
STAT 226 Lecture 26

Section 8.2 Logistic Regression For Matched Pairs

Yibi Huang

1



Estimation of Odds Ratio for Matched-Pair Data

• Population-Avaraged Models (a.k.a. Marginal Models)
• Subject-Specific Models (a.k.a. Conditional Models)
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Population-Avaraged Models

Suppose a matched-pair is selected at random from the
population. Let (Y1,Y2) denote the two responses from the
selected pair, where

Yi =

1 for category 1 (success)

2 for category 2

In population probabilities:

Y2 = 1 Y2 = 2 Total
Y1 = 1 π11 π12 π1+

Y1 = 2 π21 π22 π2+

Total π+1 π+2 1

Then

P(Y1 = 1) = π1+, P(Y1 = 0) = π2+

P(Y2 = 1) = π+1, P(Y2 = 0) = π+2 3



Population-Avaraged Models (a.k.a. Marginal Models)

Suppose

logit[P(Y1 = 1)] = α + β, i.e.,
P(Y1 = 1)
P(Y1 = 0)

=
π1+

π2+
= eα+β

logit[P(Y2 = 1)] = α, i.e.,
P(Y2 = 1)
P(Y2 = 0)

=
π+1

π+2
= eα

Consequently, eβ =
P(Y1 = 1)/P(Y1 = 0)
P(Y2 = 1)/P(Y2 = 0)

=
π1+/π2+

π+1/π+2
,

which means, at population level, the odds of success for response
1 are eβ times the odds of success for response 2. This OR is
called the marginal OR.

The MLE of the marginal OR = eβ̂ is

π̂1+/̂π2+

π̂+1/̂π+2
=

n1+/n2+

n+1/n+2
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Example (Matched-Pair Case-Control Study of MI & Diabetes)

A study of acute myocardial infarction (MI) among Navajo Indians
matched 144 victims of MI according to age and gender with 144
people free of heart disease and recored whether they had ever
been diagnosed diabetes.

MI Controls
MI Cases diabetes no diabetes Total
diabetes 9 37 46

no diabetes 16 82 98
Total 25 119 144

Estmiated marginal OR is

n1+/n2+

n+1/n+2
=

46/98
25/119

≈ 2.234.

Two interpretations:

• The population odds of diabetes for MI cases are estimated to
be 2.234 times the population odds of diabetes for MI controls.

• The population odds of MI for those w diabetes were
estimated to be 2.234 times the population odds of MI for
those without diabetes
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SE for log(Marginal OR)

• The estimated marginal OR =
n1+/n2+

n+1/n+2
has a skewed

sampling distribution. Its normal approximation is NOT good.

• Sampling distribution of for log
(
n1+/n2+

n+1/n+2

)
is closer to normal

with a large sample variance

1
n

(
1
π1+
+

1
π2+
+

1
π+1
+

1
π+2
− 2
π11π22 − π12π21

π1+π2+π+1π+2

)
,

estimated by

1
n

(
n

n1+
+

n
n2+
+

n
n+1
+

n
n+2
− 2

n2(n11n22 − n12n21)
n1+n2+n+1n+2

)
.

• The large sample SE is

SE =

√
1

n1+
+

1
n2+
+

1
n+1
+

1
n+2
−

2n(n11n22 − n12n21)
n1+n2+n+1n+2
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If we ignore pairing and rewrite the table as the 2-way table for MI
(Case, Control) and Diabete (Yes, No),

MI Controls
MI Cases diabetes no diabetes total
diabetes n11 n12 n1+

no diabetes n21 n22 n2+

total n+1 n+1 n

⇒

Diabetes
MI Yes No Total

case n1+ n2+ n
control n+1 n+2 n

the marginal OR would be in the usual “cross-product” form:
n1+/n2+

n+1/n+2
=

n1+n+2

n2+n+1
.

