STAT 234 Lecture 4 Expected Values of Discrete Random Variables Section 3.3

Yibi Huang
Department of Statistics
University of Chicago

Random Variable \& Probability Mass Function (Review)

A random variable is a real-valued function on the sample space S and maps elements of S, ω, to real numbers.

$$
\begin{array}{ll}
S & X \\
\omega & \mathbb{R} \\
\omega & x=X(\omega)
\end{array}
$$

The probability mass function (mf) of a random variable X is a function $p(x)$ that maps each possible value x_{i} to the corresponding probability $P\left(X=x_{i}\right)$.

- A pmf $p(x)$ must satisfy $0 \leq p(x) \leq 1$ and $\sum_{x} p(x)=1$.

Example: Geometric Distribution

Let X be the number of tosses required to obtain the first heads, when tossing a coin with a probability of p to land heads.

The pmf of X is The pmf of X is

if x is a positive integer and $p(x)=0$ if not.

- We say X has a geometric distribution since the pmf is a geometric sequence
- Does $\sum_{x=1}^{\infty} p(x)=1$?

Example: Geometric Distribution (Cont'd)

Does $\sum_{x=1}^{\infty} p(x)=\sum_{x=1}^{\infty}(1-p)^{x-1} p=1$?

Example: Geometric Distribution (Cont'd)

Does $\sum_{x=1}^{\infty} p(x)=\sum_{x=1}^{\infty}(1-p)^{x-1} p=1$?
Recall the geometric sum

$$
\begin{aligned}
\sum_{k=0}^{\infty} a r^{k} & =a+a r+a r^{2}+\cdots a r^{k}+\cdots \\
& =\frac{a}{1-r} \quad \text { if }|r|<1
\end{aligned}
$$

Example: Geometric Distribution (Cont'd)

Does $\sum_{x=1}^{\infty} p(x)=\sum_{x=1}^{\infty}(1-p)^{x-1} p=1$?
Recall the geometric sum

$$
\begin{aligned}
\sum_{k=0}^{\infty} a r^{k} & =a+a r+a r^{2}+\cdots a r^{k}+\cdots \\
& =\frac{a}{1-r} \quad \text { if }|r|<1
\end{aligned}
$$

The sum of the pmf of the geometric distribution

$$
\begin{aligned}
\sum_{x=1}^{\infty} p(x) & =\sum_{x=1}^{\infty}(1-p)^{x-1} p \\
& =p+(1-p) p+(1-p)^{2} p+\cdots+(1-p)^{x-1} p+\cdots
\end{aligned}
$$

is simply the case that $a=p$ and $r=1-p$ and hence the sum is

$$
\frac{a}{1-r}=\frac{p}{1-(1-p)}=\frac{p}{p}=1 .
$$

Example: A Card Game

Consider a card game that you draw ONE card from a well-shuffled deck of cards. You win

- \$1 if you draw a heart,
- \$5 if you draw an ace (including the ace of hearts),
- \$10 if you draw the king of spades and
- \$0 for any other card you draw.

What's the pmf of your reward X ?

Example: A Card Game

Consider a card game that you draw ONE card from a well-shuffled deck of cards. You win

- \$1 if you draw a heart,
- \$5 if you draw an ace (including the ace of hearts),
- \$10 if you draw the king of spades and
- \$0 for any other card you draw.

What's the pmf of your reward X ?

| Outcome | x | $p(x)$ |
| :--- | ---: | :---: | :--- |
| Heart (not ace) | 1 | $12 / 52$ |
| Ace | 5 | $4 / 52$ |
| King of spades | 10 | $1 / 52$ |
| All else | 0 | $35 / 52$ |\(\Rightarrow \quad p(x)= \begin{cases}35 / 52 \& if x=0

12 / 52 \& if x=1

4 / 52 \& if x=5

1 / 52 \& if x=10

0 \& for all other values of x\end{cases}\)

