STAT 226 Lecture 21 Section 6.2 Cumulative Logit Models for Ordinal Responses

Yibi Huang

6.2 Cumulative Logit Models for Ordinal Responses

Suppose the response Y is multinomial with ordered categories

$$
\{1,2, \ldots, J\}
$$

Let $\pi_{i}=\mathrm{P}(Y=i)$. The cumulative probabilities are

$$
\mathrm{P}(Y \leq j)=\pi_{1}+\cdots+\pi_{j}, \quad j=1,2, \ldots, J .
$$

- Note $\mathrm{P}(Y \leq 1) \leq \mathrm{P}(Y \leq 2) \leq \ldots \leq \mathrm{P}(Y \leq J)=1$
- If Y is not ordinal, it's nonsense to say " $Y \leq j$."

The cumulative logits are

$$
\begin{aligned}
\operatorname{logit}[\mathrm{P}(Y \leq j)] & =\log \left(\frac{\mathrm{P}(Y \leq j)}{1-\mathrm{P}(Y \leq j)}\right)=\log \left(\frac{\mathrm{P}(Y \leq j)}{\mathrm{P}(Y>j)}\right) \\
& =\log \left(\frac{\pi_{1}+\cdots+\pi_{j}}{\pi_{j+1}+\cdots+\pi_{J}}\right), \quad j=1, \ldots, J-1 .
\end{aligned}
$$

Cumulative Logit Models

$$
\operatorname{logit}[\mathrm{P}(Y \leq j \mid x)]=\alpha_{j}+\beta x, \quad j=1, \ldots, J-1 .
$$

- separate intercept α_{j} for each cumulative logit
- same slope β for all cumulative logits
\Rightarrow Curves of $\mathrm{P}(Y \leq j \mid x)$ are "parallel", never cross each other.
As long as $\alpha_{1} \leq \alpha_{2} \leq \ldots \leq \alpha_{J-1}$, we can ensure that

$$
\mathrm{P}(Y \leq j \mid x)=\frac{\exp \left(\alpha_{j}+\beta x\right)}{1+\exp \left(\alpha_{j}+\beta x\right)} \leq \frac{\exp \left(\alpha_{j+1}+\beta x\right)}{1+\exp \left(\alpha_{j+1}+\beta x\right)}=\mathrm{P}(Y \leq j+1 \mid x)
$$

Cumulative Logit Models

$$
\mathrm{P}(Y \leq j \mid x)=\frac{\exp \left(\alpha_{j}+\beta x\right)}{1+\exp \left(\alpha_{j}+\beta x\right)}, \quad j=1, \ldots, J-1 .
$$

$$
\begin{aligned}
\pi_{j}(x)=\mathrm{P}(Y=j \mid x) & =\mathrm{P}(Y \leq j \mid x)-\mathrm{P}(Y \leq j-1 \mid x) \\
& =\frac{\exp \left(\alpha_{j}+\beta x\right)}{1+\exp \left(\alpha_{j}+\beta x\right)}-\frac{\exp \left(\alpha_{j-1}+\beta x\right)}{1+\exp \left(\alpha_{j-1}+\beta x\right)}
\end{aligned}
$$

- If $\beta>0$, as $x \uparrow, Y$ is more likely at the lower categories $(Y \leq j)$
- If $\beta<0$, as $x \uparrow, Y$ is more likely at the higher categories $(Y>j)$

"Non-Parallel" Cumulative Logit Models

$$
\operatorname{logit}[\mathrm{P}(Y \leq j \mid x)]=\alpha_{j}+\beta_{j} x, \quad j=1, \ldots, J-1
$$

- separate intercept α_{j} for each cumulative logit
- separate slope β_{j} for each cumulative logit

However, $\mathrm{P}(Y \leq j)$ curves in "non-parallel" cumulative logit models may cross each other and hence may not maintain that

$$
\mathrm{P}(Y \leq j \mid x) \leq \mathrm{P}(Y \leq j+1 \mid x) \quad \text { for all } x
$$

Properties of Cumulative Logit Models

$$
\operatorname{odds}(Y \leq j \mid x)=\frac{\mathrm{P}(Y \leq j \mid x)}{\mathrm{P}(Y>j \mid x)}=\exp \left(\alpha_{j}+\beta x\right), \quad j=1, \ldots, J-1 .
$$

- $\exp (\beta)=$ multiplicative effect of 1-unit increase in x on odds that $(Y \leq j)$ (instead of $(Y>j)$).

$$
\frac{\operatorname{odds}\left(Y \leq j \mid x_{2}\right)}{\operatorname{odds}\left(Y \leq j \mid x_{1}\right)}=\frac{\exp \left(\alpha_{j}+\beta x_{2}\right)}{\exp \left(\alpha_{j}+\beta x_{1}\right)}=\exp \left(\beta\left(x_{2}-x_{1}\right)\right) \text { for all } j
$$

So cumulative logit models are also called proportional odds models.

