STAT 234 Lecture 5 Binomial Distributions Section 3.5

Yibi Huang
Department of Statistics
University of Chicago

Coverage

Lecture 5 covers Section 3.5 of MMSA
Please skip

- Moment General Function for Binomial on p. 135 in Section 3.5
- Section 3.4 Moment Generating Functions
- Section 3.6 Hypergeometric and Negative Binomial Distributions
- Section 3.7 Poisson Distributions

The Binomial Distribution

Five draws are made at random with replacement from a box containing one red ball and 9 green balls.

What is the probability that the first two draws are Red and the next 3 are Green?

Five draws are made at random with replacement from a box containing one red ball and 9 green balls.

What is the probability that the first two draws are Red and the next 3 are Green?

$$
\begin{aligned}
\mathrm{P}(R R G G G) & =\mathrm{P}(R) \cdot \mathrm{P}(\mathrm{R}) \cdot \mathrm{P}(\mathrm{G}) \cdot \mathrm{P}(\mathrm{G}) \cdot \mathrm{P}(\mathrm{G}) \\
& =0.1 \times 0.1 \times 0.9 \times 0.9 \times 0.9
\end{aligned}
$$

As the draws are made with replacement, the outcomes of the 5 draws are independent.
The multiplication rule for independent events can be applied.

What is the probability of getting exactly two Reds in 5 draws? Is it also equal to

$$
0.1 \times 0.1 \times 0.9 \times 0.9 \times 0.9 ?
$$

There are 10 possible orderings of the 2 Reds and the 3 Greens.

Possible Orders	Probability
RRG G G	$0.1 \times 0.1 \times 0.9 \times 0.9 \times 0.9=(0.1)^{2}(0.9)^{3}$
RGRGG	$0.1 \times 0.9 \times 0.1 \times 0.9 \times 0.9=(0.1)^{2}(0.9)^{3}$
RGGRG	$0.1 \times 0.9 \times 0.9 \times 0.1 \times 0.9=(0.1)^{2}(0.9)^{3}$
RG G GR	$0.1 \times 0.9 \times 0.9 \times 0.9 \times 0.1=(0.1)^{2}(0.9)^{3}$
GRRGG	$0.9 \times 0.1 \times 0.1 \times 0.9 \times 0.9=(0.1)^{2}(0.9)^{3}$
GRGRG	$0.9 \times 0.1 \times 0.9 \times 0.1 \times 0.9=(0.1)^{2}(0.9)^{3}$
GRG GR	$0.9 \times 0.1 \times 0.9 \times 0.9 \times 0.1=(0.1)^{2}(0.9)^{3}$
GGRRG	$0.9 \times 0.9 \times 0.1 \times 0.1 \times 0.9=(0.1)^{2}(0.9)^{3}$
GGRGR	$0.9 \times 0.9 \times 0.1 \times 0.9 \times 0.1=(0.1)^{2}(0.9)^{3}$
G G GRR	$0.9 \times 0.9 \times 0.9 \times 0.1 \times 0.1=(0.1)^{2}(0.9)^{3}$

P (exactly 2 Reds in 5 draws) is the sum of the probabilities of the 10 cases above because the 10 cases are disjoint. So
$\mathrm{P}($ exactly 2 Reds in 5 draws $)=10 \times(0.1)^{2}(0.9)^{3}$.

What is P (getting exactly k Reds in n draws)?

What is P (getting exactly k Reds in n draws)?
Consider all possible ways to order the k Reds and the $n-k$ Greens.

Note

- the events for different orderings are disjoint, and
- each occurs with identical probability $(0.1)^{k}(0.9)^{n-k}$.

By the Addition Rule, P (exactly k Reds in n draws) equals
(\# of ways to order k Reds and $n-k$ Greens) $\times(0.1)^{k}(0.9)^{n-k}$

Factorial

The notation n !, read n factorial, is defined as

$$
n!=1 \times 2 \times 3 \times \ldots \times(n-1) \times n
$$

e.g.,

$$
\begin{array}{ll}
1!=1, & 3!=1 \times 2 \times 3=6 \\
2!=1 \times 2=2, & 4!=1 \times 2 \times 3 \times 4=24
\end{array}
$$

