STAT 226 Lecture 25

Section 8.1 Comparing Dependent Proportions

Yibi Huang

Example (Two Case Control Studies on Hodgkin's Disease)

Study 1 by Diana et al. (1971) :

Tonsillectomy			
	Yes	No	Total
Cases	67	34	101
Controls	43	64	109

$$
\begin{aligned}
\widehat{\theta}=\frac{67 \times 64}{34 \times 43} & \approx 2.93 \\
\text { Pearson's } X^{2} & =13.23 \\
d f & =1 \\
P \text {-value } & =0.00028
\end{aligned}
$$

Study 2 by Johnson \& Johnson (1972):

Tonsillectomy			
	Yes	No	Total
Cases	41	44	85
Controls	33	52	85

$$
\widehat{\theta}=\frac{41 \times 52}{44 \times 33} \approx 1.47
$$

Pearson's $X^{2}=1.17$

$$
d f=1
$$

$$
P \text {-value }=0.279
$$

Why did the 2 studies reach inconsistent conclusions?

- In study 1, controls were matched as a group according to age, sex, race, residence, date of hospitalization, and no cancer
- In study 2, controls were patient's same sex sibling closest in age. To reflect dependence, data in Study 2 should be displayed as

d as		Sibling had tonsillectomy?		Total
		Yes	No	
Hodgkin's patient	Yes	26	15	41
had tonsillectomy?	No	7	37	44
	Total	33	52	85

This table shows high correlation of tonsillectomy status within a sibling pair. Most pairs of siblings had the same tonsillectomy status.

- concordant pairs tell us nothing about the relationship between the disease and the risk factor. Sufficient to examine discordant pairs only

Population probabilities:

	Sibling had tonsillectomy?			
	Yes			
No	Total			
	Yes	π_{11}	π_{12}	π_{1+}
	No	π_{21}	π_{22}	π_{2+}
	Total	π_{+1}	π_{+2}	1

Discussion

- What was the goal of the study?
- Which two proportions were we interested in comparing?

Population probabilities:

		Sibling had tonsillectomy?		Total
		Yes	No	
Hodgkin's patient	Yes	π_{11}	π_{12}	π_{1+}
had tonsillectomy?	No	π_{21}	π_{22}	π_{2+}
	Total	π_{+1}	π_{+2}	1

Discussion

- What was the goal of the study?
- Which two proportions were we interested in comparing?

Compare dependent samples by making inference about $\pi_{1+}-\pi_{+1}$. There is marginal homogeneity if $\pi_{1+}=\pi_{+1}$.

McNemar's Test

Under H_{0} : marginal homogeneity,

$$
\pi_{1+}=\pi_{+1} \Longleftrightarrow \pi_{12}=\pi_{21} \Longleftrightarrow \frac{\pi_{12}}{\pi_{12}+\pi_{21}}=\frac{1}{2}
$$

Under H_{0}, each of $n^{*}=n_{12}+n_{21}$ observations has probability $1 / 2$ of contributing to n_{12} and $1 / 2$ of contributing to n_{21} :

$$
n_{12} \sim \operatorname{Binomial}\left(n^{*}, \frac{1}{2}\right), \text { mean }=\frac{n^{*}}{2}, \text { std dev }=\sqrt{n^{*}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}
$$

By normal approx. to binomial, for large n^{*},

$$
z=\frac{n_{12}-n^{*} / 2}{\sqrt{n^{*}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}}=\frac{n_{12}-n_{21}}{\sqrt{n_{12}+n_{21}}} \sim N(0,1)
$$

or equivalently

$$
z^{2}=\frac{\left(n_{12}-n_{21}\right)^{2}}{n_{12}+n_{21}} \sim \chi_{1}^{2}
$$

Example (Two Case Control Studies on Hodgkin's Disease)

Hodgkin's patient had tonsillectomy?

Sibling had

	tonsillectomy?			
		Yes	No	Total
Hodgkin's patient	Yes	26	15	41
had tonsillectomy?	No	7	37	44
	Total	33	52	85

For testing $\mathrm{H}_{0}: \pi_{1+}=\pi_{+1}$ v.s. $\mathrm{H}_{a}: \pi_{1+} \neq \pi_{+1}$

$$
\begin{aligned}
z=\frac{n_{12}-n_{21}}{\sqrt{n_{12}+n_{21}}} & =\frac{15-7}{\sqrt{15+7}}=1.706, \quad\left(z^{2}=2.909, d f=1\right) \\
P \text {-value } & =0.088 .
\end{aligned}
$$

Though still insignificant, Study 2 is more consistent w/ Study 1.

