STAT 226 Lecture 22-24 Generalized Linear Models For Count Data

Yibi Huang

- Review of Poisson Distributions
- Section 3.3 GLMs for Poisson Response (Counts) Data
- Section 7.6.1 Models for Rates
- Section 3.3.4 Overdispersion
 Section 7.6.3 Negative Binomial Regression

Review of Poisson Distributions

A random variable *Y* has a Poisson distribution with parameter $\lambda > 0$ if

$$P(Y = k) = \frac{\lambda^{k}}{k!}e^{-\lambda}, \quad k = 0, 1, 2, \dots$$

denoted as

 $Y \sim \mathsf{Poisson}(\lambda).$

One can show that

$$E[Y] = \lambda$$
, $Var(Y) = \lambda \Rightarrow SD(Y) = \sqrt{\lambda}$.

If $Y \sim \text{binomial}(n, p)$ with *huge n* and *tiny p* such that np moderate, then

```
Y approx. ~ Poisson(np).
```

The following shows the values of P(Y = k), k = 0, 1, 2, 3, 4, 5 for

 $Y \sim \text{Binomial}(n = 50, p = 0.03)$, and

$$Y \sim \text{Poisson}(\lambda = 50 \times 0.03 = 1.5).$$

 dbinom(0:5, size=50, p=0.03)
 # Binomial(n=50, p=0.03)
 [1] 0.21807 0.33721 0.25552 0.12644 0.04595 0.01307

 dpois(0:5, lambda = 50*0.03)
 # Poisson(lambda = 50*0.03)
 [1] 0.22313 0.33470 0.25102 0.12551 0.04707 0.01412

The # of deaths in a year resulted from being kicked by a horse or mule was recorded for each of 10 corps of Prussian cavalry over a period of 20 years, giving 200 corps-years worth of data¹.

# of Deaths (in a corp in a year)	0	1	2	3	4	Total
Frequency	109	65	22	3	1	200

The count of deaths due to horse kicks in a corp in a given year may have a Poisson distribution because

- $p = P(a \text{ soldier died from horsekicks in a given year}) \approx 0;$
- *n* = # of soldiers in a corp was large (100's or 1000's);
- whether a soldier was kicked was (at least nearly) independent of whether others were kicked

¹p.45, John Rice, Mathematical Statistics and Data Analysis, 3ed

Suppose all 10 corps had the same *n* and *p* throughout the 20 year period. Then we may assume that the 200 counts all have the Poisson distn. with the same rate λ = np.

- Suppose all 10 corps had the same *n* and *p* throughout the 20 year period. Then we may assume that the 200 counts all have the Poisson distn. with the same rate λ = np.
- How to estimate λ ?

- Suppose all 10 corps had the same *n* and *p* throughout the 20 year period. Then we may assume that the 200 counts all have the Poisson distn. with the same rate λ = np.
- How to estimate λ ?
- MLE for the rate λ of a Poisson distribution is the sample mean <u>Y</u>.

- Suppose all 10 corps had the same *n* and *p* throughout the 20 year period. Then we may assume that the 200 counts all have the Poisson distn. with the same rate λ = np.
- How to estimate λ ?
- MLE for the rate *λ* of a Poisson distribution is the sample mean *Y*.
- So for the horsekick data:

# of Deaths (in a corp in a year)	0	1	2	3	4	Total
Frequency	109	65	22	3	1	200

the MLE for λ is

$$\widehat{\lambda} = \frac{0 \times 109 + 1 \times 65 + 2 \times 22 + 3 \times 3 + 4 \times 1}{200} = 0.61$$

The fitted Poisson probability to have k deaths from horsekicks is

$$P(Y = k) = e^{-\widehat{\lambda}} \frac{\widehat{\lambda}^k}{k!} = e^{-0.61} \frac{(0.61)^k}{k!}, \quad , k = 0, 1, 2, \dots$$

	Observed	Fitted Poisson Freq.
k	Frequency	$= 200 \times P(Y = k)$
0	109	108.7
1	65	66.3
2	22	20.2
3	3	4.1
4	1	0.6
Total	200	199.9

200*dpois(0:4, 0.61) [1] 108.6702 66.2888 20.2181 4.1110

0.6269

Variables that are generally Poisson:

- # of misprints on a page of a book
- # of calls coming into an exchange during a unit of time (if the exchange services a large number of customers who act more or less independently.)
- # of people in a community who survive to age 100
- # of customers entering a post office on a given day
- # of vehicles that pass a marker on a roadway during a unit of time (for light traffic only. In heavy traffic, however, one vehicle's movement may influence another)

GLMs for Poisson Response Data

Assume the response $Y \sim \text{Poisson}(\mu(x))$, where *x* is an explanatory variable.

Commonly used link functions for Poisson distributions are

- identity link: $\mu(x) = \alpha + \beta x$
 - sometimes problematic because μ(x) must be > 0, but α + βx may not
- log link: $\log(\mu(x)) = \alpha + \beta x \iff \mu(x) = e^{\alpha + \beta x}$.
 - $\mu(x) > 0$ always
 - Whenever x increases by 1 unit, $\mu(x)$ is multiplied by e^{β}

Loglinear models use Poisson with log link

Inference of Parameters and Goodness of Fit

- Wald, LR tests and CIs for β's work as in logistic models
- Goodness of fit (Grouped data only):

Deviance =
$$G^2 = 2 \sum_i y_i \log\left(\frac{y_i}{\widehat{\mu}_i}\right) = -2(L_M - L_S)$$

Pearson's chi-squared = $X^2 = \sum_i \frac{(y_i - \widehat{\mu}_i)^2}{\widehat{\mu}_i}$

 G^2 and X^2 are approx. $\sim \chi^2_{n-p}$, when all $\widehat{\mu}_i$'s are large (≥ 10), where

- *n* = num. of rows (different for grouped & ungrouped data)
- *p* = num. of parameters in the model.

