STAT 226 Lecture 25

Section 8.1 Comparing Dependent Proportions

Yibi Huang

Example (Two Case Control Studies on Hodgkin's Disease)

Study 1 by Vianna et al. (1971):

Tonsillectomy

	Yes	No	Total
Cases	67	34	101
Controls	43	64	109

Study 2 by Johnson & Johnson (1972):

	Ionsillectomy					
	Yes	No	Total			
Cases	41	44	85			
Controls	33	52	85			

....

$$\widehat{\theta} = \frac{67 \times 64}{34 \times 43} \approx 2.93 \qquad \qquad \widehat{\theta} = \frac{41 \times 52}{44 \times 33} \approx 1.47$$
Pearson's $X^2 = 13.23$

$$df = 1$$

$$P$$
-value = 0.00028
$$P$$
-value = 0.279

Why did the 2 studies reach inconsistent conclusions?

- In study 1, controls were **matched as a group** according to age, sex, race, residence, date of hospitalization, and no cancer
- In study 2, controls were patient's same sex sibling closest in age. To reflect dependence, data in Study 2 should be displayed as
 Sibling had

	tonsillectomy?				
		Yes	No	Total	
Hodgkin's patient	Yes	26	15	41	
had tonsillectomy?	No	7	37	44	
	Total	33	52	85	

This table shows high correlation of tonsillectomy status within a sibling pair. Most pairs of siblings had the same tonsillectomy status.

 concordant pairs tell us nothing about the relationship between the disease and the risk factor.
 Sufficient to examine discordant pairs only

Population probabilities:

	Sibling had					
	tonsillectomy?					
	Yes No Tota					
Hodgkin's patient	Yes	π_{11}	π_{12}	π_{1+}		
had tonsillectomy?	No	π_{21}	π_{22}	π_{2+}		
	Total	$\pi_{\pm 1}$	π_{+2}	1		

Discussion

- What was the goal of the study?
- Which two proportions were we interested in comparing?

Population probabilities:

	Sibling had					
	tonsillectomy?					
	Yes No Tota					
Hodgkin's patient	Yes	π_{11}	π_{12}	π_{1+}		
had tonsillectomy?	No	π_{21}	π_{22}	π_{2+}		
	Total	$\pi_{\pm 1}$	π_{+2}	1		

Discussion

- What was the goal of the study?
- Which two proportions were we interested in comparing?

Compare dependent samples by making inference about $\pi_{1+} - \pi_{+1}$. There is *marginal homogeneity* if $\pi_{1+} = \pi_{+1}$.

Under H₀: marginal homogeneity,

$$\pi_{1+} = \pi_{+1} \iff \pi_{12} = \pi_{21} \iff \frac{\pi_{12}}{\pi_{12} + \pi_{21}} = \frac{1}{2}$$

Under H₀, each of $n^* = n_{12} + n_{21}$ observations has probability 1/2 of contributing to n_{12} and 1/2 of contributing to n_{21} :

$$n_{12} \sim \text{Binomial}\left(n^*, \frac{1}{2}\right), \text{ mean} = \frac{n^*}{2}, \text{ std dev} = \sqrt{n^*\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}$$

By normal approx. to binomial, for large n^* ,

$$z = \frac{n_{12} - n^*/2}{\sqrt{n^* \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)}} = \frac{n_{12} - n_{21}}{\sqrt{n_{12} + n_{21}}} \sim N(0, 1)$$

or equivalently

$$z^{2} = \frac{(n_{12} - n_{21})^{2}}{n_{12} + n_{21}} \sim \chi_{1}^{2}$$

Example (Two Case Control Studies on Hodgkin's Disease)

		Sibling had tonsillectomy?				
	Yes No Total					
Hodgkin's patient	Yes	26	15	41		
had tonsillectomy?	No	7	37	44		
	Total	33	52	85		

For testing $H_0: \pi_{1+} = \pi_{+1}$ v.s. $H_a: \pi_{1+} \neq \pi_{+1}$

$$z = \frac{n_{12} - n_{21}}{\sqrt{n_{12} + n_{21}}} = \frac{15 - 7}{\sqrt{15 + 7}} = 1.706, \quad (z^2 = 2.909, \, df = 1)$$

P-value = 0.088.

Though still insignificant, Study 2 is more consistent w/ Study 1.

```
hodgkin1972 = matrix(c(26,7,15,37), nrow=2)
hodgkin1972
    [,1] [,2]
[1,] 26 15
[2,] 7 37
mcnemar.test(hodgkin1972, correct = FALSE)
    McNemar's Chi-squared test
data: hodgkin1972
McNemar's chi-squared = 2.9091, df = 1, p-value = 0.08808
```

Exact McNemar's Test

When $n^* = n_{12} + n_{21}$ are small, it's more reliable to use exact binomial tests since under H₀: $\pi_{12} = \pi_{21}$, the exact distribution of n_{12} is $n_{12} \sim \text{Binomial}\left(n^*, \frac{1}{2}\right)$