Large sample SE of log(marginal OR) for matched-pair data

SE =

√
1

n1+
+

1
n2+
+

1
n+1
+

1
n+2
−

2n(n11n22 − n12n21)
n1+n2+n+1n+2

is usually less than the SE for log(OR) for two-sample data

SE =

√
1

n1+
+

1
n2+
+

1
n+1
+

1
n+2

7



CI for Marginal OR

CI for log(marginal OR):

(L,U) = log
(
n1+/n2+

n+1/n+2

)
± zα/2SE

where the SE is given on the previous page

CI for marginal OR is (eL, eU).
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MI Controls
MI Cases Diabetes No Diabetes Total
Diabetes 9 37 46
No Diabetes 16 82 98
Total 25 119 144

log(marginal OR) = log
(
46 × 119
98 × 25

)
≈ 0.8039.

with

SE =

√
1

n1+
+

1
n2+
+

1
n+1
+

1
n+2
−

2n(n11n22 − n12n21)
n1+n2+n+1n+2

=

√
1
46
+

1
98
+

1
25
+

1
119
−

2 × 144(9 × 82 − 37 × 16)
46 × 98 × 25 × 119

≈ 0.2779.

95% CI for log(marginal OR):
0.8039 ± 1.96 × 0.2779 ≈ (0.2592, 1.3486)

95% CI for marginal OR: (e0.2592, e1.3486) ≈ (1.296, 3.852).
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If we ignore pairing,

MI Controls
MI Cases diabetes no diabetes total
diabetes 9 37 46

no diabetes 16 82 98
total 25 119 144

⇒

Diabetes
MI Yes No Total

case 46 98 144
control 25 119 144

• log(OR) = log
(
46 × 119
98 × 25

)
≈ 0.8039 (same as paired data)

• SE =

√
1
46
+

1
98
+

1
25
+

1
119
≈ 0.2835 is bigger than the SE

for paired data
• 95% CI for log(OR): 0.8039 ± 1.96 × 0.2835 ≈ (0.2482, 1.3596)
• 95% CI for OR: (e0.2592, e1.3486) ≈ (1.282, 3.894)

wider than the CI (1.282, 3.894) for marginal OR of paired data
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Subject Specific Models

The population-avaraged model do not reflect the correlation within
a pair. Let (Y1i,Y2i) denote the two responses from the ith pair

logit[P(Y1i = 1)] = αi + β, logit[P(Y2i = 1)] = αi

i.e., P(Y1i = 1) =
eαi+β

1 + eαi+β
, P(Y2i = 1) =

eαi

1 + eαi
.

The subject-specific model allows dependence within a pair by
including a “subject effect” αi.

• If αi > 0 is large, both Y1i and Y2i are likely to be 1
• If αi < 0 and is large in magnitude, both Y1i and Y2i are likely

to be 0

For each subject, the odds of success for response 1 are eβ times
the odds of success for response 2. eβ is called the conditional
odds ratio.
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Population-Averaged v.s. Subject Specific Models

Suppose the population contains N pairs. Based on the subject
specific model, the responses of the ith pair (Y1i,Y2i) have the
distribution

P(Y1i = 1) =
eαi+β

1 + eαi+β
, P(Y2i = 1) =

eαi

1 + eαi
.

If a pair (Y1,Y2) is selected at random from the population,

π1+ = P(Y1 = 1) =
1
N

∑N

i=1

eαi+β

1 + eαi+β
,

π2+ = P(Y1 = 0) =
1
N

∑N

i=1

1
1 + eαi+β

,

π+1 = P(Y2 = 1) =
1
N

∑N

i=1

eαi

1 + eαi

π+2 = P(Y2 = 0) =
1
N

∑N

i=1

1
1 + eαi

.
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Population-Averaged v.s. Subject Specific Models

The odds ratio in the population averaged model is

π1+/π2+

π+1/π+2
=

P(Y1 = 1)/P(Y1 = 0)
P(Y2 = 1)/P(Y2 = 0)

=
P(Y1 = 1)P(Y2 = 0)
P(Y2 = 1)P(Y1 = 0)

=

∑N
i=1

eαi+β

1+eαi+β

∑N
i=1

1
1+eαi∑N

i=1
eαi

1+eαi

∑N
i=1

1
1+eαi+β

, eβ in general, unless αi = α for all i

So, the β in the subject specific model is different from the β in the
population averaged model.
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Estimate of β in the Subject Specific Model

• Ordinary ML do not work well for the subject-specific model
for having as many subject parameters {αi} as the # of pairs.