Expected Value of a Random
Variable

Expected Value = Expectation = Mean

Let X be a discrete random variable with pmf $p(x)$. The expected value or the expectation or the mean of X, denoted by $\mathrm{E}[X]$, or μ is a weighted average of the possible values of X, where the weights are the probabilities of those values.

$$
\begin{aligned}
\mu & =\mathrm{E}[X] \\
& =\sum_{\text {all } x} x P(X=x) \\
& =\sum_{\text {all } x} x p(x)
\end{aligned}
$$

Example: Card Game - Expected Value

$$
\begin{aligned}
& p(x)= \begin{cases}35 / 52 & \text { if } x=0 \\
12 / 52 & \text { if } x=1 \\
4 / 52 & \text { if } x=5 \\
1 / 52 & \text { if } x=10 \\
0 & \text { if } x \neq 0,1,5,10\end{cases} \\
& \mathrm{E}[X]=\sum_{x} x p(x)=0 \times \frac{35}{52}+1 \times \frac{12}{52}+5 \times \frac{4}{52}+10 \times \frac{1}{52}=\frac{42}{52} \approx 0.81 \\
& \left.\begin{array}{l}
\text { un } \\
0.6 \\
0.5 \\
0.4 \\
0.3 \\
0.2-1 \\
0.1 \\
0.0
\end{array}\right)
\end{aligned}
$$

Interpretation of the Expected Value

If one plays the card game 5200 times(where the card is drawn with replacement),then in the 5200 games, he is expected to get

- \$10 about 100 times (why?)
- \$5 about 400 times
- \$1 about 1200 times
- \$0 about 3500 times

His average reward in the 5200 games is hence about

$$
\begin{aligned}
& \frac{100 \times \$ 10+400 \times \$ 5+1200 \times \$ 1+3500 \times \$ 0}{5200} \\
& =\frac{100}{5200} \times \$ 10+\frac{400}{5200} \times \$ 5+\frac{1200}{5200} \times \$ 1+\frac{3500}{5200} \times \$ 0 \\
& =\frac{1}{52} \times \$ 10+\frac{4}{52} \times \$ 5+\frac{12}{52} \times \$ 1+\frac{35}{52} \times \$ 0=\sum_{x} p(x) x=\$ \frac{42}{52} \approx \$ 0.81
\end{aligned}
$$

So the long run average reward in a game is just the expected value.

Fair Game

For the card game we have discussed so far,

- will you play the game if it costs $\$ 1$ to play once?
- will you play the game if it costs 50 cents to play once?
- what is the maximum amount you would be willing to pay to play this game?

Fair Game

For the card game we have discussed so far,

- will you play the game if it costs $\$ 1$ to play once?
- will you play the game if it costs 50 cents to play once?
- what is the maximum amount you would be willing to pay to play this game?

A fair game is defined as a game that costs as much as its expected payout, i.e. expected profit is 0 .

Expected Value of the Geometric Distribution

Recall the pmf of the Geometric distribution is $p(x)=(1-p)^{x-1} p$ for $x=1,2,3, \ldots$. Find the expected value

$$
\sum_{x} x p(x)=\sum_{x=1}^{\infty} x(1-p)^{x-1} p
$$

Sol. Recall the geometric sum

$$
\sum_{k=0}^{\infty} a r^{k}=\frac{a}{1-r} \quad \text { if }|r|<1
$$

Differentiate both sides of the identity above with respect to r, we get another identity

$$
\begin{aligned}
\frac{d}{d r} \sum_{k=0}^{\infty} a r^{k} & =\frac{d}{d r} \frac{a}{1-r} \\
\sum_{k=1}^{\infty} a k r^{k-1} & =\frac{a}{(1-r)^{2}}
\end{aligned}
$$

Expected Value of the Geometric Distribution (Cont'd)

