1n = 1

which means that the pmf

P(X = k) =
(
n
k

)
pk(1 − p)n−k, k = 0, 1, . . . , n

is a valid pmf.
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Conditions Required to be Binomial

Conditions required to apply the binomial formula:

1. each trial outcome must be classified as a success or a failure
2. the probability of success, p, must be the same for each trial
3. the number of trials, n, must be fixed
4. the trials must be independent
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Binomial or Not? — 10 Rolls of a Die

Rolling a die 10 times, what is the probability of getting exactly 3
aces?

• a trial: whether one gets an ace when rolling a die once
• prob. of success p = 1/6
• number of trials n = 10
• the trials (rolls) are independent

So, it’s okay to use the Binomial formula.

P(3 aces in 10 rolls) =
10!
3! 7!

(
1
6

)3 (
1 −

1
6

)7

=
10 × 9 × 8 × (7!)
(3 × 2 × 1)(7!)

(
1
6

)3 (
5
6

)7

= 120
(
1
6

)3 (
5
6

)7

≈ 0.155
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Binomial or Not? — Rolling a Die Until 3rd Ace

Rolling a die continuously, is the probability of getting the 3rd aces
in the 10th roll equals to

10!
3! 7!

(
1
6

)3 (
1 −

1
6

)7

?

No. The number of trials (sample size) is not determined in
advance.
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Binomial or Not? — Restaurants

Suppose an inspector randomly selects 5 restaurantsfrom the 20
restaurants in a town, of which 10 currently have health code viola-
tion(s) and the other 10 have no violations. Let X be the number of
selected restaurants with violations. Is X binomial?

• a trial: whether a randomly selected restaurant has
violation(s)

S = violation, F = no violation

• number of trials: n = 5

• prob. of success?
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Binomial or Not? — Restaurants (2)

• P(S on first trial)=
10
20
= 0.5

• P(S on 2nd trial | S on 1st trial)=
9
19

• P(S on 2nd trial | F on 1st trial)=
10
19

• P(S on 5th trial | FFFF)=
10
16
= 0.625

• P(S on 5th trial | SSSS)=
6
16
= 0.375

• Trials are NOT independent since the selection are made
without replacement.
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Binomial or Not — UC Undergrads

50 UC undergrads are randomly selected and each of them is asked
whether he/she has a driver’s licence. Suppose 4000 of the 5000
UC undergrads have driver’s licence. Let X be the number who
reply yes. Is X binomial?

• a trial: a randomly selected student reply yes = S or no = F
• number of trials n = 50
• Strictly speaking, NOT binomial, since selection are made

without replacement — trials are dependent. However,. . .
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• P(S on first trial)=
4000
5000

= 0.8

• P(S on 2nd trial | S on 1st trial)=
3999
4999

≈ 0.79996

• P(S on 2nd trial | F on 1st trial)=
4000
4999

≈ 0.80016

• P(S on 50th trial | all S up to 49th)=
3951
4951

≈ 0.7980

• P(S on 50th trial | all F up to 49th)=
4000
4951

≈ 0.8079

• P(S on 50th trial | n S’s up to 49th)=
4000 − n

4951
• Since the sample size 50 is only 1% of the population size

(5000), the 50 draws has little effect on the makeup of the
population. P(S ) stays close to 0.8 regardless of the outcome
of prior draws. Trials are nearly independent

• So X is approx. binomial, Bin(n = 50, p = 0.8).
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4000 − n

4951
• Since the sample size 50 is only 1% of the population size

(5000), the 50 draws has little effect on the makeup of the
population. P(S ) stays close to 0.8 regardless of the outcome
of prior draws. Trials are nearly independent

• So X is approx. binomial, Bin(n = 50, p = 0.8).
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Rule: Approx. Binomial or Not When Sampling w/o Replace-
ment

Consider sampling without replacement from a dichotomous
population of size N. If the sample size (number of trials) n is at
most 5% of the population size, the experiment can be analyzed as
though it were exactly a binomial experiment.
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