STAT 234 Lecture 3A Bayes Theorem

Yibi Huang
Department of Statistics
University of Chicago

Reminder

- Lab 1 is at 7-8 pm on Monday, 10/3 on Zoom, See Canvas Announcement for Zoom Link
- Office Hour schedule posted on Canvas https://canvas.uchicago.edu/courses/45317/pages/office-hours-and-lab-sessions
- HW1 due Wed 10/5
- HW2 due Fri 10/7
- Additional practice problems on Probability: See
https://canvas.uchicago.edu/courses/45317/pages/lecture-slides-and-videos-10-30-section

Review

- Probability Axioms
- Complementation Rule: $P\left(A^{c}\right)=1-P(A)$
- General Addition Rule: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- Conditional Probability: $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$ if $P(B)>0$.
- or calculate by restricting the sample space
- General Multiplication Rule: $P(A \cap B)=P(A) \times P(B \mid A)$
- Independence: Events A and B are independent if

$$
P(A \mid B)=P(A)
$$

- Multiplication Rule for Independent events:

$$
P(A \cap B)=P(A) \times P(B) \quad \text { if } A, B \text { are indep. }
$$

Abuse of the Multiplication Rule

As estimated in 2020, of the U.S. population,

- 2.0\% were 85 or older, and
- 49.5% were male.

True or False and explain: $0.495 \times 0.02 \approx 1 \%$ of the U.S. population are males and age 85+.

Abuse of the Multiplication Rule

As estimated in 2020, of the U.S. population,

- 2.0% were 85 or older, and
- 49.5% were male.

True or False and explain: $0.495 \times 0.02 \approx 1 \%$ of the U.S. population are males and age 85+.

False, Age and Gender are dependent.
In particular, as women on average live longer than men, there are more old women than old men.

Among 85+ year-olds, only 36.5\% are male, not 49.5\%.
Of the U.S. population in 2020, only

$$
P(M \cap 85+)=P(85+) P(M \mid 85+)=0.02 \times 0.365 \approx 0.0073=0.73 \%
$$

were males age 85+.

Tree Diagrams and Bayes' Theorem

Example - A Nervous Job Applicant

Suppose an job applicant has been invited for an interview.
The probability

- that he is nervous is $P(N)=0.7$,
- of successful interview given he is nervous is $P(S \mid N)=0.2$,
- of successful interview given he is not nervous is

$$
P\left(S \mid N^{c}\right)=0.9
$$

What is the probability that the interview is successful?

$$
\begin{aligned}
P(S) & =P(S \cap N)+P\left(S \cap N^{c}\right) \\
& =P(N) P(S \mid N)+P\left(N^{c}\right) P\left(S \mid N^{c}\right) \\
& =0.7 \times 0.2+0.3 \times 0.9=0.41
\end{aligned}
$$

Tree Diagram for the Nervous Job Applicant Example

Another look at the nervous job applicant example:

Nervous Job Applicant Example Continued

Conversely, given the interview is successful, what is the probability that the job applicant is nervous during the interview?

$$
\begin{aligned}
P(N \mid S) & =\frac{P(N \cap S)}{P(S)} \\
& =\frac{P(N \cap S)}{0.41} \quad\binom{\text { where } P(S)=0.41 \text { was }}{\text { found in the previous page }} \\
& =\frac{P(N) P(S \mid N)}{0.41} \quad \text { since } P(N \cap S)=P(N) P(S \mid N) \\
& =\frac{0.7 \times 0.2}{0.41}=\frac{14}{41} \approx 0.34 .
\end{aligned}
$$

Bayes' Theorem (or Bayes' Rule)

The problem in the previous slide is an example of Bayes' Theorem.

Knowing $P(B \mid A), P\left(B \mid A^{c}\right)$, and $P(A)$, is there a way to know $P(A \mid B)$?

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Bayes' Theorem (or Bayes' Rule)

The problem in the previous slide is an example of Bayes' Theorem.

Knowing $P(B \mid A), P\left(B \mid A^{c}\right)$, and $P(A)$, is there a way to know $P(A \mid B)$?