McNemar's Test in \mathbf{R}

hodgkin1972 $=$ matrix $(c(26,7,15,37)$, nrow=2)
hodgkin1972
[,1] [,2]
[1,] $26 \quad 15$
[2,] $7 \quad 37$
mcnemar.test(hodgkin1972, correct = FALSE)

McNemar's Chi-squared test
data: hodgkin1972
McNemar's chi-squared $=2.9091, \mathrm{df}=1, \mathrm{p}$-value $=0.08808$

Exact McNemar's Test

When $n^{*}=n_{12}+n_{21}$ are small, it's more reliable to use exact binomial tests since under $\mathrm{H}_{0}: \pi_{12}=\pi_{21}$, the exact distribution of
n_{12} is

$$
n_{12} \sim \operatorname{Binomial}\left(n^{*}, \frac{1}{2}\right)
$$

For the Hodgkin's Disease study, the exact two-sided P-value is binom.test(15, 22, p=0.5)

Exact binomial test

```
data: }15\mathrm{ and 22
```

number of successes $=15$, number of trials $=22, \mathrm{p}$-value $=0.1338$
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.45127560 .8613535
sample estimates:
probability of success
0.6818182

Exact McNemar's Test

P-values given by McNemar's test with continuity correction are closer to the P-values given by exact McNemar's test.
mcnemar.test(hodgkin1972, correct $=$ TRUE)
McNemar's Chi-squared test with continuity correction
data: hodgkin1972
McNemar's chi-squared $=2.2273, \mathrm{df}=1, \mathrm{p}$-value $=0.1356$

CI for $\pi_{1+}-\pi_{+1}$

Estimate $\pi_{1+}-\pi_{+1}$ by diff. of sample proportions, $\widehat{\pi}_{1+}-\widehat{\pi}_{+1}$.

$$
\begin{aligned}
& \widehat{\pi}_{1+}-\widehat{\pi}_{+1}=\frac{n_{1+}}{n}-\frac{n_{+1}}{n}=\frac{n_{12}-n_{21}}{n} \\
& \mathrm{SE}=\frac{1}{n} \sqrt{n_{12}+n_{21}-\frac{\left(n_{12}-n_{21}\right)^{2}}{n}}
\end{aligned}
$$

Example (Hodgkin's Disease)

n_{11}	n_{12}					
n_{21}	n_{22}					
		n	$=$	26	15	
:---:	:---:	:---:				
7	37					

$$
\begin{gathered}
\widehat{\pi}_{1+}-\widehat{\pi}_{+1}=\frac{15-7}{85} \approx 0.094 \\
\mathrm{SE}=\frac{1}{85} \sqrt{15+7-\frac{(15-7)^{2}}{85}} \approx 0.054
\end{gathered}
$$

95% CI: $0.094 \pm(1.96)(0.054)=(-0.0118,0.1998)$

How is the SE of the Matched-Pairs CI Derived?

$$
\begin{gathered}
\left(n_{11}, n_{12}, n_{21}, n_{22}\right) \sim \operatorname{Multinomial}\left(n,\left(\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}\right)\right) \\
\Longrightarrow\left\{\begin{array}{l}
\operatorname{Var}\left(n_{i j}\right)=n \pi_{i j}\left(1-\pi_{i j}\right) \\
\operatorname{Cov}\left(n_{i j}, n_{i^{\prime} j^{\prime}}\right)=-n \pi_{i j} \pi_{i^{\prime} j^{\prime}} \quad \text { if } i \neq i^{\prime} \text { or } j \neq j^{\prime}
\end{array}\right. \\
\begin{aligned}
\operatorname{Var}\left(\widehat{\pi}_{1+}-\widehat{\pi}_{+1}\right) & =\operatorname{Var}\left(\frac{n_{12}-n_{21}}{n}\right)=\frac{\operatorname{Var}\left(n_{12}-n_{21}\right)}{n^{2}} \\
& =\frac{\operatorname{Var}\left(n_{12}\right)+\operatorname{Var}\left(n_{21}\right)-2 \operatorname{Cov}\left(n_{12}, n_{21}\right)}{n^{2}} \\
& =\frac{n \pi_{12}\left(1-\pi_{12}\right)+n \pi_{21}\left(1-\pi_{21}\right)+2 n \pi_{12} \pi_{21}}{n^{2}} \\
& =\frac{\pi_{12}+\pi_{21}-\left(\pi_{12}^{2}-2 \pi_{12} \pi_{21}+\pi_{21}^{2}\right)}{n} \\
& =\frac{\pi_{12}+\pi_{21}-\left(\pi_{12}-\pi_{21}\right)^{2}}{n} \quad(\mathrm{ctd} \text { next slide) }
\end{aligned}
\end{gathered}
$$