Observe the expected value

$$
\begin{aligned}
\mathrm{E}(X) & =\sum_{x=0}^{\infty} x p(x)=\sum_{x=1}^{\infty} x p(x) \quad\binom{\text { can ignore } x=0 \text { since }}{x p(x)=0 \text { when } x=0} \\
& =\sum_{x=1}^{\infty} x(1-p)^{x-1} p
\end{aligned}
$$

is simply the second identity above when $a=p$ and $r=1-p$, and hence the expected value is

$$
\frac{a}{(1-r)^{2}}=\frac{p}{(1-(1-p))^{2}}=\frac{p}{p^{2}}=\frac{1}{p}
$$

Expected Value of a Function of a Random Variable

Functions of a Random Variable

Example 1 (Card Game w/ Tax). Suppose it costs 50 cents $=\$ 0.5$ to play the game and the player has to pay 10% of the reward as tax. One's net profit from the game is

	Reward
Outcome	X
Heart (not ace)	1
Ace	5
King of spades	10
All else	0

The net profit of the game is hence $h(X)=0.9 X-0.5$.
Example 2. (Card Game w/ a new Tax Rule) Suppose the tax is $0.02 X^{2}$ dollars for a reward of X dollars. (So those who earn more pay a higher percentage of their rewards as tax). Then the next profit is

$$
h(X)=X-0.02 X^{2}-0.5 .
$$

Expected Value of a Function of a Random Variable

In addition to the expected value of a random variable X itself, we might be also interested in the expected value of a function of a random variable $h(X)$, e.g.,

- the net profit from the card game $h(X)=0.9 X-0.5$
- the net profit from the card game $h(X)=X-0.02 X^{2}-0.5$ with a new tax rule

Definition: If the pmf of X is $p_{X}(x)$, the expected value of $h(X)$ is

$$
\mathrm{E}[h(X)]=\sum_{x} h(x) p_{X}(x)
$$

Example 1 (Card Game w/ Tax)

One's expected net profit from the game is

$$
\begin{aligned}
\mathrm{E}[h(X)] & =\sum_{x} h(x) p(x) \quad 0 \quad|35 / 52| 0.9 \cdot 0-0 \\
& =0.4 \times \frac{12}{52}+4.0 \times \frac{4}{52}+8.5 \times \frac{1}{52}+(-0.5) \times \frac{35}{52} \\
& =\frac{11.8}{52} \approx 0.227
\end{aligned}
$$

Reward	pmf	Net Profit
x	$p(x)$	$h(x)=0.9 x-0.5$
1	$12 / 52$	$0.9 \cdot 1-0.5=0.4$
5	$4 / 52$	$0.9 \cdot 5-0.5=4.0$
10	$1 / 52$	$0.9 \cdot 10-0.5=8.5$
0	$35 / 52$	$0.9 \cdot 0-0.5=-0.5$

Variance of a Random Variable

Variance of a Random Variable

One measure of spread of a random variable (or its probability distribution) is the variance.

The variance of a random variable X, denoted as σ_{X}^{2} or $V(X)$ is defined as the average squared distance from the mean.

$$
\operatorname{Var}(X)=\sigma^{2}=\text { "sigma squared" }=\mathrm{E}\left[(X-\mu)^{2}\right]
$$

Variance is in squared units. Square root of the variance is the standard deviation (SD).

$$
\mathrm{SD}(X)=\sigma=\sqrt{\operatorname{Var}(X)}
$$

Example (Card Game)

Recall for the card game reward X :

$$
\text { pmf: } \begin{array}{c|cccc}
x & 0 & 1 & 5 & 10 \\
\hline p(x) & \frac{35}{52} & \frac{12}{52} & \frac{4}{52} & \frac{1}{52}
\end{array}, \quad \text { and mean }=\mu=\mathrm{E}(X)=\frac{42}{52} .
$$