For the Hodgkin's Disease study, the exact two-sided P-value is

```
binom.test(15, 22, p=0.5)
```

Exact binomial test

P-values given by McNemar's test with continuity correction are closer to the *P*-values given by exact McNemar's test.

mcnemar.test(hodgkin1972, correct = TRUE)

McNemar's Chi-squared test with continuity correction

```
data: hodgkin1972
McNemar's chi-squared = 2.2273, df = 1, p-value = 0.1356
```

CI for $\pi_{1+} - \pi_{+1}$

Estimate $\pi_{1+} - \pi_{+1}$ by diff. of sample proportions, $\widehat{\pi}_{1+} - \widehat{\pi}_{+1}$.

$$\widehat{\pi}_{1+} - \widehat{\pi}_{+1} = \frac{n_{1+}}{n} - \frac{n_{+1}}{n} = \frac{n_{12} - n_{21}}{n}$$
$$SE = \frac{1}{n} \sqrt{n_{12} + n_{21} - \frac{(n_{12} - n_{21})^2}{n}}$$

Example (Hodgkin's Disease)

How is the SE of the Matched-Pairs CI Derived?

$$(n_{11}, n_{12}, n_{21}, n_{22}) \sim \text{Multinomial}\left(n, (\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22})\right)$$
$$\implies \begin{cases} \text{Var}(n_{ij}) = n\pi_{ij}(1 - \pi_{ij})\\ \text{Cov}(n_{ij}, n_{i'j'}) = -n\pi_{ij}\pi_{i'j'} & \text{if } i \neq i' \text{ or } j \neq j' \end{cases}$$
$$\text{Var}(\widehat{\pi}_{1+} - \widehat{\pi}_{+1}) = \text{Var}\left(\frac{n_{12} - n_{21}}{n}\right) = \frac{\text{Var}(n_{12} - n_{21})}{n^2}$$
$$= \frac{\text{Var}(n_{12}) + \text{Var}(n_{21}) - 2 \text{Cov}(n_{12}, n_{21})}{n^2}$$
$$= \frac{n\pi_{12}(1 - \pi_{12}) + n\pi_{21}(1 - \pi_{21}) + 2n\pi_{12}\pi_{21}}{n^2}$$
$$= \frac{\pi_{12} + \pi_{21} - (\pi_{12}^2 - 2\pi_{12}\pi_{21} + \pi_{21}^2)}{n}$$
$$= \frac{\pi_{12} + \pi_{21} - (\pi_{12} - \pi_{21})^2}{n} \quad \text{(ctd next slide)}$$

How is the SE of the Matched-Pairs CI Derived? (Cont'd)

$$\operatorname{Var}(\widehat{\pi}_{1+} - \widehat{\pi}_{+1}) = \frac{\pi_{12} + \pi_{21} - (\pi_{12} - \pi_{21})^2}{n}$$
$$\widehat{\operatorname{Var}}(\widehat{\pi}_{1+} - \widehat{\pi}_{+1}) = \frac{\widehat{\pi}_{12} + \widehat{\pi}_{21} - (\widehat{\pi}_{12} - \widehat{\pi}_{21})^2}{n}$$
$$= \frac{\frac{n_{12}}{n} + \frac{n_{21}}{n} - (\frac{n_{12}}{n} - \frac{n_{21}}{n})^2}{n}$$
$$= \frac{\frac{n_{12}}{n} + \frac{n_{21}}{n} - (\frac{n_{12} - n_{21}}{n})^2}{n} \times \frac{n}{n}$$
$$= \frac{n_{12} + n_{21} - (\frac{n_{12} - n_{21}}{n})^2}{n^2}$$

So

SE =
$$\sqrt{\operatorname{Var}(\widehat{\pi}_{1+} - \widehat{\pi}_{+1})} = \frac{1}{n}\sqrt{n_{12} + n_{21} - \frac{(n_{12} - n_{21})^2}{n}}$$

Two-Sample Designs v.s Matched-Pair Designs

$$\operatorname{Var}(\widehat{\pi}_{1+} - \widehat{\pi}_{+1}) = \operatorname{Var}(\widehat{\pi}_{1+}) + \operatorname{Var}(\widehat{\pi}_{+1}) - 2\operatorname{Cov}(\widehat{\pi}_{1+}, \widehat{\pi}_{+1})$$