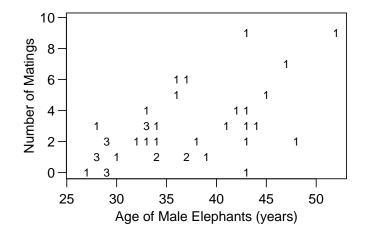
Example (Mating and Age of Male Elephants)

Joyce Poole studied a population of African elephants in Amboseli National Park, Kenya, for 8 years².

- Matings = # of successful matings in the 8 years of 41 male elephants
- Age = estimated age of the male elephant at beginning of the study

Age	Matings	Age	Matings	Age	Matings	Age	Matings
27	0	30	1	36	5	43	3
28	1	32	2	36	6	43	4
28	1	33	4	37	1	43	9
28	1	33	3	37	1	44	3
28	3	33	3	37	6	45	5
29	0	33	3	38	2	47	7
29	0	33	2	39	1	48	2
29	0	34	1	41	3	52	9
29	2	34	1	42	4		
29	2	34	2	43	0		
29	2	34	3	43	2		

²p.673, F. Ramsey & D. Schafer, The Statistical Sleuth



On the plot, "3" means there are 3 points at the same location.

Example (Elephants) — Identity Link

Let *Y* = number of successful matings ~ Poisson(μ);

Model 1 : $\mu = \alpha + \beta Age$ (identity link)

Age = c(27,28,28,28,28,29,29,29,29,29,29,30,32,33,33,33,33,33,34,34, 34,34,36,36,37,37,37,38,39,41,42,43,43,43,43,43,44,45,47,48,52) Matings = c(0,1,1,1,3,0,0,0,2,2,2,1,2,4,3,3,3,2,1,1,2,3, 5,6,1,1,6,2,1,3,4,0,2,3,4,9,3,5,7,2,9) eleph.id = glm(Matings ~ Age, family=poisson(link="identity")) coef(summary(eleph.id)) Estimate Std. Error z value Pr(>|z|) (Intercept) -4.5520 1.33916 -3.399 0.0006758549 Age 0.2018 0.04023 5.016 0.0000005289

Fitted model 1: $\widehat{\mu} = \widehat{\alpha} + \widehat{\beta}Age = -4.55 + 0.20$ Age

About $\widehat{\beta}=0.20$ more matings on average if the male was 1 year older

Example (Elephants) — Log Link

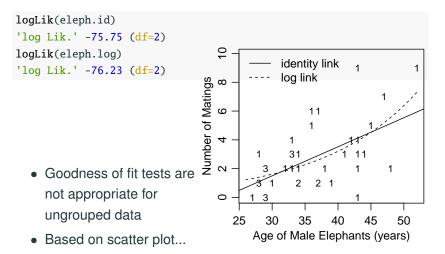
 $\begin{aligned} & \text{Model 2: } \log(\mu) = \alpha + \beta \text{Age} & (\text{log link}) \\ \text{eleph.log} = glm(Matings ~ Age, family=poisson(link="log")) \\ & \text{coef(summary(eleph.log))} \\ & \text{Estimate Std. Error z value} & \Pr(>|z|) \\ (\text{Intercept)} & -1.58201 & 0.54462 & -2.905 & 0.0036750516 \\ \text{Age} & 0.06869 & 0.01375 & 4.997 & 0.0000005812 \end{aligned}$

Fitted model 2: $log(\hat{\mu}) = -1.582 + 0.0687$ Age

 $\widehat{\mu} = \exp(-1.582 + 0.0687 \text{Age}) = 0.205(1.071)^{\text{Age}}$

- expected 7.1% increase in number of matings for every extra year in age
 - for 40 yr-old males, the expected number of matings is $\widehat{\mu} = \exp(-1.582 + 0.0687(40)) \approx 3.2.$

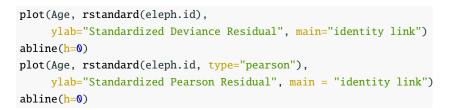
Based on log-likelihood, Model eleph.id seems slightly better.

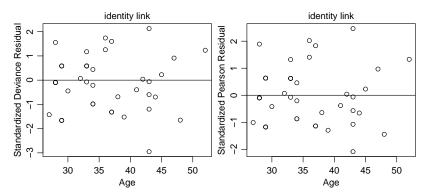


Residuals

- Deviance residual: $d_i = \operatorname{sign}(y_i \widehat{\mu}_i) \sqrt{2 \left[y_i \log(y_i/\widehat{\mu}_i) y_i + \widehat{\mu}_i \right]}$
- Pearson's residual: $e_i = \frac{y_i \widehat{\mu}_i}{\sqrt{\widehat{\mu}_i}}$
- Standardized Pearson's residual = $e_i / \sqrt{1 h_i}$
- Standardized Deviance residual = $d_i / \sqrt{1 h_i}$ where h_i = leverage of *i*th observation
- potential outlier if |standardized residual| > 2 or 3
- R function residuals() gives deviance residuals by default, and Pearson residuals with option type="pearson".
- R function rstandard() gives standardized deviance residuals by default, and standardized Pearson residuals with option type="pearson".