By convention,

$$
0!=1
$$

Binomial Coefficients

The number of ways to order k Reds and $n-k$ Greens equals

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

- $\binom{n}{k}$ is read as " n choose k ", also denoted as ${ }_{n} C_{k}$, or C_{k}^{n}. e.g.,

$$
\begin{aligned}
& \binom{5}{2}=\frac{5!}{2!\times(5-2)!}=\frac{5 \times 4 \times 3 \times 2 \times 1}{(2 \times 1)(3 \times 2 \times 1)}=\frac{5 \times 4}{2 \times 1}=10, \\
& \binom{n}{n}=\frac{n!}{n!\times 0!}=\frac{n!}{n!\times 1}=1
\end{aligned}
$$

You can also use R for these calculations:
choose $(5,2)$
[1] 10

Binomial Coefficients

The number of ways to order k Reds and $n-k$ Greens equals

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

- $\binom{n}{k}$ is read as " n choose k ", also denoted as ${ }_{n} C_{k}$, or C_{k}^{n}. e.g.,

$$
\begin{aligned}
& \binom{5}{2}=\frac{5!}{2!\times(5-2)!}=\frac{5 \times 4 \times 3 \times 2 \times 1}{(2 \times 1)(3 \times 2 \times 1)}=\frac{5 \times 4}{2 \times 1}=10, \\
& \binom{n}{n}=\frac{n!}{n!\times 0!}=\frac{n!}{n!\times 1}=1
\end{aligned}
$$

You can also use R for these calculations:
choose $(5,2)$
[1] 10

$$
\begin{aligned}
& \cdot\left({ }_{(0)}^{(0)}=\right. \\
& \cdot\left({ }_{(0)}^{(0)}=\right.
\end{aligned}
$$

$$
-\left(i_{i}^{(i)}=\right.
$$

$$
\cdot\left(n_{n-1}^{n}\right)=
$$

- $\binom{n}{0}=\frac{n!}{0!\times n!}=1$
\Rightarrow there is only 1 way to order 0 Reds and n Greens
-(i) $=$
-(i) $=$
- $\left(\begin{array}{l}n-1\end{array}\right)=$
- $\binom{n}{0}=\frac{n!}{0!\times n!}=1$
\Rightarrow there is only 1 way to order 0 Reds and n Greens
- $\binom{n}{n}=\frac{n!}{n!\times 0!}=1$
\Rightarrow there is only 1 way to order n Reds and 0 Green
-(i) $=$
- $\binom{n}{n-1}=$
- $\binom{n}{0}=\frac{n!}{0!\times n!}=1$
\Rightarrow there is only 1 way to order 0 Reds and n Greens
- $\binom{n}{n}=\frac{n!}{n!\times 0!}=1$
\Rightarrow there is only 1 way to order n Reds and 0 Green
- $\binom{n}{1}=\frac{n!}{1!\times(n-1)!}=n$
\Rightarrow there are n ways to order 1 Red and $n-1$ Greens
- $\binom{n}{n-1}=$
- $\binom{n}{0}=\frac{n!}{0!\times n!}=1$
\Rightarrow there is only 1 way to order 0 Reds and n Greens
- $\binom{n}{n}=\frac{n!}{n!\times 0!}=1$
\Rightarrow there is only 1 way to order n Reds and 0 Green
- $\binom{n}{1}=\frac{n!}{1!\times(n-1)!}=n$
\Rightarrow there are n ways to order 1 Red and $n-1$ Greens
- $\binom{n}{n-1}=\frac{n!}{(n-1)!\times 1!}=n$
\Rightarrow there are n ways to order $n-1$ Reds and 1 Green

Summary of All the Calculations So Far

When n draws are made at random with replacement from a box contains one red ball and 9 green ones,

the probability to get exactly k Reds (and $n-k$ Greens) equals

$$
\binom{n}{k}(0.1)^{k}(0.9)^{n-k}
$$

Such calculations can be generalized to other similar problems and the general formula is called the Binomial Formula.

Bernoulli Trials

A random trial having only 2 possible outcomes (Success, Failure) is called a Bernoulli trial, e.g.,

- whether a coin lands heads or tails when tossing a coin
- whether one gets a six or not a six when rolling a die
- whether a drug works on a patient or not
- whether a electronic device is defected
- whether a subject answers Yes or No to a survey question

Binomial Formula

Suppose n independent Bernoulli trials are to be performed, each of which results in

- a success with probability p and
- a failure with probability $1-p$.

