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Example: Coffee Brand Market Share

A survey recorded the brand choice for a sample of buyers of
instant decaffeinated coffee. At a later coffee purchase by these
subjects, the brand choice was again recorded.

Purchase High Pt Taster’s Sanka Nescafe Brim Total
First 171 75 204 36 55 541

(31.6%) (13.9%) (37.7%) (6.7%) (10.2%)
Second 135 82 231 33 60 541

(25.0%) (15.2%) (42.7%) (6.1%) (11.1%)

Question: Do the market shares of the 5 coffee brands change
between the two purchases?
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Can one test using Pearson’s X2 test, which indicates little
evidence of changes between the two purchases (P-value ≈ 0.16).

coffeetab = matrix(c(171,75,204,36,55,135,82,231,33,60),

nrow=2, byrow=TRUE)

coffeetab

[,1] [,2] [,3] [,4] [,5]

[1,] 171 75 204 36 55

[2,] 135 82 231 33 60

chisq.test(coffeetab)

Pearson's Chi-squared test

data: coffeetab

X-squared = 6.57108, df = 4, p-value = 0.16037

Paired data — each customer in the data made two purchases.
Cannot regard the two purchases as independent observations —
Pearson’s X2 test isn’t applicable
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Categorical Matched-Pairs Analyses w/ J > 2 Categories

Data: n pairs of observations (y1, y2)

(y11, y12)
(y21, y22)
(y31, y32)
...

(yn1, yn2)

Both yi1 and yi2 are categorical w/ (J > 2) categories

Data are usually summarize as a square J × J table that the (i, j)
cell is

ni j = count of pairs w/ y1 = i and y2 = j.
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Example: Coffee Brand Market Share

Data display that reflect the dependence of the two purchases:

First Second Purchase
Purchase High Pt Taster’s Sanka Nescafe Brim Total (%)
High Pt 93 17 44 7 10 171 (31.6%)
Taster’s 9 46 11 0 9 75 (13.9%)
Sanka 17 11 155 9 12 204 (37.7%)

Nescafe 6 4 9 15 2 36 ( 6.7%)
Brim 10 4 12 2 27 55 (10.2%)
Total 135 82 231 33 60 541 (100%)
(%) (25.0%) (15.2%) (42.7%) (6.1%) (11.1%)

Large cell counts on the main diagnal
⇒ Most buyers didn’t change their choice
⇒ The two purchases of a buyer are dependent
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Population probabilities:
First Second Purchase

Purchase High Pt Taster’s Sanka Nescafe Brim Total
High Pt π11 π12 π13 π14 π15 π1+

Taster’s π21 π22 π23 π24 π25 π2+

Sanka π31 π32 π33 π34 π35 π3+

Nescafe π41 π42 π43 π44 π45 π4+

Brim π51 π52 π53 π54 π55 π5+

Total π+1 π+2 π+3 π+4 π+5 1

Question: Whether the coffee brand market shares change
between the two purchases,

P(Y1 = i) = πi+ = π+i = P(Y2 = i)

for i = 1, . . . , J. under which each row marginal probability equals
the corresponding column marginal probability, called marginal
homogeneity.
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Test of Marginal Homogeneity

We will estimate πi+ − π+i by

di = π̂i+ − π̂+i =
ni+

n
−

n+i

n
, for i = 1, . . . , J.

To test (π1+, π2+, . . . , πJ+) = (π+1, π+2, . . . , π+J), we use all of

d =


d1

d2
...

dJ−1

 =

π̂1+ − π̂+1

π̂2+ − π̂+2
...

π̂(J−1)+ − π̂+(J−1)


It’s redundant to include dJsince

J∑
i=1

di =

J∑
i=1

π̂i+ −

J∑
i=1

π̂+i = 1 − 1 = 0.
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Wald Test of Marginal Homogeneity

One can show that
√

n(d − E(d)) has an asymptotic multivariate
normal distribution with the covariance matrix V with the elements
below.