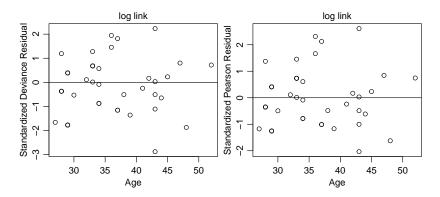
Residual Plots for Model w/ Identity Link





Residual Plots for Model w/ Log-Link

plot(Age, rstandard(eleph.log), ylab="Standardized Deviance Residual", main="log link") abline(h=0) plot(Age, rstandard(eleph.log, type="pearson"), ylab="Standardized Pearson Residual", main = "log link") abline(h=0)



Section 7.6.1 Count Regression Modeling of Rate Data

When events occur *over time, space*, or some other index of size, models can focus on the *rate* rather than the *count* at which the events occur.

Example: Which city is safer to live?

- City A: 200 homicides last year, 1 M population
- City B: 300 homicides last year, 2 M population

When events occur *over time, space*, or some other index of size, models can focus on the *rate* rather than the *count* at which the events occur.

Example: Which city is safer to live?

- City A: 200 homicides last year, 1 M population
- City B: 300 homicides last year, 2 M population

It makes more sense to compare *rates* than *counts*:

- City B had more homicide cases
- City B had fewer homicides per million of population

Let $y = \text{count of homicides a year in a city with } population t \\ \text{Assume } y \sim \text{Poisson}(\mu)$

Instead of modeling the mean count of homicides μ , better modeling how the *rate* μ/t

rate =
$$\frac{\mu}{t} = \frac{\text{expected # of homicides}}{\text{population size}}$$

changes with the explanatory variable x = unemployment rate, etc. Here t = population size is called the *index*.

Loglinear model:

$$\log\left(\frac{\mu}{t}\right) = \alpha + \beta x \implies \log(\mu) = \log(t) + \alpha + \beta x$$

log(t) is an *offset*, which means a term in the model with a <u>known</u> coefficient 1.

Example (British Train Accidents in 1975-2003)

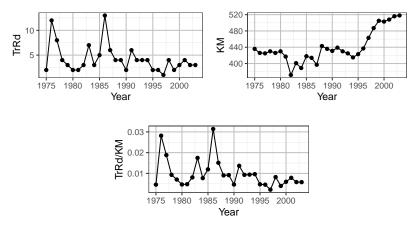
```
trains = read.table(
    "http://www.stat.uchicago.edu/~yibi/s226/traincollisions.dat",
    header=T)
```

	Year	KM	Train	TrRd
1	2003	518	0	3
2	2002	516	1	3
3	2001	508	0	4
28	1976	426	2	12
29	1975	436	5	2

Variables

- TrRd = # of collisions betw. trains and road vehicles that year
- KM = total mileage traveled by trains during the year in millions of kilometers

Have collisions between trains and road vehicles become more prevalent over time?



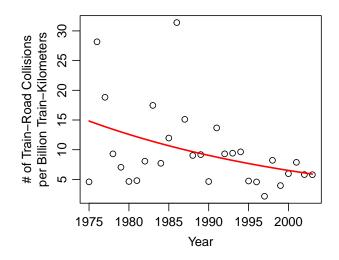
- Total number of train-km (in millions) varies from year to year.
- Model annual rate of train-road collisions per million train-km with the *index t* = KM = annual number of train-km, and x = Year

Fitted Model:
$$\log\left(\frac{\widehat{\mu}}{t}\right) = 60.8016 - 0.0329$$
 Year
rate $= \frac{\widehat{\mu}}{t} = \exp(60.8016 - 0.0329$ Year)

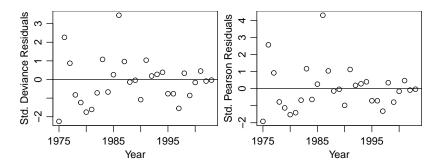
• $\exp(-0.0329) \approx 0.9676$

 \Rightarrow Rate estimated to decrease by 3.2% per yr in 1975-2003

- Est. rate for x = 1975 is $e^{60.8016-0.0329(1975)} \approx 0.0148$ per million train-km (15 per billion train-km).
- Est. rate for x = 2003 is $e^{60.8016-0.0329(2003)} \approx 0.0059$ per million train-km (6 per billion train-km).



Train Data — Standardized Deviance & Pearson Residuals



There were 13 train-road collisions in 1986, far above the fitted mean of 4.3 for that year.

Linear (Additive) Models for Rate Data

For $y \sim \text{Poisson}(\mu)$ with *index t*, the loglinear model

$$\log\left(\frac{\mu}{t}\right) = \alpha + \beta x$$

assumes the effect of the explanatory variable *x* on the response to be **multiplicative**.

Alternatively, if we want the effect to be additive,

$$\frac{\mu}{t} = \alpha + \beta x$$
$$\Leftrightarrow \quad \mu = \alpha t + \beta t x$$

we may fit a GLM model with *identity link*, using *t* and *tx* as explanatory variables and with *no intercept* or offset terms.

