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Outine

• Review of Poisson Distributions
• Section 3.3 GLMs for Poisson Response (Counts) Data
• Section 7.6.1 Models for Rates
• Section 3.3.4 Overdispersion

Section 7.6.3 Negative Binomial Regression
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Review of Poisson Distributions



Review of Poisson Distributions

A random variable Y has a Poisson distribution with parameter
λ > 0 if

P(Y = k) =
λk

k!
e−λ, k = 0, 1, 2, . . .

denoted as
Y ∼ Poisson(λ).

One can show that

E[Y] = λ, Var(Y) = λ ⇒ SD(Y) =
√
λ.
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Poisson Approximation to Binomial

If Y ∼ binomial(n, p) with huge n and tiny p such that np moderate,
then

Y approx. ∼ Poisson(np).

The following shows the values of P(Y = k), k = 0, 1, 2, 3, 4, 5 for

Y ∼ Binomial(n = 50, p = 0.03), and

Y ∼ Poisson(λ = 50 × 0.03 = 1.5).

dbinom(0:5, size=50, p=0.03) # Binomial(n=50, p=0.03)

[1] 0.21807 0.33721 0.25552 0.12644 0.04595 0.01307

dpois(0:5, lambda = 50*0.03) # Poisson(lambda = 50*0.03)

[1] 0.22313 0.33470 0.25102 0.12551 0.04707 0.01412
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Example (Fatalities From Horse Kicks)

The # of deaths in a year resulted from being kicked by a horse or
mule was recorded for each of 10 corps of Prussian cavalry over a
period of 20 years, giving 200 corps-years worth of data1.

# of Deaths (in a corp in a year) 0 1 2 3 4 Total
Frequency 109 65 22 3 1 200

The count of deaths due to horse kicks in a corp in a given year
may have a Poisson distribution because

• p = P(a soldier died from horsekicks in a given year) ≈ 0;
• n = # of soldiers in a corp was large (100’s or 1000’s);
• whether a soldier was kicked was (at least nearly)

independent of whether others were kicked
1p.45, John Rice, Mathematical Statistics and Data Analysis, 3ed
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Example (Fatalities From Horse Kicks — Cont’d)

• Suppose all 10 corps had the same n and p throughout the 20
year period. Then we may assume that the 200 counts all
have the Poisson distn. with the same rate λ = np.

• How to estimate λ?
• MLE for the rate λ of a Poisson distribution is the sample

mean Y .
• So for the horsekick data:

# of Deaths (in a corp in a year) 0 1 2 3 4 Total
Frequency 109 65 22 3 1 200

the MLE for λ is

λ̂ =
0 × 109 + 1 × 65 + 2 × 22 + 3 × 3 + 4 × 1

200
= 0.61
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Example (Fatalities From Horse Kicks — Cont’d)

The fitted Poisson probability to have k deaths from horsekicks is

P(Y = k) = e−λ̂
λ̂k

k!
= e−0.61 (0.61)k

k!
, , k = 0, 1, 2, . . .

Observed Fitted Poisson Freq.
k Frequency = 200 × P(Y = k)
0 109 108.7
1 65 66.3
2 22 20.2
3 3 4.1
4 1 0.6

Total 200 199.9

200*dpois(0:4, 0.61)

[1] 108.6702 66.2888 20.2181 4.1110 0.6269
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When Do Poisson Distributions Come Up?

Variables that are generally Poisson:

• # of misprints on a page of a book
• # of calls coming into an exchange during a unit of time (if the

exchange services a large number of customers who act
more or less independently.)

• # of people in a community who survive to age 100
• # of customers entering a post office on a given day
• # of vehicles that pass a marker on a roadway during a unit of

time (for light traffic only. In heavy traffic, however, one
vehicle’s movement may influence another)
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GLMs for Poisson Response Data



GLMs for Poisson Response Data

Assume the response Y ∼ Poisson(µ(x)), where x is an
explanatory variable.