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \cap B)}{P(B)} \\
& =\frac{P(A) P(B \mid A)}{P(B)} \quad \text { since } P(A \cap B)=P(A) P(B \mid A)
\end{aligned}
$$

Bayes' Theorem (or Bayes' Rule)

The problem in the previous slide is an example of Bayes' Theorem.

Knowing $P(B \mid A), P\left(B \mid A^{c}\right)$, and $P(A)$, is there a way to know $P(A \mid B)$?

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \cap B)}{P(B)} \\
& =\frac{P(A) P(B \mid A)}{P(B)} \quad \text { since } P(A \cap B)=P(A) P(B \mid A) \\
& =\frac{P(A) P(B \mid A)}{P(B \cap A)+P\left(B \cap A^{c}\right)} \quad \text { since } B=(B \cap A) \cup\left(B \cap A^{c}\right)
\end{aligned}
$$

Bayes' Theorem (or Bayes' Rule)

The problem in the previous slide is an example of Bayes' Theorem.

Knowing $P(B \mid A), P\left(B \mid A^{c}\right)$, and $P(A)$, is there a way to know $P(A \mid B)$?

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \cap B)}{P(B)} \\
& =\frac{P(A) P(B \mid A)}{P(B)} \quad \text { since } P(A \cap B)=P(A) P(B \mid A) \\
& =\frac{P(A) P(B \mid A)}{P(B \cap A)+P\left(B \cap A^{c}\right)} \quad \text { since } B=(B \cap A) \cup\left(B \cap A^{c}\right) \\
& =\frac{P(A) P(B \mid A)}{P(A) P(B \mid A)+P\left(A^{c}\right) P\left(B \mid A^{c}\right)}
\end{aligned}
$$

Medical Testing

A common application of Bayes' rule is in medical testing

- Let D denote the event that an individual has the disease that we are testing for

Medical Testing

A common application of Bayes' rule is in medical testing

- Let D denote the event that an individual has the disease that we are testing for
- Let $T+$ denote the event that the test result is positive, and T - denote the event that the test result is negative

Medical Testing

A common application of Bayes' rule is in medical testing

- Let D denote the event that an individual has the disease that we are testing for
- Let $T+$ denote the event that the test result is positive, and T - denote the event that the test result is negative
- $P(T+\mid D)$ is called the sensitivity of the test

Medical Testing

A common application of Bayes' rule is in medical testing

- Let D denote the event that an individual has the disease that we are testing for
- Let $T+$ denote the event that the test result is positive, and T - denote the event that the test result is negative
- $P(T+\mid D)$ is called the sensitivity of the test
- $P\left(T-\mid D^{c}\right)$ is called the specificity of the test

Medical Testing

A common application of Bayes' rule is in medical testing

- Let D denote the event that an individual has the disease that we are testing for
- Let $T+$ denote the event that the test result is positive, and T - denote the event that the test result is negative
- $P(T+\mid D)$ is called the sensitivity of the test
- $P\left(T-\mid D^{c}\right)$ is called the specificity of the test
- Ideally, we hope $P(T+\mid D)$ and $P\left(T-\mid D^{c}\right)$ both are equal to 1 . However, diagnostic tests are not perfect.
They may give false positives and false negatives.

Enzyme Immunoassay Test for HIV

- $P(T+\mid D)=0.98$ (sensitivity - positive for infected)
- $P\left(T-\mid D^{c}\right)=0.995$ (specificity - negative for not infected)
- $P(D)=1 / 300$ (prevalence of HIV in USA)

What is the probability that the tested person is infected if the test was positive?

$$
\begin{aligned}
P(D \mid T+) & =\frac{P(D) P(T+\mid D)}{P(D) P(T+\mid D)+P\left(D^{c}\right) P\left(T+\mid D^{c}\right)} \\
& =\frac{1 / 300 \times 0.98}{(1 / 300) \times 0.98+(299 / 300) \times 0.005} \\
& =39.6 \%
\end{aligned}
$$

This test is not confirmatory. Need to confirm by a second test.