Train Data — Identity Link

```
index t = KM = annual num. of train-km, x = year

trains2 = glm(TrRd ~ -1 + KM + I(KM*Year),

family=poisson(link="identity"), data=trains)

summary(trains2)$coef

Estimate Std. Error z value Pr(>|z|)

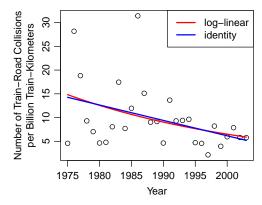
KM 0.6539613 0.19770270 3.308 0.0009403

I(KM * Year) -0.0003239 0.00009924 -3.264 0.0010997

Fitted Model: \widehat{rate} = \frac{\widehat{\mu}}{t} = \frac{\widehat{\mu}}{KM} \approx 0.654 - 0.000324Year
```

- Estimated rate decreases by 0.00032 per million km (0.32 per billion km) per yr from 1975 to 2003.
- Est. rate for 1975 is 0.654 0.0003239 × 1975 ≈ 0.0143 per million km (14.3 per billion km).
- Est. rate for 2003 is 0.654 0.0003239 × 2003 ≈ 0.0052 per million km (5.2 per billion km).

plot(trains\$Year, 1000*trains\$TrRd/trains\$KM,xlab="Year", ylab="Number of Train-Road Collisions\nper Billion Train-Kilometers") curve(1000*exp(trains1\$coef[1]+trains1\$coef[2]*x),add=T, col="red") curve(1000*trains2\$coef[1]+1000*trains2\$coef[2]*x,add=T, col="blue") legend("topright", c("log-linear","identity"), lty=1:2)



The loglinear fit and the linear fit (identity link) are nearly identical.

Overdispersion & Negative Binomial Regression

 One of the defining characteristics of Poisson regression is its lack of a parameter for variability:

 $\mathrm{E}(Y) = \mathrm{Var}(Y),$

and no parameter is available to adjust that relationship

- In practice, when working with Poisson regression, it is often the case that the variability of y_i about \$\hat{\mu}_i\$ is larger than what \$\hat{\mu}_i\$ predicts
- This implies that there is more variability around the model's fitted values than is consistent with the Poisson distribution
- This phenomenon is **overdispersion**.

A recent General Social Survey asked subjects,

"Within the past 12 months, how many people have you known personally that were victims of homicide?"

Number of Victims	0	1	2	3	4	5	6	Total
Black Subjects	119	16	12	7	3	2	0	159
White Subjects	1070	60	14	4	0	0	1	1149

If fit a Poisson distribution to the data from blacks, MLE for the Poisson mean λ is the sample mean

$$\widehat{\lambda} = \frac{0 \cdot 119 + 1 \cdot 16 + 2 \cdot 12 + \dots + 6 \cdot 0}{159} = \frac{83}{159} \approx 0.522$$

Fitted P(Y = k) is $e^{-\frac{83}{159}} \left(\frac{83}{159}\right)^k / k!, k = 0, 1, 2, \dots$

159*dpois(0:6, lambda = 83/159)

[1] 94.34 49.25 12.85 2.24 0.29 0.03 0.00

Num. of Victims	0	1	2	3	4	5	6	Total	Mean	Variance
Black	119	16	12	7	3	2	0	159	0.522	1.150
White	1070	60	14	4	0	0	1	1149	0.092	0.155

Likewise, MLE of λ for whites is

$$\widehat{\lambda} = \frac{0 \cdot 1070 + 1 \cdot 60 + 2 \cdot 14 + \dots + 6 \cdot 1}{1149} = \frac{106}{1149} \approx 0.092$$
Fitted $P(Y = k)$ is $e^{-\frac{106}{1149}} \left(\frac{106}{1149}\right)^k / k!, k = 0, 1, 2, \dots$
round(1149*dpois(0:6, lambda = 106/1149), 3) # fitted Poisson counts
[1] 1047.743 96.659 4.459 0.137 0.003 0.000 0.000

- Too many 0's and too many large counts for both races than expected if the data are Poisson
- Poor Poisson fits are NOT surprising from the large discrepancies between sample mean and sample variance.

- Subject heterogeneity
 - subjects have different μ

e.g., people of the same race might have different mean in the # of known victims of homicide as crime rate may vary from region to region.

- there are important predictors not included in the model
- Observations are not independent clustering

Negative Binomial Distributions

If *Y* has a negative binomial distribution, with mean μ and dispersion parameter $D = 1/\theta$, then

$$P(Y=k) = \frac{\Gamma(k+\theta)}{k!\Gamma(\theta)} \left(\frac{\theta}{\mu+\theta}\right)^{\theta} \left(\frac{\mu}{\mu+\theta}\right)^{k}, \quad k = 0, 1, 2, \dots$$

One can show that

$$E[Y] = \mu$$
, $Var(Y) = \mu + \frac{\mu^2}{\theta} = \mu + D\mu^2$.

- As $D = 1/\theta \downarrow 0$, negative binomial \rightarrow Poisson.
- Negative binomial is a gamma mixture of Poissons, where the Poisson mean varies according to a gamma distribution.
- MLE for μ is the sample mean.
 MLE for θ has no close form formula.

Data: $Y_{b,1}, Y_{b,2}, \dots, Y_{b,159}$ $Y_{w,1}, Y_{w,2}, \dots, Y_{w,1149}$

answers from black subjects answers from white subjects

Poisson Model: $Y_{b,j} \sim \text{Poisson}(\mu_b)$, $Y_{w,j} \sim \text{Poisson}(\mu_w)$ Neg. Bin. Model: $Y_{b,j} \sim \text{NB}(\mu_b, \theta)$, $Y_{w,j} \sim \text{NB}(\mu_w, \theta)$ Goal: Test whether $\mu_b = \mu_w$.

Equivalent to test $\beta = 0$ in the log-linear model.

$$log(\mu) = \alpha + \beta x, \quad x = \begin{cases} 1 \text{ if black} \\ 0 \text{ if white,} \end{cases}$$

Note $\mu_b = e^{\alpha + \beta}$, $\mu_w = e^{\alpha}$. So $e^{\beta} = \mu_b / \mu_w$.