Commonly used link functions for Poisson distributions are

• identity link: µ(x) = α + βx
• sometimes problematic because µ(x) must be > 0, but α + βx

may not

• log link: log(µ(x)) = α + βx ⇐⇒ µ(x) = eα+βx.
• µ(x) > 0 always
• Whenever x increases by 1 unit, µ(x) is multiplied by eβ

Loglinear models use Poisson with log link
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Inference of Parameters and Goodness of Fit

• Wald, LR tests and CIs for β’s work as in logistic models
• Goodness of fit (Grouped data only):

Deviance = G2 = 2
∑

i

yi log
(

yi

µ̂i

)
= −2(LM − LS )

Pearson’s chi-squared = X2 =
∑

i

(yi − µ̂i)2

µ̂i

G2 and X2 are approx. ∼ χ2
n−p, when all µ̂i’s are large (≥ 10), where

• n = num. of rows (different for grouped & ungrouped data)
• p = num. of parameters in the model.
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Example (Mating and Age of Male Elephants)

Joyce Poole studied a population of African elephants in Amboseli
National Park, Kenya, for 8 years2.

• Matings = # of successful matings in the 8 years of 41 male
elephants

• Age = estimated age of the male elephant at beginning of the study
Age Matings Age Matings Age Matings Age Matings
27 0 30 1 36 5 43 3
28 1 32 2 36 6 43 4
28 1 33 4 37 1 43 9
28 1 33 3 37 1 44 3
28 3 33 3 37 6 45 5
29 0 33 3 38 2 47 7
29 0 33 2 39 1 48 2
29 0 34 1 41 3 52 9
29 2 34 1 42 4
29 2 34 2 43 0
29 2 34 3 43 2

2p.673, F. Ramsey & D. Schafer, The Statistical Sleuth
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Example (Mating and Age of Male Elephants) — Plot
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On the plot, “3” means there are 3 points at the same location.
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Example (Elephants) — Identity Link

Let Y = number of successful matings ∼ Poisson(µ);

Model 1 : µ = α + βAge (identity link)

Age = c(27,28,28,28,28,29,29,29,29,29,29,30,32,33,33,33,33,33,34,34,

34,34,36,36,37,37,37,38,39,41,42,43,43,43,43,43,44,45,47,48,52)

Matings = c(0,1,1,1,3,0,0,0,2,2,2,1,2,4,3,3,3,2,1,1,2,3,

5,6,1,1,6,2,1,3,4,0,2,3,4,9,3,5,7,2,9)

eleph.id = glm(Matings ~ Age, family=poisson(link="identity"))

coef(summary(eleph.id))

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.5520 1.33916 -3.399 0.0006758549

Age 0.2018 0.04023 5.016 0.0000005289

Fitted model 1: µ̂ = α̂ + β̂Age = −4.55 + 0.20 Age

About β̂ = 0.20 more matings on average if the male was 1 year
older
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Example (Elephants) — Log Link

Model 2 : log(µ) = α + βAge (log link)

eleph.log = glm(Matings ~ Age, family=poisson(link="log"))

coef(summary(eleph.log))

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.58201 0.54462 -2.905 0.0036750516

Age 0.06869 0.01375 4.997 0.0000005812

Fitted model 2: log(̂µ) = −1.582 + 0.0687Age

µ̂ = exp(−1.582 + 0.0687Age) = 0.205(1.071)Age

. • expected 7.1% increase in number of matings for every extra
year in age

• for 40 yr-old males, the expected number of matings is
µ̂ = exp(−1.582 + 0.0687(40)) ≈ 3.2.

14



Which Model Better Fits the Data?

Based on log-likelihood, Model eleph.id seems slightly better.

logLik(eleph.id)

'log Lik.' -75.75 (df=2)

logLik(eleph.log)

'log Lik.' -76.23 (df=2)
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• Goodness of fit tests are
not appropriate for
ungrouped data

• Based on scatter plot...
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Residuals

• Deviance residual: di = sign(yi − µ̂i)
√

2
[
yi log(yi/̂µi) − yi + µ̂i

]
• Pearson’s residual: ei =

yi − µ̂i√
µ̂i

• Standardized Pearson’s residual = ei/
√

1 − hi

• Standardized Deviance residual = di/
√

1 − hi

where hi = leverage of ith observation

• potential outlier if |standardized residual| > 2 or 3

• R function residuals() gives deviance residuals by default,
and Pearson residuals with option type="pearson".