The probability of getting k successes and $n-k$ failures in n Bernoulli trials is given by
(\# of ways to order the k successes and $n-k$ failures) $\times p^{k}(1-p)^{n-k}$
$=\binom{n}{k} p^{k}(1-p)^{n-k}$

Binomial Distribution

Suppose n independent Bernoulli trials are to be performed, each of which results in

- a success with probability p and
- a failure with probability $1-p$.

If we define

$$
X=\text { the number of successes that occur in the } n \text { trials, }
$$

then X is said to have a binomial distribution with parameters (n, p), denoted as

$$
X \sim \operatorname{Bin}(n, p)
$$

with the probability mass function (pmf)

$$
\mathrm{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n
$$

Does the Binomial Probabilities Add Up to 1?

Recall the Binomial expansion in math:

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

which is valid for all real numbers a and b.
Applying the Binomial expansion with $a=p$ and $b=1-p$, we get

$$
\sum_{k=0}^{n} \mathrm{P}(X=k)=\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=(p+1-p)^{n}=1^{n}=1
$$

which means that the pmf

$$
\mathrm{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n
$$

is a valid pmf.

Conditions Required to be Binomial

Conditions required to apply the binomial formula:

1. each trial outcome must be classified as a success or a failure
2. the probability of success, p, must be the same for each trial
3. the number of trials, n, must be fixed
4. the trials must be independent

Binomial or Not? - 10 Rolls of a Die

Rolling a die 10 times, what is the probability of getting exactly 3 aces?

Binomial or Not? - 10 Rolls of a Die

Rolling a die 10 times, what is the probability of getting exactly 3 aces?

- a trial: whether one gets an ace when rolling a die once
- prob. of success $p=1 / 6$
- number of trials $n=10$

Binomial or Not? - 10 Rolls of a Die

Rolling a die 10 times, what is the probability of getting exactly 3 aces?

- a trial: whether one gets an ace when rolling a die once
- prob. of success $p=1 / 6$
- number of trials $n=10$
- the trials (rolls) are independent

So, it's okay to use the Binomial formula.

$$
\begin{aligned}
\mathrm{P}(3 \text { aces in } 10 \text { rolls }) & =\frac{10!}{3!7!}\left(\frac{1}{6}\right)^{3}\left(1-\frac{1}{6}\right)^{7} \\
& =\frac{10 \times 9 \times 8 \times(7!)}{(3 \times 2 \times 1)(7!)}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{7} \\
& =120\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{7} \approx 0.155
\end{aligned}
$$

Binomial or Not? — Rolling a Die Until 3rd Ace

Rolling a die continuously, is the probability of getting the 3rd aces in the 10th roll equals to

$$
\frac{10!}{3!7!}\left(\frac{1}{6}\right)^{3}\left(1-\frac{1}{6}\right)^{7} ?
$$

Binomial or Not? — Rolling a Die Until 3rd Ace

Rolling a die continuously, is the probability of getting the 3rd aces in the 10th roll equals to

$$
\frac{10!}{3!7!}\left(\frac{1}{6}\right)^{3}\left(1-\frac{1}{6}\right)^{7} ?
$$

No. The number of trials (sample size) is not determined in advance.

Binomial or Not? — Restaurants

Suppose an inspector randomly selects 5 restaurantsfrom the 20 restaurants in a town, of which 10 currently have health code violation(s) and the other 10 have no violations. Let X be the number of selected restaurants with violations. Is X binomial?

- a trial: whether a randomly selected restaurant has violation(s)

$$
S=\text { violation }, \quad F=\text { no violation }
$$

- number of trials: $n=5$

Binomial or Not? — Restaurants

Suppose an inspector randomly selects 5 restaurantsfrom the 20 restaurants in a town, of which 10 currently have health code violation(s) and the other 10 have no violations. Let X be the number of selected restaurants with violations. Is X binomial?

- a trial: whether a randomly selected restaurant has violation(s)

$$
S=\text { violation }, \quad F=\text { no violation }
$$

- number of trials: $n=5$
- prob. of success?