Poisson and Neg. Bin Models for Homicide Data

Can fit Negative binomial regression models using glm.nb() in the MASS package.

```
nvics = c(0:6,0:6)
race = c(rep("Black", 7),rep("White",7))
freq = c(119,16,12,7,3,2,0,1070,60,14,4,0,0,1)
```

	nvics	race	freq
1	0	Black	119
2	1	Black	16
3	2	Black	12
	. (omit	t)	
13	5	White	0
14	6	White	1

```
race = factor(race, levels=c("White","Black"))
hom.poi = glm(nvics ~ race, weights=freq, family=poisson)
library(MASS)
hom.nb = glm.nb(nvics ~ race, weights=freq)
```

Example (Known Victims of Homicide) — Poisson Fits

summary(hom.poi)

Call: alm(formula = nvics ~ race, family = poisson, weights = freq)Coefficients: Estimate Std. Error z value Pr(>|z|)(Intercept) -2.3832 0.0971 -24.5 <2e-16 raceBlack 1.7331 0.1466 11.8 <2e-16 (Dispersion parameter for poisson family taken to be 1) Null deviance: 962.80 on 10 degrees of freedom Residual deviance: 844.71 on 9 degrees of freedom AIC: 1122

Number of Fisher Scoring iterations: 6

Example (Known Victims of Homicide) — Neg. Binomial

summary(hom.nb)

Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -2.383 0.117 -20.33 < 2e-16 raceBlack 1.733 0.238 7.27 3.7e-13 ---Null deviance: 471.57 on 10 degrees of freedom

Residual deviance: 412.60 on 9 degrees of freedom AIC: 1002

Number of Fisher Scoring iterations: 1 Theta: 0.2023 Std. Err.: 0.0409 2 x log-likelihood: -995.7980

	Estimate	Std.	Error	z value	Pr(> z)
(Intercept)	-2.383		0.117	-20.33	< 2e-16
raceBlack	1.733		0.238	7.27	3.7e-13

- Fitted values given by the Neg. Bin model are simply the sample means exp(-2.383) = 0.0922 (= $\frac{106}{1149}$) for whites and exp(-2.383 + 1.733) = 0.522 (= $\frac{83}{159}$) for blacks.
- Estimated common dispersion parameter is $\hat{\theta} = 0.2023$ with SE = 0.0409.
- Fitted *P*(*Y* = *k*) is

$$\frac{\Gamma(k+\widehat{\theta})}{k!\Gamma(\widehat{\theta})} \left(\frac{\widehat{\theta}}{\widehat{\mu}+\widehat{\theta}}\right)^{\theta} \left(\frac{\widehat{\mu}}{\widehat{\mu}+\widehat{\theta}}\right)^{k}, \text{ where } \widehat{\mu} = \begin{cases} \frac{83}{159} & \text{for blacks} \\ \frac{106}{1149} & \text{for whites.} \end{cases}$$

• Textbook uses $D = 1/\theta$ as the dispersion parameter, estimated as $\widehat{D} = 1/\widehat{\theta} = 1/0.2023 \approx 4.94$.

Black Subjects

Num. of Victims	0	1	2	3	4	5	6	Total
observed freq.	119	16	12	7	3	2	0	159
relative freq.	0.748	0.101	0.075	0.044	0.019	0.013	0	1
poisson fit	0.593	0.310	0.081	0.014	0.002	0.000	0.000	1
neg. bin.fit	0.773	0.113	0.049	0.026	0.015	0.009	0.006	0.991
White Subjects:								

num. of victims	0	1	2	3	4	5	6	Total
observed freq.								1149
relative freq.	0.931	0.052	0.012	0.003	0.000	0.000	0.001	0.999
poisson fit	0.912	0.084	0.004	0.000	0.000	0.000	0.000	1
neg. bin.fit	0.927	0.059	0.011	0.003	0.001	0.000	0.000	1.001

neg. bin fit

round(dnbinom(0:6, size = hom.nb\$theta, mu = 83/159),3) # black
[1] 0.773 0.113 0.049 0.026 0.015 0.009 0.006
round(dnbinom(0:6,size = hom.nb\$theta, mu=106/1149),3) # white
[1] 0.927 0.059 0.011 0.003 0.001 0.000 0.000

Model:
$$\log(\mu) = \alpha + \beta x$$
, $x = \begin{cases} 1 \text{ if black} \\ 0 \text{ if white,} \end{cases}$

Model	$\widehat{\alpha}$	$\widehat{\beta}$	$SE(\widehat{\beta})$	Wald 95% CI for $e^{\beta} = \mu_B/\mu_A$
Poisson	-2.38	1.73	0.147	$\exp(1.73 \pm 1.96 \cdot 0.147) = (4.24, 7.54)$
Neg. Binom.	-2.38	1.73	0.238	$\exp(1.73 \pm 1.96 \cdot 0.238) = (3.54, 9.03)$

Poisson and negative binomial models give

Model:
$$\log(\mu) = \alpha + \beta x$$
, $x = \begin{cases} 1 \text{ if black} \\ 0 \text{ if white,} \end{cases}$

Model	$\widehat{\alpha}$	\widehat{eta}	$SE(\widehat{\beta})$	Wald 95% CI for $e^{\beta} = \mu_B/\mu_A$
Poisson	-2.38	1.73	0.147	$\exp(1.73 \pm 1.96 \cdot 0.147) = (4.24, 7.54)$
Neg. Binom.	-2.38	1.73	0.238	$\exp(1.73 \pm 1.96 \cdot 0.238) = (3.54, 9.03)$