• R function rstandard() gives standardized deviance
residuals by default, and standardized Pearson residuals with
option type="pearson".
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Residual Plots for Model w/ Identity Link

plot(Age, rstandard(eleph.id),

ylab="Standardized Deviance Residual", main="identity link")

abline(h=0)

plot(Age, rstandard(eleph.id, type="pearson"),

ylab="Standardized Pearson Residual", main = "identity link")

abline(h=0)
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Residual Plots for Model w/ Log-Link

plot(Age, rstandard(eleph.log),

ylab="Standardized Deviance Residual", main="log link")

abline(h=0)

plot(Age, rstandard(eleph.log, type="pearson"),

ylab="Standardized Pearson Residual", main = "log link")

abline(h=0)
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Section 7.6.1 Count Regression
Modeling of Rate Data



Section 7.6.1 Count Regression Modeling of Rate Data

When events occur over time, space, or some other index of size,
models can focus on the rate rather than the count at which the
events occur.

Example: Which city is safer to live?

• City A: 200 homicides last year, 1 M population
• City B: 300 homicides last year, 2 M population

It makes more sense to compare rates than counts:

• City B had more homicide cases
• City B had fewer homicides per million of population
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Log-Linear Models for Rate Data

Let y = count of homicides a year in a city with population t .
Assume y ∼ Poisson(µ)

Instead of modeling the mean count of homicides µ, better
modeling how the rate µ/t

rate =
µ

t
=

expected # of homicides
population size

changes with the explanatory variable x = unemployment rate, etc.
Here t = population size is called the index.

Loglinear model:

log
(
µ

t

)
= α + βx ⇒ log(µ) = log(t) + α + βx

log(t) is an offset, which means a term in the model with a known
coefficient 1.
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Example (British Train Accidents in 1975-2003)

trains = read.table(

"http://www.stat.uchicago.edu/~yibi/s226/traincollisions.dat",

header=T)

Year KM Train TrRd

1 2003 518 0 3

2 2002 516 1 3

3 2001 508 0 4

...

28 1976 426 2 12

29 1975 436 5 2

Variables

• TrRd = # of collisions betw. trains and road vehicles that year
• KM = total mileage traveled by trains during the year in millions

of kilometers
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Have collisions between trains and road vehicles become more
prevalent over time?
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• Total number of train-km (in millions) varies from year to year.
• Model annual rate of train-road collisions per million train-km

with the index t = KM = annual number of train-km, and x =
Year 22



trains1 = glm(TrRd ~ Year, offset = log(KM),

family=poisson, data=trains)

summary(trains1)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) 60.80160 21.38001 2.844 0.004457

Year -0.03292 0.01076 -3.060 0.002217

Fitted Model: log
(
µ̂
t

)
= 60.8016 − 0.0329 Year

rate =
µ̂

t
= exp(60.8016 − 0.0329Year)

• exp(−0.0329) ≈ 0.9676
⇒ Rate estimated to decrease by 3.2% per yr in 1975-2003

• Est. rate for x = 1975 is e60.8016−0.0329(1975) ≈ 0.0148 per million
train-km (15 per billion train-km).

• Est. rate for x = 2003 is e60.8016−0.0329(2003) ≈ 0.0059 per million
train-km (6 per billion train-km).
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plot(trains$Year, 1000*trains$TrRd/trains$KM,xlab="Year",

ylab="# of Train-Road Collisions\nper Billion Train-Kilometers")

curve(1000*exp(trains1$coef[1]+trains1$coef[2]*x), add=T, col="red")
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Train Data — Standardized Deviance & Pearson Residuals

plot(trains$Year, rstandard(trains1),

xlab="Year", ylab="Std. Deviance Residuals")

abline(h=0)

plot(trains$Year, rstandard(trains1,type="pearson"),

xlab="Year", ylab="Std. Pearson Residuals")

abline(h=0)
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There were 13 train-road collisions in 1986, far above the fitted
mean of 4.3 for that year. 25



Linear (Additive) Models for Rate Data

For y ∼ Poisson(µ) with index t, the loglinear model

log
(
µ

t

)
= α + βx

assumes the effect of the explanatory variable x on the response
to be multiplicative.

Alternatively, if we want the effect to be additive,

µ

t
= α + βx

⇔ µ = αt + βtx

we may fit a GLM model with identity link, using t and tx as
explanatory variables and with no intercept or offset terms.
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Train Data — Identity Link

index t = KM = annual num. of train-km, x = year

trains2 = glm(TrRd ~ -1 + KM + I(KM*Year),

family=poisson(link="identity"), data=trains)

summary(trains2)$coef

Estimate Std. Error z value Pr(>|z|)

KM 0.6539613 0.19770270 3.308 0.0009403

I(KM * Year) -0.0003239 0.00009924 -3.264 0.0010997

Fitted Model: r̂ate =
µ̂

t
=
µ̂

KM
≈ 0.654 − 0.000324Year

• Estimated rate decreases by 0.00032 per million km (0.32 per
billion km) per yr from 1975 to 2003.