Its variance is hence,

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathrm{E}\left[(X-\mu)^{2}\right]=\mathrm{E}\left[\left(X-\frac{42}{52}\right)^{2}\right]=\sum_{x}\left(x-\frac{42}{52}\right)^{2} p(x) \\
& =\left(0-\frac{42}{52}\right)^{2} \cdot \frac{35}{52}+\left(1-\frac{42}{52}\right)^{2} \cdot \frac{12}{52}+\left(5-\frac{42}{52}\right)^{2} \cdot \frac{4}{52}+\left(10-\frac{42}{52}\right)^{2} \cdot \frac{1}{52} \\
& =\frac{9260}{52^{2}} \approx 3.42
\end{aligned}
$$

$\mathrm{SD}(X)=\sqrt{\operatorname{Var}(X)}=\sqrt{\frac{9260}{52^{2}}} \approx \sqrt{3.42} \approx 1.85$.

Example (Card Game)

Recall for the card game reward X :

$$
\text { pmf: } \begin{array}{c|cccc}
x & 0 & 1 & 5 & 10 \\
\hline p(x) & \frac{35}{52} & \frac{12}{52} & \frac{4}{52} & \frac{1}{52}
\end{array}, \quad \text { and mean }=\mu=\mathrm{E}(X)=\frac{42}{52} .
$$

Its variance is hence,

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathrm{E}\left[(X-\mu)^{2}\right]=\mathrm{E}\left[\left(X-\frac{42}{52}\right)^{2}\right]=\sum_{x}\left(x-\frac{42}{52}\right)^{2} p(x) \\
& =\left(0-\frac{42}{52}\right)^{2} \cdot \frac{35}{52}+\left(1-\frac{42}{52}\right)^{2} \cdot \frac{12}{52}+\left(5-\frac{42}{52}\right)^{2} \cdot \frac{4}{52}+\left(10-\frac{42}{52}\right)^{2} \cdot \frac{1}{52} \\
& =\frac{9260}{52^{2}} \approx 3.42
\end{aligned}
$$

$\mathrm{SD}(X)=\sqrt{\operatorname{Var}(X)}=\sqrt{\frac{9260}{52^{2}}} \approx \sqrt{3.42} \approx 1.85$.
Observe the computation of the variance can be awkward if the expected value μ is not an integer.

A Shortcut Formula for Calculating Variance

$$
\operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)^{2}\right]=\mathrm{E}\left(X^{2}\right)-\mu^{2}
$$

Proof.

$$
\begin{aligned}
\mathrm{E}\left[(X-\mu)^{2}\right] & =\underbrace{}_{x}(x-\mu)^{2} p(x) \\
& = \\
& =\underbrace{\sum_{x}}= \\
& =
\end{aligned}
$$

A Shortcut Formula for Calculating Variance

$$
\operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)^{2}\right]=\mathrm{E}\left(X^{2}\right)-\mu^{2}
$$

Proof.

$$
\begin{aligned}
\mathrm{E}\left[(X-\mu)^{2}\right] & =\sum_{x}(x-\mu)^{2} p(x) \\
& =\underbrace{\sum_{x}\left(x^{2}-2 \mu x+\mu^{2}\right) p(x)} \\
& =\underbrace{\sum^{2}} \\
& =\quad=
\end{aligned}
$$

A Shortcut Formula for Calculating Variance

$$
\operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)^{2}\right]=\mathrm{E}\left(X^{2}\right)-\mu^{2}
$$

Proof.

$$
\begin{aligned}
\mathrm{E}\left[(X-\mu)^{2}\right] & =\sum_{x}(x-\mu)^{2} p(x) \\
& =\sum_{x}\left(x^{2}-2 \mu x+\mu^{2}\right) p(x) \\
& =\underbrace{\sum_{x} x^{2} p(x)}-2 \mu \underbrace{\sum_{x} x p(x)}+\mu^{2} \underbrace{\sum_{x} p(x)} \\
& =\quad=
\end{aligned}
$$

A Shortcut Formula for Calculating Variance

$$
\operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)^{2}\right]=\mathrm{E}\left(X^{2}\right)-\mu^{2}
$$

Proof.