Poisson and negative binomial models give

identical estimates for coefficients

(this data set only, not always the case)

Model:
$$\log(\mu) = \alpha + \beta x$$
, $x = \begin{cases} 1 \text{ if black} \\ 0 \text{ if white,} \end{cases}$

Model	$\widehat{\alpha}$	$\widehat{\beta}$	$SE(\widehat{\beta})$	Wald 95% CI for $e^{\beta} = \mu_B/\mu_A$
Poisson	-2.38	1.73	0.147	$\exp(1.73 \pm 1.96 \cdot 0.147) = (4.24, 7.54)$
Neg. Binom.	-2.38	1.73	0.238	$\exp(1.73 \pm 1.96 \cdot 0.238) = (3.54, 9.03)$

Poisson and negative binomial models give

- identical estimates for coefficients (this data set only, not always the case)
- but different SEs for $\widehat{\beta}$ (Neg. Binom. gives bigger SE)

Model:
$$\log(\mu) = \alpha + \beta x$$
, $x = \begin{cases} 1 \text{ if black} \\ 0 \text{ if white,} \end{cases}$

Model	$\widehat{\alpha}$	$\widehat{\beta}$	$SE(\widehat{\beta})$	Wald 95% CI for $e^{\beta} = \mu_B/\mu_A$
Poisson	-2.38	1.73	0.147	$\exp(1.73 \pm 1.96 \cdot 0.147) = (4.24, 7.54)$
Neg. Binom.	-2.38	1.73	0.238	$\exp(1.73 \pm 1.96 \cdot 0.238) = (3.54, 9.03)$

Poisson and negative binomial models give

- identical estimates for coefficients (this data set only, not always the case)
- but different SEs for $\widehat{\beta}$ (Neg. Binom. gives bigger SE)

To account for overdispersion, neg. binom. model gives wider Wald CIs (and also wider LR CIs).

Model:
$$\log(\mu) = \alpha + \beta x$$
, $x = \begin{cases} 1 \text{ if black} \\ 0 \text{ if white,} \end{cases}$

Model	$\widehat{\alpha}$	$\widehat{\beta}$	$SE(\widehat{\beta})$	Wald 95% CI for $e^{\beta} = \mu_B/\mu_A$
Poisson	-2.38	1.73	0.147	$\exp(1.73 \pm 1.96 \cdot 0.147) = (4.24, 7.54)$
Neg. Binom.	-2.38	1.73	0.238	$\exp(1.73 \pm 1.96 \cdot 0.238) = (3.54, 9.03)$

Poisson and negative binomial models give

- identical estimates for coefficients (this data set only, not always the case)
- but different SEs for $\widehat{\beta}$ (Neg. Binom. gives bigger SE)

To account for overdispersion, neg. binom. model gives wider Wald CIs (and also wider LR CIs).

<u>Remark</u>. Observe $e^{\hat{\beta}} = e^{1.73} = 5.7$ is the ratio of the two sample means $\overline{y}_{\text{black}}/\overline{y}_{\text{white}} = 0.522/0.092$.

Wald Cls

confint.default(hom.poi) 2.5 % 97.5 % (Intercept) -2.574 -2.193 raceBlack 1.446 2.020 exp(confint.default(hom.poi)) 2.5 % 97.5 % (Intercept) 0.07626 0.1116 raceBlack 4.24557 7.5414 confint.default(hom.nb) 2.5 % 97.5 % (Intercept) -2.613 -2.154 raceBlack 1.266 2.201 exp(confint.default(hom.nb)) 2.5 % 97.5 % (Intercept) 0.07332 0.1161 raceBlack 3.54571 9.0300

Likelihood Ratio Cls

```
confint(hom.poi, "raceBlack")
Waiting for profiling to be done...
2.5 % 97.5 %
1.444 2.019
exp(confint(hom.poi, "raceBlack"))
Waiting for profiling to be done...
2.5 % 97.5 %
4,236 7,533
confint(hom.nb, "raceBlack")
Waiting for profiling to be done...
2.5 % 97.5 %
1.275 2.212
exp(confint(hom.nb, "raceBlack"))
Waiting for profiling to be done...
2.5 % 97.5 %
3.578 9.132
```

- SEs are underestimated
- CIs will be too narrow
- Significance of variables will be over stated (reported *P* values are lower than the actual ones)

How to Check for Overdispersion?

- Think about whether overdispersion is likely e.g., important explanatory variables not available, or dependence in observations.
- Compare the sample variances to the sample means computed for groups of responses with identical explanatory variable values.
- Large deviance relative to its df can be a sign of overdispersion
- Examine residuals to see if a large deviance statistic may be due to outliers
- Large numbers of outliers is usually a sign of overdispersion
- Check standardized residuals and plot them against them fitted values *µ*_i.

Recall Pearson's residual:

$$e_i = \frac{y_i - \widehat{\mu}_i}{\sqrt{\widehat{\mu}_i}}$$

If no overdispersion, then

$$\operatorname{Var}(Y) \approx (y_i - \widehat{\mu}_i)^2 \approx \operatorname{E}(Y) \approx \widehat{\mu}_i$$

So the size of Pearson's residuals should be around 1.

6

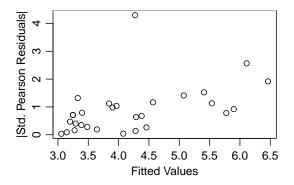
With overdispersion,

$$Var(Y) = \mu + D\mu^2$$

then the size of Pearson's residuals may increase with μ .