• Est. rate for 1975 is 0.654 − 0.0003239 × 1975 ≈ 0.0143 per
million km (14.3 per billion km).

• Est. rate for 2003 is 0.654 − 0.0003239 × 2003 ≈ 0.0052 per
million km (5.2 per billion km).
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plot(trains$Year, 1000*trains$TrRd/trains$KM,xlab="Year",

ylab="Number of Train-Road Collisions\nper Billion Train-Kilometers")

curve(1000*exp(trains1$coef[1]+trains1$coef[2]*x),add=T, col="red")

curve(1000*trains2$coef[1]+1000*trains2$coef[2]*x,add=T, col="blue")

legend("topright", c("log-linear","identity"), lty=1:2)
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The loglinear fit and the linear fit (identity link) are nearly identical.
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Overdispersion & Negative
Binomial Regression



Section 3.3.4 Overdispersion: Greater Variability than Expected

• One of the defining characteristics of Poisson regression is its
lack of a parameter for variability:

E(Y) = Var(Y),

and no parameter is available to adjust that relationship
• In practice, when working with Poisson regression, it is often

the case that the variability of yi about µ̂i is larger than what µ̂i

predicts
• This implies that there is more variability around the model’s

fitted values than is consistent with the Poisson distribution
• This phenomenon is overdispersion.
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Example (Known Victims of Homicide)

A recent General Social Survey asked subjects,

“Within the past 12 months, how many people have you known
personally that were victims of homicide?”

Number of Victims 0 1 2 3 4 5 6 Total
Black Subjects 119 16 12 7 3 2 0 159
White Subjects 1070 60 14 4 0 0 1 1149

If fit a Poisson distribution to the data from blacks, MLE for the Poisson
mean λ is the sample mean

λ̂ =
0 · 119 + 1 · 16 + 2 · 12 + · · · + 6 · 0

159
=

83
159
≈ 0.522

Fitted P(Y = k) is e−
83

159

(
83
159

)k
/k!, k = 0, 1, 2, . . . .

159*dpois(0:6, lambda = 83/159)

[1] 94.34 49.25 12.85 2.24 0.29 0.03 0.00
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Example (Known Victims of Homicide)

Num. of Victims 0 1 2 3 4 5 6 Total Mean Variance
Black 119 16 12 7 3 2 0 159 0.522 1.150
White 1070 60 14 4 0 0 1 1149 0.092 0.155

Likewise, MLE of λ for whites is

λ̂ =
0 · 1070 + 1 · 60 + 2 · 14 + · · · + 6 · 1

1149
=

106
1149

≈ 0.092

Fitted P(Y = k) is e−
106

1149
(

106
1149

)k
/k!, k = 0, 1, 2, . . . .

round(1149*dpois(0:6, lambda = 106/1149), 3) # fitted Poisson counts.

[1] 1047.743 96.659 4.459 0.137 0.003 0.000 0.000

• Too many 0’s and too many large counts for both races than
expected if the data are Poisson

• Poor Poisson fits are NOT surprising from the large
discrepancies between sample mean and sample variance.
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Common Causes of Overdispersion

• Subject heterogeneity
• subjects have different µ

e.g., people of the same race might have different mean in the
# of known victims of homicide as crime rate may vary from
region to region.

• there are important predictors not included in the model

• Observations are not independent – clustering
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Negative Binomial Distributions

If Y has a negative binomial distribution, with mean µ and
dispersion parameter D = 1/θ, then

P(Y = k) =
Γ(k + θ)
k!Γ(θ)

(
θ

µ + θ

)θ (
µ

µ + θ

)k

, k = 0, 1, 2, . . .

One can show that

E[Y] = µ, Var(Y) = µ +
µ2

θ
= µ + Dµ2.

• As D = 1/θ ↓ 0, negative binomial→ Poisson.
• Negative binomial is a gamma mixture of Poissons, where the

Poisson mean varies according to a gamma distribution.
• MLE for µ is the sample mean.