• A remedy: for pairs with Y1i + Y2i = 1, can show in the next
slide that

P(Y1i = 1|Y1i + Y2i = 1) =
eβ

1 + eβ
,

i.e., the conditional distribution of Y1i given Y1i + Y2i = 1 is free
of αi.

• In matched-paired data, there are n∗ = n12 + n21 independent
pairs with Y1i + Y2i = 1. Given n∗ = n12 + n21, the conditional
distribution of n12 is

n12 ∼ Binomial(n∗,
eβ

1 + eβ
)

based on which one can obtain a conditional likelihood for β
that is free of αi’s and the maximal conditional likelihood
estimator for eβ is eβ̂ = n12/n21, or β̂ = log(n12/n21).
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P(Y1i = 1|Y1i + Y2i = 1) =
P(Y1i = 1,Y1i + Y2i = 1)

P(Y1i + Y2i = 1)

=
P(Y1i = 1,Y2i = 0)

P(Y1i = 1,Y2i = 0) + P(Y1i = 0,Y2i = 1)

=

eαi+β

1+eαi+β
1

1+eαi

eαi+β

1+eαi+β
1

1+eαi +
1

1+eαi+β
eαi

1+eαi

=
eαi+β

eαi+β + eαi
=

eβ

1 + eβ
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Population-Averaged v.s. Subject Specific (Section 8.2.3)

We can rewrite the data below as a 3-way 2 × 2 × 144 table of the 3
variables

X = MI (Cases, Controls)

Y = Diabetes (Yes, No)

Z = Pair ID (1 to 144)

MI Controls
MI Cases diabetes no diabetes Total
diabetes 9 37 46
no diabetes 16 82 98
Total 25 119 144

where the XY partial table for a pair is one of the following 4

Diabetes
MI Yes No

case 1 0
control 1 0︸                 ︷︷                 ︸

9 pairs

Diabetes
MI Yes No

case 1 0
control 0 1︸                 ︷︷                 ︸

37 pairs

Diabetes
MI Yes No

case 0 1
control 1 0︸                 ︷︷                 ︸

16 pairs

Diabetes
MI Yes No

case 0 1
control 0 1︸                 ︷︷                 ︸

82 pairs

and the XY marginal table is

Diabetes
MI Yes No Total

case 46 98 144
control 25 119 144

.
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For the subject specific model

logit[P(Y1i = 1)] = αi + β, logit[P(Y2i = 1)] = αi

The conditional OR eβ for the subject specific model is the
conditional OR of (X,Y) given Z = pairing

The marginal OR for the population average model is the marginal
OR of (X,Y) ignoring Z = pairing
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McNemar’s Test is CMH Test for Matched-Pair Data (1)

While we rewrite matched-pair data below as a 3-way table of the 3
variables

X = MI (Cases, Controls)

Y = Diabetes (Yes, No)

Z = Pair ID (1 to 144)

MI Controls
MI Cases diabetes no diabetes Total
diabetes n11 n12 n1+

no diabetes n21 n22 n2+

Total n+1 n+2 n

where each (X,Y) partial table for a pair is one of the following 4

Diabetes
MI Yes No

case 1 0
control 1 0︸                 ︷︷                 ︸

n11 pairs

Diabetes
MI Yes No

case 1 0
control 0 1︸                 ︷︷                 ︸

n12 pairs

Diabetes
MI Yes No

case 0 1
control 1 0︸                 ︷︷                 ︸

n21 pairs

Diabetes
MI Yes No

case 0 1
control 0 1︸                 ︷︷                 ︸

n22 pairs

We can test the conditional independence of (X,Y) given Z by apply
CMH test on the 3-way table of XYZ.
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McNemar’s Test is CMH Test for Matched-Pair Data (2)