We may check the plot of the absolute value of (standardized) Pearson's residuals against fitted values $\widehat{\mu_i}$.

Train Data — Checking Overdispersion



The size of standardized Pearson's residuals tend to increase with fitted values. This is a sign of overdisperson.

trains.nb = glm.nb(TrRd ~ Year+offset(log(KM)), data=trains)
summary(trains.nb)

Estimate Std. Error z value Pr(>|z|) (Intercept) 62.2960 25.5956 2.43 0.0149 Year -0.0337 0.0129 -2.61 0.0089 ---Null deviance: 32.045 on 28 degrees of freedom Residual deviance: 25.264 on 27 degrees of freedom AIC: 132.7 Number of Fisher Scoring iterations: 1 Theta: 10.12 Std. Err.: 8.00 2 x log-likelihood: -126.69

For Year, the estimated coefficients are similar (0.0337 for neg. bin. fit v.s. 0.032 for Poisson fit), but less significant (*P*-value = 0.009 in neg. bin. fit v.s. 0.002 in Poisson fit) The table below lists total home field attendance (in 1000s) and the total # of arrests in a season for soccer teams in the Second Division of the British football league.

Team	Attendance	Arrests	Team	Attendance	Arrests
Aston Villa	404	308	Shrewsbury	108	68
Bradford City	286	197	Swindon Town	210	67
Leeds United	443	184	Sheffield Utd	224	60
Bournemouth	169	149	Stoke City	211	57
West Brom	222	132	Barnsley	168	55
Hudderfield	150	126	Millwall	185	44
Middlesbro	321	110	Hull City	158	38
Birmingham	189	101	Manchester City	429	35
Ipswich Town	258	99	Plymouth	226	29
Leicester City	223	81	Reading	150	20
Blackburn	211	79	Oldham	148	19
Crystal Palace	215	78			

Let Y = # of arrests for a team with total home field attendance *t*.

If the arrests distributed homogeneously among people attending football games, the expected numbers of arrests $\mu = E(Y)$ at the home field of a team should be proportional to t = total # of attendance at the home field of that team. Thus, it's reasonable to assume

$$\mu = \mathcal{E}(Y) = \lambda t,$$

where $\lambda = \#$ of arrests per thousand of attendance. Taking logarithm on both sides, we get

$$\log(\mu) = \log(t) + \alpha$$
, where $\alpha = \log(\lambda)$.

Observe that log(t) is an *offset* in the model equation since its coefficient is a fixed number 1 that we don't have to estimate.

Example (British Football Fans) — Poisson Fit

Fitted model: $log(\widehat{\mu}) = -0.9103 + log(t)$ or

```
Predicted arrests = \widehat{\mu} = e^{-0.9103} t \approx 0.4024 t.
```

That is, there were about 0.4 arrests in every thousands of attendance.

Example (British Football Fans) — Poisson Fit

Fitted model: $log(\hat{\mu}) = -0.9103 + log(t)$ or

```
Predicted arrests = \widehat{\mu} = e^{-0.9103} t \approx 0.4024 t.
```

That is, there were about 0.4 arrests in every thousands of attendance.

Team "Leeds United" had the highest # of attendance t = 443K. Predicted arrests = $\hat{\mu} \approx 0.4024 t = 0.4024 \times 443 \approx 178.26$. summary(fit.poi)\$coef
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.9103 0.02164 -42.07 0

The 95% Wald CI for α is

 $-0.9103 \pm 1.96 \times 0.02164 \approx (-0.9527, -0.8679)$

and for $\lambda = e^{\alpha}$ is $(e^{-0.9527}, e^{-0.8679}) \approx (0.3857, 0.4198).$

Interpretation: With 95% confidence, there were about 0.3857 to 0.4198 arrests on average in every thousands of attendance.

Residuals

We can use standardized (deviance or Pearson) residuals to identify teams with far more arrests than expected. (Output in the next 2 pages).

```
cbind(soccer,
    Fit = round(fit.poi$fit,1),
    StdDevRes = round(rstandard(fit.poi),1),
    StdPsnRes=round(rstandard(fit.poi,type="pearson"),1))
```

Several teams have huge std. residuals, over 4, 8, even over 10. Among them, Aston Villa, Bradford City, Bournemouth, West Brom, Hudderfield had far more arrests than expected (residual > 4), and the arrests for Manchester City, Plymouth, Reading, and Oldham were far below expected (residual < -4).

Large numbers of huge std. residuals is a sign of overdispersion.

	team	attendance	arrests	Fit	StdDevRes	StdPsnRes	
1	Aston Villa	404	308	162.6	10.5	11.9	<
2	Bradford City	286	197	115.1	7.1	7.8	<
3	Leeds United	443	184	178.3	0.4	0.4	
4	Bournemouth	169	149	68.0	8.6	10.0	<
5	West Brom	222	132	89.3	4.3	4.6	<
6	Hudderfield	150	126	60.4	7.5	8.6	<
7	Middlesbro	321	110	129.2	-1.8	-1.7	
8	Birmingham	189	101	76.1	2.8	2.9	
9	Ipswich Town	258	99	103.8	-0.5	-0.5	
10	Leicester City	223	81	89.7	-1.0	-0.9	
11	Blackburn	211	79	84.9	-0.7	-0.7	
12	Crystal Palace	215	78	86.5	-1.0	-0.9	
13	Shrewsbury	108	68	43.5	3.5	3.8	
14	Swindon Town	210	67	84.5	-2.0	-1.9	
15	Sheffield Utd	224	60	90.1	-3.5	-3.2	