MLE for θ has no close form formula.
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Poisson and Neg. Bin Models for Homicide Data

Data: Yb,1,Yb,2, . . . ,Yb,159 answers from black subjects

Yw,1,Yw,2, . . . . . . ,Yw,1149 answers from white subjects

Poisson Model: Yb, j ∼ Poisson(µb), Yw, j ∼ Poisson(µw)

Neg. Bin. Model: Yb, j ∼ NB(µb, θ), Yw, j ∼ NB(µw, θ)

Goal: Test whether µb = µw.

Equivalent to test β = 0 in the log-linear model.

log(µ) = α + βx, x =

1 if black

0 if white,

Note µb = eα+β, µw = eα. So eβ = µb/µw.
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Poisson and Neg. Bin Models for Homicide Data

Can fit Negative binomial regression models using glm.nb() in the
MASS package.

nvics = c(0:6,0:6)

race = c(rep("Black", 7),rep("White",7))

freq = c(119,16,12,7,3,2,0,1070,60,14,4,0,0,1)

nvics race freq

1 0 Black 119

2 1 Black 16

3 2 Black 12

... (omit) ...

13 5 White 0

14 6 White 1

race = factor(race, levels=c("White","Black"))

hom.poi = glm(nvics ~ race, weights=freq, family=poisson)

library(MASS)

hom.nb = glm.nb(nvics ~ race, weights=freq) 35



Example (Known Victims of Homicide) — Poisson Fits

summary(hom.poi)

Call:

glm(formula = nvics ~ race, family = poisson, weights = freq)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.3832 0.0971 -24.5 <2e-16

raceBlack 1.7331 0.1466 11.8 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 962.80 on 10 degrees of freedom

Residual deviance: 844.71 on 9 degrees of freedom

AIC: 1122

Number of Fisher Scoring iterations: 6
36



Example (Known Victims of Homicide) — Neg. Binomial

summary(hom.nb)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.383 0.117 -20.33 < 2e-16

raceBlack 1.733 0.238 7.27 3.7e-13

---

Null deviance: 471.57 on 10 degrees of freedom

Residual deviance: 412.60 on 9 degrees of freedom

AIC: 1002

Number of Fisher Scoring iterations: 1

Theta: 0.2023

Std. Err.: 0.0409

2 x log-likelihood: -995.7980
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Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.383 0.117 -20.33 < 2e-16

raceBlack 1.733 0.238 7.27 3.7e-13

• Fitted values given by the Neg. Bin model are simply the
sample means — exp(−2.383) = 0.0922 (= 106

1149 ) for whites
and exp(−2.383 + 1.733) = 0.522 (= 83

159 ) for blacks.

• Estimated common dispersion parameter is θ̂ = 0.2023 with
SE = 0.0409.

• Fitted P(Y = k) is

Γ(k + θ̂)

k!Γ(̂θ)

 θ̂
µ̂ + θ̂

θ  µ̂
µ̂ + θ̂

k

, where µ̂ =


83

159 for blacks
106

1149 for whites.

• Textbook uses D = 1/θ as the dispersion parameter,
estimated as D̂ = 1/̂θ = 1/0.2023 ≈ 4.94.
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Black Subjects

Num. of Victims 0 1 2 3 4 5 6 Total
observed freq. 119 16 12 7 3 2 0 159
relative freq. 0.748 0.101 0.075 0.044 0.019 0.013 0 1
poisson fit 0.593 0.310 0.081 0.014 0.002 0.000 0.000 1
neg. bin.fit 0.773 0.113 0.049 0.026 0.015 0.009 0.006 0.991

White Subjects:

num. of victims 0 1 2 3 4 5 6 Total
observed freq. 1070 60 14 4 0 0 1 1149
relative freq. 0.931 0.052 0.012 0.003 0.000 0.000 0.001 0.999
poisson fit 0.912 0.084 0.004 0.000 0.000 0.000 0.000 1
neg. bin.fit 0.927 0.059 0.011 0.003 0.001 0.000 0.000 1.001

# neg. bin fit

round(dnbinom(0:6, size = hom.nb$theta, mu = 83/159),3) # black

[1] 0.773 0.113 0.049 0.026 0.015 0.009 0.006

round(dnbinom(0:6,size = hom.nb$theta, mu=106/1149),3) # white

[1] 0.927 0.059 0.011 0.003 0.001 0.000 0.000
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Example (Known Victims of Homicide)

Model: log(µ) = α + βx, x =

1 if black
0 if white,

Model α̂ β̂ SE(̂β) Wald 95% CI for eβ = µB/µA

Poisson −2.38 1.73 0.147 exp(1.73 ± 1.96 · 0.147) = (4.24, 7.54)
Neg. Binom. −2.38 1.73 0.238 exp(1.73 ± 1.96 · 0.238) = (3.54, 9.03)

Poisson and negative binomial models give

• identical estimates for coefficients
(this data set only, not always the case)

• but different SEs for β̂ (Neg. Binom. gives bigger SE)

To account for overdispersion, neg. binom. model gives wider
Wald CIs (and also wider LR CIs).