Recall the CMH statistic is

CMH =
∑

k(n11k − E[n11k])√∑
k Var(n11k)

, where E[n11k] =
R1kC1k

Tk
, Var(n11k) =

R1kR2kC1kC2k

T 2
k (Tk − 1)

if the XY partial table for Z = k is Y = 1 Y = 2 total
X = 1 n11k n12k R1k

X = 2 n21k n22k R2k

total C1k C2k Tk

Diabetes
MI Yes No

case 1 0
control 1 0︸                 ︷︷                 ︸

n11 pairs

Diabetes
MI Yes No

case 1 0
control 0 1︸                 ︷︷                 ︸

n12 pairs

Diabetes
MI Yes No

case 0 1
control 1 0︸                 ︷︷                 ︸

n21 pairs

Diabetes
MI Yes No

case 0 1
control 0 1︸                 ︷︷                 ︸

n22 pairs

E[n11] = 1 E[n11] = 1/2 E[n11] = 1/2 E[n11] = 0
Var(n11) = 0 Var(n11) = 1/4 Var(n11) = 1/4 Var(n11) = 0

CMH =
n11(0) + n12(1 − 1/2) + n21(0 − 1/2) + n22(0)
√

n11(0) + n12(1/4) + n21(1/4) + n22(0)
=

n12 − n21
√

n12 + n21
= McNemar’s
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Estimate for the Conditional OR is Mantel-Haenszel’s Estimate

Recall Mantel-Haenszel’s estimate of the common odds ratio of
several tables is

θ̂MH =

∑
k n11kn22k/Tk∑
k n12kn21k/Tk

if kth partial table is

Y = 1 Y = 2 total
X = 1 n11k n12k R1k
X = 2 n21k n22k R2k

total C1k C2k Tk

Diabetes
MI Yes No

case 1 0
control 1 0︸                 ︷︷                 ︸

n11 pairs

Diabetes
MI Yes No

case 1 0
control 0 1︸                 ︷︷                 ︸

n12 pairs

Diabetes
MI Yes No

case 0 1
control 1 0︸                 ︷︷                 ︸

n21 pairs

Diabetes
MI Yes No

case 0 1
control 0 1︸                 ︷︷                 ︸

n22 pairs

θ̂MH =
n11(1 · 0/2) + n12(1 · 1/2) + n21(0 · 0/2) + n22(0 · 1/2)
n11(0 · 1/2) + n12(0 · 0/2) + n21(1 · 1/2) + n22(1 · 0/2)

=
n12

n21
.

which is exactly the estimate for the conditional OR of the
subject-specific model.
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CI for Conditional OR

• The estimated conditional OR = n12/n21 has a skewed
sampling distribution. Its normal approximation is NOT good.

• Sampling distribution of for log n12n21 is closer to normal with
the large sample SE

SE =

√
1

n12
+

1
n21

• CI for log(conditional OR):

(L,U) = log(n12/n21) ± zα/2SE

• CI for conditional OR: (eL, eU).
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Example

MI Controls
MI Cases Diabetes No Diabetes Total
Diabetes 9 37 46
No Diabetes 16 82 98
Total 25 119 144

• log(conditional OR) = log(37/16) ≈ 0.8383.

• SE =
√

1
n12
+ 1

n21
=

√
1

37 +
1
16 ≈ 0.2992

• 95% CI for log(conditional OR):
0.8383 ± 1.96 × 0.2992 ≈ (0.25191.4247)

• 95% CI for conditional OR: (e0.2519, e1.4247) ≈ (1.286, 4.157)
• Interpretation: For a subject w/ diabetes, his/her odds of MI

are 1.286 to 4.157 times the odds for someone w/o diabetes,
with 95% confidence.
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Which Model to Use? Population-Averaged or Subject Spe-
cific?

Both are useful, depending on the application

• If interested in mechanism on individuals, use subject specific
model.

• If the goal is to compare the relative frequency of occurrence
of some outcome for different groups in a population (e.g., in
surveys or epidemiological studies), use population-averaged
model
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