$$
\begin{aligned}
\mathrm{E}\left[(X-\mu)^{2}\right] & =\sum_{x}(x-\mu)^{2} p(x) \\
& =\sum_{x}\left(x^{2}-2 \mu x+\mu^{2}\right) p(x) \\
& =\underbrace{\sum_{x} x^{2} p(x)}_{=\mathrm{E}\left(X^{2}\right)}-2 \mu \underbrace{\sum_{x} x p(x)}+\mu^{2} \underbrace{\sum_{x} p(x)} \\
& =\quad=
\end{aligned}
$$

A Shortcut Formula for Calculating Variance

$$
\operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)^{2}\right]=\mathrm{E}\left(X^{2}\right)-\mu^{2}
$$

Proof.

$$
\begin{aligned}
\mathrm{E}\left[(X-\mu)^{2}\right] & =\sum_{x}(x-\mu)^{2} p(x) \\
& =\sum_{x}\left(x^{2}-2 \mu x+\mu^{2}\right) p(x) \\
& =\underbrace{\sum_{x} x^{2} p(x)}_{=\mathrm{E}\left(X^{2}\right)}-2 \mu \underbrace{\sum_{x} x p(x)}_{=\mu}+\mu^{2} \underbrace{\sum_{x} p(x)} \\
& =\quad=
\end{aligned}
$$

A Shortcut Formula for Calculating Variance

$$
\operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)^{2}\right]=\mathrm{E}\left(X^{2}\right)-\mu^{2}
$$

Proof.

$$
\begin{aligned}
\mathrm{E}\left[(X-\mu)^{2}\right] & =\sum_{x}(x-\mu)^{2} p(x) \\
& =\sum_{x}\left(x^{2}-2 \mu x+\mu^{2}\right) p(x) \\
& =\underbrace{\sum_{x} x^{2} p(x)}_{=\mathrm{E}\left(X^{2}\right)}-2 \mu \underbrace{\sum_{x} x p(x)}_{=\mu}+\mu^{2} \underbrace{\sum_{x} p(x)}_{=1} \\
& =\quad=
\end{aligned}
$$

A Shortcut Formula for Calculating Variance

$$
\operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)^{2}\right]=\mathrm{E}\left(X^{2}\right)-\mu^{2}
$$

Proof.

$$
\begin{aligned}
\mathrm{E}\left[(X-\mu)^{2}\right] & =\sum_{x}(x-\mu)^{2} p(x) \\
& =\sum_{x}\left(x^{2}-2 \mu x+\mu^{2}\right) p(x) \\
& =\underbrace{\sum_{x} x^{2} p(x)}_{=\mathrm{E}\left(X^{2}\right)}-2 \mu \underbrace{\sum_{x} x p(x)}_{=\mu}+\mu^{2} \underbrace{\sum_{x} p(x)}_{=1} \\
& =\mathrm{E}\left(X^{2}\right)-2 \mu^{2}+\mu^{2}=
\end{aligned}
$$

A Shortcut Formula for Calculating Variance

$$
\operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)^{2}\right]=\mathrm{E}\left(X^{2}\right)-\mu^{2}
$$

Proof.

$$
\begin{aligned}
\mathrm{E}\left[(X-\mu)^{2}\right] & =\sum_{x}(x-\mu)^{2} p(x) \\
& =\sum_{x}\left(x^{2}-2 \mu x+\mu^{2}\right) p(x) \\
& =\underbrace{\sum_{x} x^{2} p(x)}_{=\mathrm{E}\left(X^{2}\right)}-2 \mu \underbrace{\sum_{x} x p(x)}_{=\mu}+\mu^{2} \underbrace{\sum_{x} p(x)}_{=1} \\
& =\mathrm{E}\left(X^{2}\right)-2 \mu^{2}+\mu^{2}=\mathrm{E}\left(X^{2}\right)-\mu^{2}
\end{aligned}
$$