How is the SE of the Matched-Pairs CI Derived? (Cont'd)

$$
\begin{aligned}
\operatorname{Var}\left(\widehat{\pi}_{1+}-\widehat{\pi}_{+1}\right) & =\frac{\pi_{12}+\pi_{21}-\left(\pi_{12}-\pi_{21}\right)^{2}}{n} \\
\widehat{\operatorname{Var}}\left(\widehat{\pi}_{1+}-\widehat{\pi}_{+1}\right) & =\frac{\widehat{\pi}_{12}+\widehat{\pi}_{21}-\left(\widehat{\pi}_{12}-\widehat{\pi}_{21}\right)^{2}}{n} \\
& =\frac{\frac{n_{12}}{n}+\frac{n_{21}}{n}-\left(\frac{n_{12}}{n}-\frac{n_{21}}{n}\right)^{2}}{n} \\
& =\frac{\frac{n_{12}}{n}+\frac{n_{21}}{n}-\frac{\left(n_{12}-n_{21}\right)^{2}}{n^{2}}}{n} \times \frac{n}{n} \\
& =\frac{n_{12}+n_{21}-\frac{\left(n_{12}-n_{21}\right)^{2}}{n}}{n^{2}}
\end{aligned}
$$

So

$$
\mathrm{SE}=\sqrt{\operatorname{Var}\left(\widehat{\pi}_{1+}-\widehat{\pi}_{+1}\right)}=\frac{1}{n} \sqrt{n_{12}+n_{21}-\frac{\left(n_{12}-n_{21}\right)^{2}}{n}}
$$

Two-Sample Designs v.s Matched-Pair Designs

$$
\begin{aligned}
& \operatorname{Var}\left(\widehat{\pi}_{1+}-\widehat{\pi}_{+1}\right)=\operatorname{Var}\left(\widehat{\pi}_{1+}\right)+\operatorname{Var}\left(\widehat{\pi}_{+1}\right)-2 \operatorname{Cov}\left(\widehat{\pi}_{1+}, \widehat{\pi}_{+1}\right) \\
& \text { where } \operatorname{Var}\left(\widehat{\pi}_{1+}\right)=\frac{\pi_{1+}\left(1-\pi_{1+}\right)}{n}, \operatorname{Var}\left(\widehat{\pi}_{+1}\right)=\frac{\pi_{+1}\left(1-\pi_{+1}\right)}{n}, \\
& \operatorname{Cov}\left(\widehat{\pi}_{1+}, \widehat{\pi}_{+1}\right)=\operatorname{Cov}\left(\frac{n_{1+}}{n}, \frac{n_{+1}}{n}\right)=\operatorname{Cov}\left(\frac{n_{11}+n_{12}}{n}, \frac{n_{11}+n_{21}}{n}\right) \\
&= \frac{1}{n^{2}} \operatorname{Cov}\left(n_{11}+n_{12}, n_{11}+n_{21}\right) \\
&= \frac{1}{n^{2}}\left[\operatorname{Var}\left(n_{11}\right)+\operatorname{Cov}\left(n_{11}, n_{21}\right)+\operatorname{Cov}\left(n_{12}, n_{11}\right)+\operatorname{Cov}\left(n_{12}, n_{21}\right)\right] \\
&= \frac{1}{n^{2}}\left[n \pi_{11}\left(1-\pi_{11}\right)-n \pi_{11} \pi_{21}-n \pi_{12} \pi_{11}-n \pi_{12} \pi_{21}\right] \\
&= \frac{1}{n}[\pi_{11} \underbrace{\left(1-\pi_{11}-\pi_{12}-\pi_{21}\right)}_{\pi_{22}}-\pi_{12} \pi_{21}] \\
&= \frac{\pi_{11} \pi_{22}-\pi_{12} \pi_{21}}{n}
\end{aligned}
$$