Vab = n Cov(da, db) = −(πab + πba) − (πa+ − π+a)(πb+ − π+b) for a , b

Vaa = n Var(da) = πa+ + π+a − 2πaa − (πa+ − π+a)2

Wald statistic for testing the H0 of marginal homogeneity is

W = ndT V̂−1d

which has an approx. chi-squared distribution w/ df = J − 1. Here V̂
is the estimate of the covariance matrix V that πi+, π+i and πab are
estimated by

π̂i+ =
ni+

n
, π̂+i =

n+i

n
, and π̂ab =

nab

n
.
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Score Test of Marginal Homogeneity

The score test estimates the covariance matrix V under the H0 of
marginal homogeneity: πi+ = π+i using the matrix V̂0 with the
elements below

V̂ab0 = −(̂πab + π̂ba) = −
nab + nba

n
for a , b

V̂aa0 = π̂a+ + π̂+a − 2̂πaa =
na+ + n+a − 2naa

n
Score statistic for testing the H0 of marginal homogeneity is

ndT V̂−1
0 d

which has an approx. chi-squared distribution w/ df = J − 1. Here
V̂0 is the estimate of the covariance matrix V0 that πi+, π+i and πab

are estimated by

π̂i+ =
ni+

n
, π̂+i =

n+i

n
, and π̂ab =

nab

n
.
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Coffee Brand Market Share Data in R

coffee = read.table(

"http://www.stat.ufl.edu/~aa/cat/data/Coffee.dat",

header=TRUE)

# purchase = 1 for first purchase

# purchase = 0 for second purchase

person purchase y

1 1 1 1

2 1 0 1

3 2 1 1

4 2 0 1

5 3 1 1

6 3 0 1

(...)

person purchase y

1079 540 1 5

1080 540 0 5

1081 541 1 5

1082 541 0 5
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Converting Data to Wide-Format

library(reshape2)

coffee.w = dcast(coffee, person ~ purchase, value.var="y")

head(coffee.w)

person 0 1

1 1 1 1

2 2 1 1

3 3 1 1

4 4 1 1

5 5 1 1

6 6 1 1

colnames(coffee.w)[2:3] = c("y2","y1")

head(coffee.w)

person y2 y1

1 1 1 1

2 2 1 1

3 3 1 1

4 4 1 1

5 5 1 1

6 6 1 1
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# wide format to 2-way table

tab = xtabs(~y1+y2, data=coffee.w); tab

y2

y1 1 2 3 4 5

1 93 17 44 7 10

2 9 46 11 0 9

3 17 11 155 9 12

4 6 4 9 15 2

5 10 4 12 2 27

π̂ab = nab/n can be obtained as follows.

ptab = prop.table(tab); ptab

y2

y1 1 2 3 4 5

1 0.171904 0.031423 0.081331 0.012939 0.018484

2 0.016636 0.085028 0.020333 0.000000 0.016636

3 0.031423 0.020333 0.286506 0.016636 0.022181

4 0.011091 0.007394 0.016636 0.027726 0.003697

5 0.018484 0.007394 0.022181 0.003697 0.049908
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π̂a+ = na+/n

py1 = prop.table(margin.table(tab, "y1"))

py1

y1

1 2 3 4 5

0.31608 0.13863 0.37708 0.06654 0.10166

π̂+a = n+a/n

py2 = prop.table(margin.table(tab, "y2"))

py2

y2

1 2 3 4 5

0.2495 0.1516 0.4270 0.0610 0.1109
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Sample Covariance Matrix for Wald Statistic in R

V̂ab = −(̂πab + π̂ba) − (̂πa+ − π̂+a)(̂πb+ − π̂+b) for a , b

V̂aa = π̂a+ + π̂+a − 2̂πaa − (̂πa+ − π̂+a)2

J = dim(tab)[1] # J = 5 for Coffee Data

V = array(dim=c(J-1,J-1)) # creating a (J-1)x(J-1) empty array

for(a in 1:(J-1)){

for(b in 1:(a-1)){

V[a,b] = - (ptab[a,b]+ptab[b,a]) - (py1[a]-py2[a])*(py1[b]-py2[b])

V[b,a] = V[a,b]

}

V[a,a] = py1[a] + py2[a] - 2*ptab[a,a] - (py1[a]-py2[a])ˆ2

}

V # Sample covariance matrix calculated

[,1] [,2] [,3] [,4]

[1,] 0.2174 -0.047198 -0.10943 -0.024399

[2,] -0.0472 0.119980 -0.04131 -0.007322

[3,] -0.1094 -0.041311 0.22856 -0.032995

[4,] -0.0244 -0.007322 -0.03299 0.072058 14



Wald Statistic for Marginal Homogeneity

Wald statistic: W = ndT V̂−1d. Recall d =


π̂1+ − π̂+1

π̂2+ − π̂+2
...