Example (Card Game)

x	0	1	5	10
$p(x)$	$35 / 52$	$12 / 52$	$4 / 52$	$1 / 52$

Let's calculate the variance again using the shortcut formula $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mu^{2}$. First we calculate $\mathrm{E}\left[X^{2}\right]$

$$
\mathrm{E}\left[X^{2}\right]=0^{2} \cdot \frac{35}{52}+1^{2} \cdot \frac{12}{52}+5^{2} \cdot \frac{4}{52}+10^{2} \cdot \frac{1}{52}=\frac{212}{52}
$$

and the variance is hence

$$
\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mu^{2}=\frac{212}{52}-\left(\frac{42}{52}\right)^{2}=\frac{9260}{52^{2}}
$$

which resembles our previous calculation.

Linear Transformation of a Random Variable

Linear Transformation of a Random Variable

Linear transformation of a random variable $h(X)=a X+b$ is also a function of interest, e.g.,

- The net profit $h(X)=X-0.1 X-0.5=0.9 X-0.5$ from the Card Game w/ tax

For $Y=a X+b$, we can show that

$$
\mathrm{E}(a X+b)=a \mathrm{E}(X)+b, \quad \text { and } \quad \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

Before we get to the proofs.
Let's review properties of summation.

Review: Summation Notation and Its Properties

In the following, a is a fixed constant.

$$
\begin{aligned}
\sum_{i=1}^{n} a & =(\underbrace{a+a+\cdots+a}_{n \text { copies }})=n a \\
\sum_{i=1}^{n}\left(a x_{i}\right) & =a x_{1}+a x_{2}+\cdots+a x_{n} \\
& =a\left(x_{1}+x_{2}+\cdots+x_{n}\right) \\
& =a \sum_{i=1}^{n} x_{i} \\
\sum_{i=1}^{n}\left(x_{i}+y_{i}\right) & =\left(x_{1}+y_{1}\right)+\left(x_{2}+y_{2}\right)+\cdots+\left(x_{n}+y_{n}\right) \\
& =\left(x_{1}+x_{2}+\cdots+x_{n}\right)+\left(y_{1}+y_{2}+\cdots+y_{n}\right) \\
& =\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} y_{i}
\end{aligned}
$$

Proof of $\mathrm{E}(a X+b)=a \mathrm{E}(X)+b$

We prove it for the case that X is discrete with pmf $p(x) . \backslash$ This relation is also true when X is continuous.

$$
\begin{array}{rlr}
& \mathrm{E}(a X+b) & \\
= & \sum_{x}(a x+b) p(x) & \text { (definition of } \mathrm{E}(a X+b)) \\
= & \sum_{x}(a x p(x)+b p(x)) & \\
=\sum_{x} a x p(x)+\sum_{x} b p(x) & \left(\text { since } \sum_{i=1}^{n}\left(x_{i}+y_{i}\right)=\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} y_{i}\right) \\
= & a \underbrace{\sum_{x} x p(x)}_{=\mathrm{E}(X)}+b \underbrace{\sum_{x} p(x)}_{=1} & \quad\left(\text { since } \sum_{i=1}^{n}\left(a x_{i}\right)=a \sum_{i=1}^{n} x_{i}\right) \\
= & a E(X)+b &
\end{array}
$$

Proof of $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Recall $\operatorname{Var}(Y)$ is the expected value of $[Y-\mathrm{E}(Y)]^{2}$.

Proof of $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Recall $\operatorname{Var}(Y)$ is the expected value of $[Y-\mathrm{E}(Y)]^{2}$.
For $Y=a X+b$, we have proved that $\mathrm{E}(Y)=E(a X+b)=a \mu+b$, where $\mu=\mathrm{E}(X)$ and hence

$$
[Y-\mathrm{E}(Y)]^{2}=[(a X+b)-\mathrm{E}(a X+b)]^{2}=[a X+b-(a \mu+b)]^{2}=a^{2}(X-\mu)^{2} .
$$