Binomial or Not? — Restaurants (2)

- $P(S$ on first trial $)=\frac{10}{20}=0.5$

Binomial or Not? — Restaurants (2)

- $P(S$ on first trial $)=\frac{10}{20}=0.5$
- $P(S$ on $2 n d$ trial | S on 1st trial $)=\frac{9}{19}$

Binomial or Not? — Restaurants (2)

- $P(S$ on first trial $)=\frac{10}{20}=0.5$
- $P(S$ on $2 n d$ trial | S on 1 st trial $)=\frac{9}{19}$
- $P(S$ on $2 n d$ trial | F on 1 st trial $)=\frac{10}{19}$

Binomial or Not? — Restaurants (2)

- $P(S$ on first trial $)=\frac{10}{20}=0.5$
- $P(S$ on $2 n d$ trial | S on 1st trial $)=\frac{9}{19}$
- $P(S$ on $2 n d$ trial | F on 1 st trial $)=\frac{10}{19}$
- $P(S$ on 5 th trial $\mid F F F F)=\frac{10}{16}=0.625$

Binomial or Not? — Restaurants (2)

- $P(S$ on first trial $)=\frac{10}{20}=0.5$
- $P(S$ on $2 n d$ trial | S on 1 st trial $)=\frac{9}{19}$
- $P(S$ on 2 nd trial | F on 1 st trial $)=\frac{10}{19}$
- $P(S$ on 5 th trial | FFFF $)=\frac{10}{16}=0.625$
- $P(S$ on 5 th trial $\mid S S S S)=\frac{6}{16}=0.375$

Binomial or Not? — Restaurants (2)

- $P(S$ on first trial $)=\frac{10}{20}=0.5$
- $P(S$ on $2 n d$ trial | S on 1 st trial $)=\frac{9}{19}$
- $P(S$ on $2 n d$ trial | F on 1 st trial $)=\frac{10}{19}$
- $P(S$ on 5 th trial | FFFF $)=\frac{10}{16}=0.625$
- $P(S$ on 5 th trial | SSSS $)=\frac{6}{16}=0.375$
- Trials are NOT independent since the selection are made without replacement.

Binomial or Not — UC Undergrads

50 UC undergrads are randomly selected and each of them is asked whether he/she has a driver's licence. Suppose 4000 of the 5000 UC undergrads have driver's licence. Let X be the number who reply yes. Is X binomial?

Binomial or Not — UC Undergrads

50 UC undergrads are randomly selected and each of them is asked whether he/she has a driver's licence. Suppose 4000 of the 5000 UC undergrads have driver's licence. Let X be the number who reply yes. Is X binomial?

- a trial: a randomly selected student reply yes $=\mathrm{S}$ or no $=\mathrm{F}$
- number of trials $n=50$

Binomial or Not — UC Undergrads

50 UC undergrads are randomly selected and each of them is asked whether he/she has a driver's licence. Suppose 4000 of the 5000 UC undergrads have driver's licence. Let X be the number who reply yes. Is X binomial?