where $\operatorname{Var}(\widehat{\pi}_{1+}) = \frac{\pi_{1+}(1 - \pi_{1+})}{n}, \operatorname{Var}(\widehat{\pi}_{+1}) = \frac{\pi_{+1}(1 - \pi_{+1})}{n},$
$$\operatorname{Cov}(\widehat{\pi}_{1+}, \widehat{\pi}_{+1}) = \operatorname{Cov}\left(\frac{n_{1+}}{n}, \frac{n_{+1}}{n}\right) = \operatorname{Cov}\left(\frac{n_{11} + n_{12}}{n}, \frac{n_{11} + n_{21}}{n}\right)$$
$$= \frac{1}{n^2} \operatorname{Cov}(n_{11} + n_{12}, n_{11} + n_{21})$$
$$= \frac{1}{n^2} \left[\operatorname{Var}(n_{11}) + \operatorname{Cov}(n_{11}, n_{21}) + \operatorname{Cov}(n_{12}, n_{11}) + \operatorname{Cov}(n_{12}, n_{21})\right]$$
$$= \frac{1}{n^2} \left[n\pi_{11}(1 - \pi_{11}) - n\pi_{11}\pi_{21} - n\pi_{12}\pi_{11} - n\pi_{12}\pi_{21}\right]$$
$$= \frac{1}{n} \left[\pi_{11} \underbrace{(1 - \pi_{11} - \pi_{12} - \pi_{21})}_{\pi_{22}} - \pi_{12}\pi_{21}\right]$$
$$= \frac{\pi_{11}\pi_{22} - \pi_{12}\pi_{21}}{n}$$

Often matched-pairs exhibit positive association (odds-ratio greater than 1), i.e., $\pi_{11}\pi_{22} > \pi_{12}\pi_{21}$, so covariance term is negative.

$$\begin{aligned} &\operatorname{Var}(\widehat{\pi}_{1+} - \widehat{\pi}_{+1}) \quad \text{for matched-pairs design} \\ &= \frac{1}{n} \Big[\pi_{1+}(1 - \pi_{1+}) + \pi_{+1}(1 - \pi_{+1}) - 2(\underbrace{\pi_{11}\pi_{22} - \pi_{12}\pi_{21}}_{usually > 0}) \Big] \\ &\leq \frac{1}{n} \left[\pi_{1+}(1 - \pi_{1+}) + \pi_{+1}(1 - \pi_{+1}) \right] \\ &= \operatorname{Var}(\widehat{\pi}_{1+} - \widehat{\pi}_{+1}) \quad \text{for two indep. samples of size } n \text{ each} \end{aligned}$$

If matched-pairs exhibit positive association, matched-pairs designs are more efficient than 2-sample designs.

In 2000 General Social Survey, subjects were asked whether, to help the environment, they would be willing to (1) pay higher taxes or (2) accept a cut in living standards.

	Yes	No	Total	% Yes
Pay Higher Taxes?	334	810	1144	29.2%
Cut Living Standards?	359	785	1144	31.4%

- Q: Which option were there more people willing to accept?
- The two sample percentages are *dependent* because the same subjects were asked both questions. There were 1144 subjects only, not 1144 + 1144.

To reflect dependence, data should be displayed as

Willing to Cut Living Standards?

		Yes	No	Total
Willing to Pay	Yes	227	132	359
Higher Taxes?	No	107	678	785
	Total	334	810	1144

Example (Opinions Relating to Environment)

	Willing to Cut Living Standards?					
Yes No Tot						
Willing to Pay	Yes	227	132	359		
Higher Taxes?	No	107	678	785		
	Total	334	810	1144		

Estimates for π_{1+} = proportion willing to pay higher taxes, and π_{+1} = proportion willing to cut living standards, are respectively

$$\widehat{\pi}_{1+} = \frac{359}{1144} \approx 0.314$$
, and $\widehat{\pi}_{+1} = \frac{334}{1144} \approx 0.292$.

The 95% confidence interval for $\pi_{1+} - \pi_{+1}$ is NOT

$$(0.314 - 0.292) \pm 1.96 \sqrt{\frac{0.314(1 - 0.314)}{1144} + \frac{0.292(1 - 0.292)}{1144}} \approx 0.022 \pm 0.038$$

The correct CI is

$$(0.314 - 0.292) \pm 1.96 \frac{1}{1144} \sqrt{132 + 107 - \frac{(132 - 107)^2}{1144}} \approx 0.022 \pm 0.026.$$
 17

Example (Opinions Relating to Environment)

	Table I				Tal	ole II	
				Pay	Cut	Living	
				Higher	Stan	dards?	
	Yes	No	Total	Taxes?	Yes	No	Total
Pay Higher Taxes?	334	810	1144	Yes	227	132	359
Cut Living Standards?	359	785	1144	No	107	678	785
				Total	334	810	1144

To test whether there were more people willing to pay higher taxes or more people willing to cut living standards, we should ...

- a. perform Pearson's X^2 test on Table I
- b. perform Pearson's X^2 test on Table II
- c. perform McNemar's test on Table I
- d. perform McNemar's test on Table II

Which one is correct?

Example (Opinions Relating to Environment)

	Table I				Tal	ole II	
				Pay	Cut	Living	
				Higher	Stan	dards?	
	Yes	No	Total	Taxes?	Yes	No	Total
Pay Higher Taxes?	334	810	1144	Yes	227	132	359
Cut Living Standards?	359	785	1144	No	107	678	785
				Total	334	810	1144

To test whether those willing to pay higher taxes were more or less willing to cut living standards than those not willing to pay higher taxes, we should ...

- a. perform Pearson's X^2 test on Table I
- b. perform Pearson's X^2 test on Table II
- c. perform McNemar's test on Table I
- d. perform McNemar's test on Table II

Which one is correct?