Proof of $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Recall $\operatorname{Var}(Y)$ is the expected value of $[Y-\mathrm{E}(Y)]^{2}$.
For $Y=a X+b$, we have proved that $\mathrm{E}(Y)=E(a X+b)=a \mu+b$, where $\mu=\mathrm{E}(X)$ and hence

$$
[Y-\mathrm{E}(Y)]^{2}=[(a X+b)-\mathrm{E}(a X+b)]^{2}=[a X+b-(a \mu+b)]^{2}=a^{2}(X-\mu)^{2} .
$$

Taking expected value of the above we get

$$
\mathrm{E}[Y-\mathrm{E}(Y)]^{2}=E\left[a^{2}(X-\mu)^{2}\right]
$$

Proof of $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Recall $\operatorname{Var}(Y)$ is the expected value of $[Y-\mathrm{E}(Y)]^{2}$.
For $Y=a X+b$, we have proved that $\mathrm{E}(Y)=E(a X+b)=a \mu+b$, where $\mu=\mathrm{E}(X)$ and hence

$$
[Y-\mathrm{E}(Y)]^{2}=[(a X+b)-\mathrm{E}(a X+b)]^{2}=[a X+b-(a \mu+b)]^{2}=a^{2}(X-\mu)^{2} .
$$

Taking expected value of the above we get

Proof of $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Recall $\operatorname{Var}(Y)$ is the expected value of $[Y-\mathrm{E}(Y)]^{2}$.
For $Y=a X+b$, we have proved that $\mathrm{E}(Y)=E(a X+b)=a \mu+b$, where $\mu=\mathrm{E}(X)$ and hence

$$
[Y-\mathrm{E}(Y)]^{2}=[(a X+b)-\mathrm{E}(a X+b)]^{2}=[a X+b-(a \mu+b)]^{2}=a^{2}(X-\mu)^{2} .
$$

Taking expected value of the above we get

in which the step $\mathrm{E}\left[a^{2}(X-\mu)^{2}\right]=a^{2} \mathrm{E}\left[(X-\mathrm{E}(X))^{2}\right]$ is justified using $\mathrm{E}[c W+d]=c \mathrm{E}[W]+d$ we just proved with $c=a^{2}, W=(X-E(X))^{2}$, and $d=0$.

Proof of $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Recall $\operatorname{Var}(Y)$ is the expected value of $[Y-\mathrm{E}(Y)]^{2}$.
For $Y=a X+b$, we have proved that $\mathrm{E}(Y)=E(a X+b)=a \mu+b$, where $\mu=\mathrm{E}(X)$ and hence

$$
[Y-\mathrm{E}(Y)]^{2}=[(a X+b)-\mathrm{E}(a X+b)]^{2}=[a X+b-(a \mu+b)]^{2}=a^{2}(X-\mu)^{2} .
$$

Taking expected value of the above we get

in which the step $\mathrm{E}\left[a^{2}(X-\mu)^{2}\right]=a^{2} \mathrm{E}\left[(X-\mathrm{E}(X))^{2}\right]$ is justified using $\mathrm{E}[c W+d]=c \mathrm{E}[W]+d$ we just proved with $c=a^{2}, W=(X-E(X))^{2}$, and $d=0$.

Example (Card Game w/ Tax)

For the Card Game, recall the mean and variance of the reward X are

$$
\mathrm{E}(X)=\frac{42}{52}, \quad \operatorname{Var}(X)=\frac{9620}{52^{2}}
$$

The mean and variance of the net profit with tax $h(X)=0.9 X-0.5$ are

$$
\begin{aligned}
\mathrm{E}(0.9 X-0.5) & =0.9 \mathrm{E}(X)-0.5=0.9 \times \frac{42}{52}-0.5=\frac{11.8}{52} \\
\operatorname{Var}(0.9 X-0.5) & =0.9^{2} \operatorname{Var}(X)=0.9^{2} \times \frac{9620}{52^{2}}=\frac{7792.2}{52}
\end{aligned}
$$