- a trial: a randomly selected student reply yes $=$ S or no $=F$
- number of trials $n=50$
- Strictly speaking, NOT binomial, since selection are made without replacement - trials are dependent. However,...
- $P(S$ on first trial $)=\frac{4000}{5000}=0.8$
- $P(S$ on first trial $)=\frac{4000}{5000}=0.8$
- $\mathrm{P}(\mathrm{S}$ on 2 nd trial | S on 1 st trial $)=\frac{3999}{4999} \approx 0.79996$
- $P(S$ on first trial $)=\frac{4000}{5000}=0.8$
- $\mathrm{P}(\mathrm{S}$ on 2 nd trial | S on 1 st trial $)=\frac{3999}{4999} \approx 0.79996$
- $\mathrm{P}(\mathrm{S}$ on 2 nd trial | F on 1 st trial $)=\frac{4000}{4999} \approx 0.80016$
- $P(S$ on first trial $)=\frac{4000}{5000}=0.8$
- $\mathrm{P}(\mathrm{S}$ on 2 nd trial | S on 1st trial $)=\frac{3999}{4999} \approx 0.79996$
- $\mathrm{P}(\mathrm{S}$ on 2 nd trial | F on 1st trial $)=\frac{4000}{4999} \approx 0.80016$
- $\mathrm{P}(\mathrm{S}$ on 50 th trial | all S up to 49 th $)=\frac{3951}{4951} \approx 0.7980$
- $P(S$ on first trial $)=\frac{4000}{5000}=0.8$
- $\mathrm{P}(\mathrm{S}$ on 2 nd trial | S on 1 st trial $)=\frac{3999}{4999} \approx 0.79996$
- $\mathrm{P}(\mathrm{S}$ on 2 nd trial | F on 1st trial $)=\frac{4000}{4999} \approx 0.80016$
- $\mathrm{P}(\mathrm{S}$ on 50 th trial | all S up to 49 th $)=\frac{3951}{4951} \approx 0.7980$
- $\mathrm{P}(\mathrm{S}$ on 50 th trial | all F up to 49 th $)=\frac{4000}{4951} \approx 0.8079$
- $P(S$ on first trial $)=\frac{4000}{5000}=0.8$
- $\mathrm{P}(\mathrm{S}$ on 2 nd trial | S on 1 st trial $)=\frac{3999}{4999} \approx 0.79996$
- $\mathrm{P}(\mathrm{S}$ on 2 nd trial | F on 1 st trial $)=\frac{4000}{4999} \approx 0.80016$
- $\mathrm{P}(\mathrm{S}$ on 50 th trial | all S up to 49 th $)=\frac{3951}{4951} \approx 0.7980$
- $\mathrm{P}(\mathrm{S}$ on 50 th trial | all F up to 49 th $)=\frac{4000}{4951} \approx 0.8079$
- $P(S$ on 50 th trial | n S's up to 49 th $)=\frac{4000-n}{4951}$
- $P(S$ on first trial $)=\frac{4000}{5000}=0.8$
- $\mathrm{P}(\mathrm{S}$ on 2 nd trial | S on 1st trial $)=\frac{3999}{4999} \approx 0.79996$
- $\mathrm{P}(\mathrm{S}$ on 2 nd trial | F on 1 st trial $)=\frac{4000}{4999} \approx 0.80016$
- $\mathrm{P}(\mathrm{S}$ on 50 th trial | all S up to 49 th $)=\frac{3951}{4951} \approx 0.7980$
- $\mathrm{P}(\mathrm{S}$ on 50 th trial | all F up to 49 th $)=\frac{4000}{4951} \approx 0.8079$
- $\mathrm{P}(\mathrm{S}$ on 50 th trial | n S's up to 49 th $)=\frac{4000-n}{4951}$
- Since the sample size 50 is only 1% of the population size (5000), the 50 draws has little effect on the makeup of the population. $P(S)$ stays close to 0.8 regardless of the outcome of prior draws. Trials are nearly independent
- $P(S$ on first trial $)=\frac{4000}{5000}=0.8$
- $\mathrm{P}(\mathrm{S}$ on 2 nd trial | S on 1st trial $)=\frac{3999}{4999} \approx 0.79996$
- $\mathrm{P}(\mathrm{S}$ on 2 nd trial | F on 1 st trial $)=\frac{4000}{4999} \approx 0.80016$
- $\mathrm{P}(\mathrm{S}$ on 50 th trial | all S up to 49 th $)=\frac{3951}{4951} \approx 0.7980$
- $\mathrm{P}(\mathrm{S}$ on 50 th trial | all F up to 49 th $)=\frac{4000}{4951} \approx 0.8079$
- $\mathrm{P}(\mathrm{S}$ on 50 th trial | n S's up to 49 th $)=\frac{4000-n}{4951}$
- Since the sample size 50 is only 1% of the population size (5000), the 50 draws has little effect on the makeup of the population. $P(S)$ stays close to 0.8 regardless of the outcome of prior draws. Trials are nearly independent
- $P(S$ on first trial $)=\frac{4000}{5000}=0.8$
- $\mathrm{P}(\mathrm{S}$ on 2 nd trial | S on 1st trial $)=\frac{3999}{4999} \approx 0.79996$
- $\mathrm{P}(\mathrm{S}$ on 2 nd trial | F on 1 st trial $)=\frac{4000}{4999} \approx 0.80016$
- $\mathrm{P}(\mathrm{S}$ on 50 th trial | all S up to 49 th $)=\frac{3951}{4951} \approx 0.7980$
- $\mathrm{P}(\mathrm{S}$ on 50 th trial | all F up to 49 th $)=\frac{4000}{4951} \approx 0.8079$
- $\mathrm{P}(\mathrm{S}$ on 50 th trial | n S's up to 49 th $)=\frac{4000-n}{4951}$
- Since the sample size 50 is only 1% of the population size (5000), the 50 draws has little effect on the makeup of the population. $P(S)$ stays close to 0.8 regardless of the outcome of prior draws. Trials are nearly independent
- So X is approx. binomial, $\operatorname{Bin}(n=50, p=0.8)$.

Rule: Approx. Binomial or Not When Sampling w/o Replace-

 mentConsider sampling without replacement from a dichotomous population of size N. If the sample size (number of trials) n is at most 5% of the population size, the experiment can be analyzed as though it were exactly a binomial experiment.