Two-Sample Designs v.s Matched-Pair Designs (Cont’d)

Often matched-pairs exhibit positive association (odds-ratio greater than 1), i.e., $\pi_{11} \pi_{22}>\pi_{12} \pi_{21}$, so covariance term is negative.

$$
\begin{aligned}
& \operatorname{Var}\left(\widehat{\pi}_{1+}-\widehat{\pi}_{+1}\right) \text { for matched-pairs design } \\
= & \frac{1}{n}[\pi_{1+}\left(1-\pi_{1+}\right)+\pi_{+1}\left(1-\pi_{+1}\right)-2(\underbrace{\pi_{11} \pi_{22}-\pi_{12} \pi_{21}}_{\text {usually }>0})] \\
\leq & \frac{1}{n}\left[\pi_{1+}\left(1-\pi_{1+}\right)+\pi_{+1}\left(1-\pi_{+1}\right)\right] \\
= & \operatorname{Var}\left(\widehat{\pi}_{1+}-\widehat{\pi}_{+1}\right) \text { for two indep. samples of size } n \text { each }
\end{aligned}
$$

If matched-pairs exhibit positive association, matched-pairs designs are more efficient than 2-sample designs.

Example (Opinions Relating to Environment)

In 2000 General Social Survey, subjects were asked whether, to help the environment, they would be willing to (1) pay higher taxes or (2) accept a cut in living standards.

	Yes	No	Total	\% Yes
Pay Higher Taxes?	334	810	1144	29.2%
Cut Living Standards?	359	785	1144	31.4%

- Q: Which option were there more people willing to accept?
- The two sample percentages are dependent because the same subjects were asked both questions. There were 1144 subjects only, not $1144+1144$.

To reflect dependence, data should be displayed as

	Willing to Cut			
	Living Standards?			
		Yes	No	Total
Willing to Pay	Yes	227	132	359
Higher Taxes?	No	107	678	785
	Total	334	810	1144

Example (Opinions Relating to Environment)

	Willing to Cut			
		Living Standards?		
		Yes	No	Total
Willing to Pay	Yes	227	132	359
Higher Taxes?	No	107	678	785
	Total	334	810	1144

Estimates for $\pi_{1+}=$ proportion willing to pay higher taxes, and $\pi_{+1}=$ proportion willing to cut living standards, are respectively

$$
\widehat{\pi}_{1+}=\frac{359}{1144} \approx 0.314, \quad \text { and } \widehat{\pi}_{+1}=\frac{334}{1144} \approx 0.292
$$

The 95% confidence interval for $\pi_{1+}-\pi_{+1}$ is NOT
$(0.314-0.292) \pm 1.96 \sqrt{\frac{0.314(1-0.314)}{1144}+\frac{0.292(1-0.292)}{1144}} \approx 0.022 \pm 0.038$
The correct Cl is

$$
(0.314-0.292) \pm 1.96 \frac{1}{1144} \sqrt{132+107-\frac{(132-107)^{2}}{1144}} \approx 0.022 \pm 0.026
$$

Example (Opinions Relating to Environment)

	Table I			Table II			
				Pay Higher Taxes?	Cut Living Standards?		Total
	Yes	No	Total		Yes	No	
Pay Higher Taxes?	334	810	1144	Yes	227	132	359
Cut Living Standards?	359	785	1144	No	107	678	785
				Total	334	810	1144

To test whether there were more people willing to pay higher taxes or more people willing to cut living standards, we should ...
a. perform Pearson's X^{2} test on Table I
b. perform Pearson's X^{2} test on Table II
c. perform McNemar's test on Table I
d. perform McNemar's test on Table II

Which one is correct?

Example (Opinions Relating to Environment)

	Table I			Table II			
				Pay Higher Taxes?	Cut Living Standards?		Total
	Yes	No	Total		Yes	No	
Pay Higher Taxes?	334	810	1144	Yes	227	132	359
Cut Living Standards?	359	785	1144	No	107	678	785
				Total	334	810	1144

To test whether those willing to pay higher taxes were more or less willing to cut living standards than those not willing to pay higher taxes, we should ...
a. perform Pearson's X^{2} test on Table I
b. perform Pearson's X^{2} test on Table II
c. perform McNemar's test on Table I
d. perform McNemar's test on Table II

Which one is correct?