Remark. Observe eβ̂ = e1.73 = 5.7 is the ratio of the two sample
means yblack/ywhite = 0.522/0.092.
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Wald CIs

confint.default(hom.poi)

2.5 % 97.5 %

(Intercept) -2.574 -2.193

raceBlack 1.446 2.020

exp(confint.default(hom.poi))

2.5 % 97.5 %

(Intercept) 0.07626 0.1116

raceBlack 4.24557 7.5414

confint.default(hom.nb)

2.5 % 97.5 %

(Intercept) -2.613 -2.154

raceBlack 1.266 2.201

exp(confint.default(hom.nb))

2.5 % 97.5 %

(Intercept) 0.07332 0.1161

raceBlack 3.54571 9.0300
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Likelihood Ratio CIs

confint(hom.poi, "raceBlack")

Waiting for profiling to be done...

2.5 % 97.5 %

1.444 2.019

exp(confint(hom.poi, "raceBlack"))

Waiting for profiling to be done...

2.5 % 97.5 %

4.236 7.533

confint(hom.nb, "raceBlack")

Waiting for profiling to be done...

2.5 % 97.5 %

1.275 2.212

exp(confint(hom.nb, "raceBlack"))

Waiting for profiling to be done...

2.5 % 97.5 %

3.578 9.132
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If Not Taking Overdispersion Into Account . . .

• SEs are underestimated
• CIs will be too narrow
• Significance of variables will be over stated (reported P values

are lower than the actual ones)
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How to Check for Overdispersion?

• Think about whether overdispersion is likely — e.g., important
explanatory variables not available, or dependence in
observations.

• Compare the sample variances to the sample means
computed for groups of responses with identical explanatory
variable values.

• Large deviance relative to its df can be a sign of
overdispersion

• Examine residuals to see if a large deviance statistic may be
due to outliers

• Large numbers of outliers is usually a sign of overdispersion
• Check standardized residuals and plot them against them

fitted values µ̂i.
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Train Data Revisit

Recall Pearson’s residual:

ei =
yi − µ̂i√
µ̂i

If no overdispersion, then

Var(Y) ≈ (yi − µ̂i)2 ≈ E(Y) ≈ µ̂i

So the size of Pearson’s residuals should be around 1.

With overdispersion,

Var(Y) = µ + Dµ2

then the size of Pearson’s residuals may increase with µ.

We may check the plot of the absolute value of (standardized)
Pearson’s residuals against fitted values µ̂i.

45



Train Data — Checking Overdispersion

plot(trains1$fit, abs(rstandard(trains1, type="pearson")),

xlab="Fitted Values", ylab="|Std. Pearson Residuals|")
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The size of standardized Pearson’s residuals tend to increase with
fitted values. This is a sign of overdisperson.

46



Train Data — Neg. Bin. Model

trains.nb = glm.nb(TrRd ~ Year+offset(log(KM)), data=trains)

summary(trains.nb)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 62.2960 25.5956 2.43 0.0149

Year -0.0337 0.0129 -2.61 0.0089

---

Null deviance: 32.045 on 28 degrees of freedom

Residual deviance: 25.264 on 27 degrees of freedom

AIC: 132.7

Number of Fisher Scoring iterations: 1

Theta: 10.12

Std. Err.: 8.00

2 x log-likelihood: -126.69

For Year, the estimated coefficients are similar (0.0337 for neg.
bin. fit v.s. 0.032 for Poisson fit), but less significant (P-value =
0.009 in neg. bin. fit v.s. 0.002 in Poisson fit) 47



Example (British Football Fans)

The table below lists total home field attendance (in 1000s) and the
total # of arrests in a season for soccer teams in the Second
Division of the British football league.