Tree Diagram for the HIV Test

$$
P(D \mid T+)=\frac{(1 / 300) \times 0.98}{(1 / 300) \times 0.98+(299 / 300) \times 0.005}
$$

Bayes' Theorem for 3 or More Cases

- In the 2 examples above, we split the sample space into 2 parts A or A^{c} (nervous or not nervous, infected or not infected)
- In some cases, we need to calculate $P(B)$ by splitting it into several parts, using the law of total probability:
Suppose $A_{1}, A_{2}, \ldots, A_{k}$ are disjoint and $A_{1} \cup A_{2} \cup \cdots \cup A_{k}=S$ and $A_{i} \cap A_{j}=\emptyset$ for all $i \neq j$, then

$$
\begin{aligned}
P(B) & =P\left(B \cap A_{1}\right)+P\left(B \cap A_{2}\right)+\cdots+P\left(B \cap A_{k}\right) \\
& =P\left(A_{1}\right) P\left(B \mid A_{1}\right)+P\left(A_{2}\right) P\left(B \mid A_{2}\right)+\cdots+P\left(A_{k}\right) P\left(B \mid A_{k}\right) .
\end{aligned}
$$

Using the law of total probability, Bayes Theorem becomes

$$
P\left(A_{i} \mid B\right)=\frac{P\left(A_{i}\right) P\left(B \mid A_{i}\right)}{P\left(A_{1}\right) P\left(B \mid A_{1}\right)+P\left(A_{2}\right) P\left(B \mid A_{2}\right)+\cdots+P\left(A_{K}\right) P\left(B \mid A_{K}\right)}
$$

Exercise 58 on p. 83 of MMSA

At a gas station,

- 40% of the customers use regular gas $\left(A_{1}\right)$,
- 35\% use mid-grade gas $\left(A_{2}\right)$, and
- 25% use premium gas $\left(A_{3}\right)$.

Moreover,

- of those customers using regular gas, only 30% fill their tanks;
- of those using mid-grade, 60% fill their tanks;
- of those using premium, 50% fill their tanks.

Let B denote the event that the next customer fills the tank.

Exercise 58 on p. 83 of MMSA

At a gas station,

- 40% of the customers use regular gas $\left(A_{1}\right)$,
- 35\% use mid-grade gas $\left(A_{2}\right)$, and
- 25% use premium gas $\left(A_{3}\right)$.

Moreover,

- of those customers using regular gas, only 30% fill their tanks; $P\left(B \mid A_{1}\right)=0.3$
- of those using mid-grade, 60% fill their tanks; $P\left(B \mid A_{2}\right)=0.6$
- of those using premium, 50\% fill their tanks. $P\left(B \mid A_{3}\right)=0.5$

Let B denote the event that the next customer fills the tank.

Exercise 58 on p. 83 of MMSA - Tree Diagram

Gas Type Fill Tank?

Q1: What is the probability that the next customer request premium gas and fill the tank.

Exercise 58 on p. 83 of MMSA - Tree Diagram

Gas Type
Fill Tank?

Q1: What is the probability that the next customer request premium gas and fill the tank.

$$
P\left(A_{3} \cap B\right)=P\left(A_{3}\right) P\left(B \mid A_{3}\right)=0.25 \times 0.5=0.125
$$

Exercise 58 on p. 83 of MMSA - Tree Diagram

Gas Type Fill Tank?

Q2: What is the probability that the next customer fills the tank.

Exercise 58 on p. 83 of MMSA - Tree Diagram

Gas Type
Fill Tank?

Q2: What is the probability that the next customer fills the tank.

$$
\begin{aligned}
P(B) & =P\left(A_{1}\right) P\left(B \mid A_{1}\right)+P\left(A_{2}\right) P\left(B \mid A_{2}\right)+P\left(A_{3}\right) P\left(B \mid A_{3}\right) \\
& =0.4 \times 0.3+0.35 \times 0.6+0.25 \times 0.5=0.455
\end{aligned}
$$

Exercise 58 on p. 83 of MMSA - Tree Diagram

Gas Type Fill Tank?

Q3: If the next customer fills the tank, what is the probability that premium gas is requested?

Exercise 58 on p. 83 of MMSA - Tree Diagram

Gas Type
Fill Tank?

Q3: If the next customer fills the tank, what is the probability that premium gas is requested?

$$
P\left(A_{3} \mid B\right)=\frac{P\left(A_{3} \cap B\right)}{P(B)}=\frac{0.125}{0.455} \approx 0.275 .
$$

Draw a tree diagram!
 Don't try to memorize the formula of Bayes' Theorem.