π̂(J−1)+ − π̂+(J−1)


n = sum(tab) # n = number of customers (pairs)

d = py1[1:(J-1)] - py2[1:(J-1)]

Wald = n*t(d) %*% solve(V, d);

Wald # output is a 1x1 matrix

[,1]

[1,] 12.58

Wald = as.numeric(Wald); Wald # Convert the matrix to a number

[1] 12.58

pchisq(Wald, df=J-1, lower.tail=F) # Wald P-value

[1] 0.01354

Wald statistic is 12.5771 with df = 4, P-value = 0.0135, giving some
evidence of changes in market shares between the two purchases. 15



Sample Covariance Matrix for Score Statistic:

V̂ab0 = −(̂πab + π̂ba), V̂aa0 = π̂a+ + π̂+a − 2̂πaa

V0 = array(dim=c(J-1,J-1))

for(i in 1:(J-1)){

for(j in 1:(i-1)){

V0[i,j] = - (ptab[i,j]+ptab[j,i])

V0[j,i] = V0[i,j]

}

V0[i,i] = py1[i] + py2[i] - 2*ptab[i,i]

}

Score statistic: W0 = ndT V̂−1
0 d

Score = as.numeric(n*t(d) %*% solve(V0, d)); Score

[1] 12.29135

pchisq(Score, df=J-1, lower.tail=F)

[1] 0.01531125

Score statistic is 12.2913 with df = 4, P-value = 0.0153, giving
some evidence of changes in market shares between the two
purchases.
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mantelhaen.test() Does Score Test of Marginal Homogeneity

mantelhaen.test(xtabs(~purchase + y + person, data=coffee))

Cochran-Mantel-Haenszel test

data: xtabs(~purchase + y + person, data = coffee)

Cochran-Mantel-Haenszel Mˆ2 = 12.2913, df = 4, p-value = 0.015311

with(coffee, mantelhaen.test(purchase, y, person))

Cochran-Mantel-Haenszel test

data: purchase and y and person

Cochran-Mantel-Haenszel Mˆ2 = 12.2913, df = 4, p-value = 0.015311

Observe the CMH statistic M^2 = 12.2913 is exactly the score
statistic we computed.
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Testing the Change in One Category (1)

As Wald & Score tests indicate changes in market share between
purchases, least one of 5 brands must have πi+ , π+i.

First Second Purchase
Purchase High Pt Taster’s Sanka Nescafe Brim Total (%)
High Pt 93 17 44 7 10 171 (31.6%)
Taster’s 9 46 11 0 9 75 (13.9%)
Sanka 17 11 155 9 12 204 (37.7%)

Nescafe 6 4 9 15 2 36 ( 6.7%)
Brim 10 4 12 2 27 55 (10.2%)
Total 135 82 231 33 60 541 (100%)
(%) (25.0%) (15.2%) (42.7%) (6.1%) (11.1%)

To test the change for a given brand,
e.g., High Pt, we can combine the other
categories and use the methods of Sec-
tion 8.1.

First 2nd Purchase
Purchase High Pt Other
High Pt 93 78
Other 42 328
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First 2nd Purchase
Purchase High Pt Other
High Pt 93 78
Other 42 328

541

McNemar’s test

n12 − n21
√

n12 + n21
=

78 − 42
√

78 + 42
≈ 3.286

P-value ≈ 0.00071.

2*pnorm(3.386, lower.tail=FALSE)

[1] 0.00070919384

95% CI for π1+ − π+1

π̂1+ − π̂+1 ± 1.96SE =
n12 − n21

n
± 1.96

1
n

√
n12 + n21 −

(n12 − n21)2

n

=
78 − 42

541
± 1.96

1
541

√
78 + 42 −

(78 − 42)2

541
= 0.0665 ± 0.0393 = (0.0272, 0.1058)

The brand share of High Pt. dropped 2.7% to 10.6% between the
two purchases, with 95% confidence.
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