Team Attendance Arrests Team Attendance Arrests
Aston Villa 404 308 Shrewsbury 108 68
Bradford City 286 197 Swindon Town 210 67
Leeds United 443 184 Sheffield Utd 224 60
Bournemouth 169 149 Stoke City 211 57
West Brom 222 132 Barnsley 168 55
Hudderfield 150 126 Millwall 185 44
Middlesbro 321 110 Hull City 158 38
Birmingham 189 101 Manchester City 429 35
Ipswich Town 258 99 Plymouth 226 29
Leicester City 223 81 Reading 150 20
Blackburn 211 79 Oldham 148 19
Crystal Palace 215 78
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Which Teams Had Most Aggressive Fans?

Let Y = # of arrests for a team with total home field attendance t.

If the arrests distributed homogeneously among people attending
football games, the expected numbers of arrests µ = E(Y) at the
home field of a team should be proportional to t = total # of
attendance at the home field of that team. Thus, it’s reasonable to
assume

µ = E(Y) = λt,

where λ = # of arrests per thousand of attendance. Taking
logarithm on both sides, we get

log(µ) = log(t) + α, where α = log(λ).

Observe that log(t) is an offset in the model equation since its
coefficient is a fixed number 1 that we don’t have to estimate.
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Example (British Football Fans) — Poisson Fit

soccer = read.table(

"http://www.stat.uchicago.edu/~yibi/s226/SoccerGameArrests.dat",

header=TRUE)

fit.poi = glm(arrests ~ 1, offset = log(attendance), family=poisson,

data=soccer)

summary(fit.poi)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.9103 0.02164 -42.07 0

Fitted model: log(̂µ) = −0.9103 + log(t) or

Predicted arrests = µ̂ = e−0.9103t ≈ 0.4024 t.

That is, there were about 0.4 arrests in every thousands of
attendance.

Team “Leeds United” had the highest # of attendance t = 443K.
Predicted arrests = µ̂ ≈ 0.4024 t = 0.4024 × 443 ≈ 178.26.
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summary(fit.poi)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.9103 0.02164 -42.07 0

The 95% Wald CI for α is

−0.9103 ± 1.96 × 0.02164 ≈ (−0.9527,−0.8679)

and for λ = eα is (e−0.9527, e−0.8679) ≈ (0.3857, 0.4198).

Interpretation: With 95% confidence, there were about 0.3857 to
0.4198 arrests on average in every thousands of attendance.
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Residuals

We can use standardized (deviance or Pearson) residuals to
identify teams with far more arrests than expected. (Output in the
next 2 pages).

cbind(soccer,

Fit = round(fit.poi$fit,1),

StdDevRes = round(rstandard(fit.poi),1),

StdPsnRes=round(rstandard(fit.poi,type="pearson"),1))

Several teams have huge std. residuals, over 4, 8, even over 10.
Among them, Aston Villa, Bradford City, Bournemouth, West Brom,
Hudderfield had far more arrests than expected (residual > 4), and
the arrests for Manchester City, Plymouth, Reading, and Oldham
were far below expected (residual < −4).

Large numbers of huge std. residuals is a sign of overdispersion.
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team attendance arrests Fit StdDevRes StdPsnRes

1 Aston Villa 404 308 162.6 10.5 11.9 <--

2 Bradford City 286 197 115.1 7.1 7.8 <--

3 Leeds United 443 184 178.3 0.4 0.4

4 Bournemouth 169 149 68.0 8.6 10.0 <--

5 West Brom 222 132 89.3 4.3 4.6 <--

6 Hudderfield 150 126 60.4 7.5 8.6 <--

7 Middlesbro 321 110 129.2 -1.8 -1.7

8 Birmingham 189 101 76.1 2.8 2.9

9 Ipswich Town 258 99 103.8 -0.5 -0.5

10 Leicester City 223 81 89.7 -1.0 -0.9

11 Blackburn 211 79 84.9 -0.7 -0.7

12 Crystal Palace 215 78 86.5 -1.0 -0.9

13 Shrewsbury 108 68 43.5 3.5 3.8

14 Swindon Town 210 67 84.5 -2.0 -1.9

15 Sheffield Utd 224 60 90.1 -3.5 -3.2
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team attendance arrests Fit StdDevRes StdPsnRes