	team	attendance	arrests	Fit	StdDevRes	StdPsnRes	
16	Stoke City	211	57	84.9	-3.3	-3.1	
17	Barnsley	168	55	67.6	-1.6	-1.6	
18	Millwall	185	44	74.4	-3.9	-3.6	
19	Hull City	158	38	63.6	-3.5	-3.3	
20	Manchester City	429	35	172.6	-13.3	-10.9	<
21	Plymouth	226	29	90.9	-7.8	-6.6	<
22	Reading	150	20	60.4	-6.1	-5.3	<
23	Oldham	148	19	59.6	-6.2	-5.3	<

```
library(MASS)
fit.nb = glm.nb(arrests ~ 1+ offset(log(attendance)), data=soccer)
summary(fit.nb)
```

Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -0.905 0.120 -7.55 4.5e-14 --Null deviance: 24.15 on 22 degrees of freedom Residual deviance: 24.15 on 22 degrees of freedom AIC: 244.2 Number of Fisher Scoring iterations: 1 Theta: 3.136 Std. Err.: 0.920 2 x log-likelihood: -240.236

Model	$\widehat{\alpha}$	$SE(\widehat{\alpha})$	Wald 95% CI for $e^{\alpha} = \lambda$
Poisson	-0.9103	0.0216	$\exp(-0.9103 \pm 1.96 \cdot 0.0216) \approx (0.386, 0.420)$
NB	-0.9052	0.1200	$\exp(-0.9052 \pm 1.96 \cdot 0.1200) \approx (0.320, 0.512)$

Interpretation: With 95% confidence, there were about 0.3197 to 0.5117 arrests on average in every thousands of attendance, based on NB fit.

NB fit gives a much wider CI for e^{α} than Poisson fit.

If we ignore overdispersion, the CI obtained would have a confidence level substantially lower than the nominal 95% level.

Model	$\widehat{\alpha}$	$SE(\widehat{\alpha})$	Wald 95% CI for $e^{\alpha} = \lambda$
Poisson	-0.9103	0.0216	$\exp(-0.9103 \pm 1.96 \cdot 0.0216) \approx (0.386, 0.420)$
NB	-0.9052	0.1200	$\exp(-0.9052 \pm 1.96 \cdot 0.1200) \approx (0.320, 0.512)$

Interpretation: With 95% confidence, there were about 0.3197 to 0.5117 arrests on average in every thousands of attendance, based on NB fit.

NB fit gives a much wider CI for e^{α} than Poisson fit.

If we ignore overdispersion, the CI obtained would have a confidence level substantially lower than the nominal 95% level.

Example (Football Fans) — Evidence of Overdispersion

- Large discrepancy in SE($\widehat{\alpha}$) (0.12 by NB, 0.0216 by Poisson)
- Too many huge standardized residuals
- Huge size of deviance compared to its df: The deviance of the Poisson model is over 30 times of its df 22

```
deviance(fit.poi)
[1] 669.4
df.residual(fit.poi)
[1] 22
deviance(fit.nb)
[1] 24.15
df.residual(fit.nb)
[1] 22
```

Standardized Deviance & Pearson Residuals For NB Fit

cbind(soccer,

Fit = round(fit.nb\$fit,1),
StdDevRes = round(rstandard(fit.nb),2),
StdPsnRes = round(rstandard(fit.nb,type="pearson"),2))

	team	attendance	arrests	Fit	StdDevRes	StdPsnRes	
1	Aston Villa	404	308	163.4	1.27	1.59	
2	Bradford City	286	197	115.7	1.05	1.26	
3	Leeds United	443	184	179.2	0.05	0.05	
4	Bournemouth	169	149	68.4	1.59	2.09	<
5	West Brom	222	132	89.8	0.73	0.84	
6	Hudderfield	150	126	60.7	1.48	1.90	
7	Middlesbro	321	110	129.8	-0.29	-0.27	
8	Birmingham	189	101	76.4	0.52	0.57	
9	Ipswich Town	258	99	104.4	-0.09	-0.09	
10	Leicester City	223	81	90.2	-0.19	-0.18	

11	Blackburn	211 7	79	85.3	-0.14	-0.13	
12	Crystal Palace	215 7	78	87.0	-0.19	-0.18	
13	Shrewsbury	108 6	58	43.7	0.84	0.97	
14	Swindon Town	210 6	67	84.9	-0.41	-0.38	
15	Sheffield Utd	224 6	50	90.6	-0.68	-0.60	
16	Stoke City	211 5	57	85.3	-0.67	-0.59	
17	Barnsley	168 5	55	68.0	-0.36	-0.34	
18	Millwall	185 4	14	74.8	-0.86	-0.73	
19	Hull City	158 3	88	63.9	-0.84	-0.72	
20	Manchester City	429 3	35	173.5	-2.26	-1.43	<
21	Plymouth	226 2	29	91.4	-1.70	-1.22	
22	Reading	150 2	20	60.7	-1.63	-1.18	
23	Oldham	148 1	19	59.9	-1.68	-1.20	

Almost all teams have std. residuals < 2 after accounting for overdispersion.

- Bournemouth seemed to have too many arrests than expected. Its std. pearson residual is 2.09, but its std deviance residual is only 1.59.
- Manchester City had 39 arrests only, far below its fitted value 173.5. The std deviance residual is -2.26 but its std pearson residual is -1.43.

Neither team seemed to be an extreme outlier for the negative binomial model.