16 Stoke City 211 57 84.9 -3.3 -3.1

17 Barnsley 168 55 67.6 -1.6 -1.6

18 Millwall 185 44 74.4 -3.9 -3.6

19 Hull City 158 38 63.6 -3.5 -3.3

20 Manchester City 429 35 172.6 -13.3 -10.9 <--

21 Plymouth 226 29 90.9 -7.8 -6.6 <--

22 Reading 150 20 60.4 -6.1 -5.3 <--

23 Oldham 148 19 59.6 -6.2 -5.3 <--
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Example (British Football Fans) — Neg. Bin. Fit

library(MASS)

fit.nb = glm.nb(arrests ~ 1+ offset(log(attendance)), data=soccer)

summary(fit.nb)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.905 0.120 -7.55 4.5e-14

--

Null deviance: 24.15 on 22 degrees of freedom

Residual deviance: 24.15 on 22 degrees of freedom

AIC: 244.2

Number of Fisher Scoring iterations: 1

Theta: 3.136

Std. Err.: 0.920

2 x log-likelihood: -240.236
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Example (Football Fans) — NB v.s. Poisson

Model α̂ SE(α̂) Wald 95% CI for eα = λ
Poisson −0.9103 0.0216 exp(−0.9103 ± 1.96 · 0.0216) ≈ (0.386, 0.420)
NB −0.9052 0.1200 exp(−0.9052 ± 1.96 · 0.1200) ≈ (0.320, 0.512)

Interpretation: With 95% confidence, there were about 0.3197 to
0.5117 arrests on average in every thousands of attendance,
based on NB fit.

NB fit gives a much wider CI for eα than Poisson fit.

If we ignore overdispersion, the CI obtained would have a
confidence level substantially lower than the nominal 95% level.
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Example (Football Fans) — Evidence of Overdispersion

• Large discrepancy in SE(α̂) (0.12 by NB, 0.0216 by Poisson)
• Too many huge standardized residuals
• Huge size of deviance compared to its df: The deviance of the

Poisson model is over 30 times of its df 22

deviance(fit.poi)

[1] 669.4

df.residual(fit.poi)

[1] 22

deviance(fit.nb)

[1] 24.15

df.residual(fit.nb)

[1] 22

• R does not report the estimate and SE of the dispersion
parameter D, but of its inverse θ = 1/D, which is 3.136,
⇒ D̂ = 1/̂θ = 1/3.136 ≈ 0.319.
R gives SE(̂θ) = 0.920, but SE(D̂) is not available.
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Standardized Deviance & Pearson Residuals For NB Fit

cbind(soccer,

Fit = round(fit.nb$fit,1),

StdDevRes = round(rstandard(fit.nb),2),

StdPsnRes = round(rstandard(fit.nb,type="pearson"),2))

team attendance arrests Fit StdDevRes StdPsnRes

1 Aston Villa 404 308 163.4 1.27 1.59

2 Bradford City 286 197 115.7 1.05 1.26

3 Leeds United 443 184 179.2 0.05 0.05

4 Bournemouth 169 149 68.4 1.59 2.09 <--

5 West Brom 222 132 89.8 0.73 0.84

6 Hudderfield 150 126 60.7 1.48 1.90

7 Middlesbro 321 110 129.8 -0.29 -0.27

8 Birmingham 189 101 76.4 0.52 0.57

9 Ipswich Town 258 99 104.4 -0.09 -0.09

10 Leicester City 223 81 90.2 -0.19 -0.18
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11 Blackburn 211 79 85.3 -0.14 -0.13

12 Crystal Palace 215 78 87.0 -0.19 -0.18

13 Shrewsbury 108 68 43.7 0.84 0.97

14 Swindon Town 210 67 84.9 -0.41 -0.38

15 Sheffield Utd 224 60 90.6 -0.68 -0.60

16 Stoke City 211 57 85.3 -0.67 -0.59

17 Barnsley 168 55 68.0 -0.36 -0.34

18 Millwall 185 44 74.8 -0.86 -0.73

19 Hull City 158 38 63.9 -0.84 -0.72

20 Manchester City 429 35 173.5 -2.26 -1.43 <--

21 Plymouth 226 29 91.4 -1.70 -1.22

22 Reading 150 20 60.7 -1.63 -1.18

23 Oldham 148 19 59.9 -1.68 -1.20
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Almost all teams have std. residuals < 2 after accounting for
overdispersion.

• Bournemouth seemed to have too many arrests than
expected. Its std. pearson residual is 2.09, but its std
deviance residual is only 1.59.

• Manchester City had 39 arrests only, far below its fitted value
173.5. The std deviance residual is −2.26 but its std pearson
residual is −1.43.

Neither team seemed to be an extreme outlier for the negative
binomial model.
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