- ML estimates for coefficients $\left(\alpha_{j}, \beta\right)$ can be found via R function $v g l m()$ in the package VGAM w/ cumulative family.

Exercise 2.21 (Job Satisfaction and Income, ICDA, p.61)

Income	Job Satisfaction (Y)			
(x)	Dissat	Little	Moderate	Very
$0-5 \mathrm{~K}$	2	4	13	3
$5-15 \mathrm{~K}$	2	6	22	4
$15-25 \mathrm{~K}$	0	1	15	8
$>25 \mathrm{~K}$	0	3	13	8

Using $x=$ income scores $(3 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}, 35 \mathrm{~K})$, we fit the model

$$
\operatorname{logit}[\mathrm{P}(Y \leq j \mid x)]=\alpha_{j}+\beta x, \quad j=1,2,3 .
$$

library (VGAM)
Income $=c(3,10,20,35)$
Diss $=c(2,2,0,0)$
Little $=c(4,6,1,3)$
Mod $=c(13,22,15,13)$
Very $=c(3,4,8,8)$
jobsat.cl1 = vglm(cbind(Diss,Little,Mod,Very) ~ Income, family=cumulative(parallel=TRUE))
coef(jobsat.cl1)

(Intercept):1	(Intercept):2	(Intercept):3	Income
-2.58287	-0.89698	2.07506	-0.04486

A more organized view of the fitted coefficients:

coef(jobsat.cl1, matrix=TRUE)			
logitlink($\mathrm{P}[\mathrm{Y}<=1])$		logitlink($\mathrm{P}[\mathrm{Y}<=2])$	logitlink($\mathrm{P}[\mathrm{Y}<=3])$
(Intercept)	-2.58287	-0.89698	2.07506
Income	-0.04486	-0.04486	-0.04486

Fitted model:

$$
\begin{aligned}
\operatorname{logit}[\widehat{\mathrm{P}}(Y \leq j \mid x)] & =\log \left(\frac{\mathrm{P}(Y \leq j)}{\mathrm{P}(Y>j)}\right) \\
& = \begin{cases}-2.583-0.045 x, & \text { for } j=1 \text { (Dissat) } \\
-0.897-0.045 x, & \text { for } j=2 \text { (Dissat or little) } \\
2.075-0.045 x, & \text { for } j=3 \text { (Dissat or little or mod) }\end{cases}
\end{aligned}
$$

Interpretation of Coefficients

Interpretation of β in the model

$$
\begin{aligned}
& \operatorname{logit}[\widehat{\mathrm{P}}(Y \leq j \mid x)]=\log \left(\frac{\mathrm{P}(Y \leq j)}{\mathrm{P}(Y>j)}\right)=\alpha_{j}+\beta x \\
\Longleftrightarrow & \frac{\mathrm{P}(Y \leq j)}{\mathrm{P}(Y>j)}=\exp \left(\alpha_{j}+\beta x\right)
\end{aligned}
$$

For every 1 -unit increase in x, the odds of $Y \leq j$ become $\exp (\beta)$ times as large.

Example(Job Satisfaction)

$$
\log \left(\frac{\mathrm{P}(Y \leq j)}{\mathrm{P}(Y>j)}\right)=\left\{\begin{array}{cl}
-2.583-0.045 x, & \text { for } j=1 \text { (Dissat) } \\
-0.897-0.045 x, & \text { for } j=2 \text { (Dissat or little) } \\
2.075-0.045 x, & \text { for } j=3 \text { (Dissat or little or mod) }
\end{array}\right.
$$

Estimated odds of being
$(Y \leq 1)$ "dissat" rather than "little", "mod" or "very sat." ($Y>1$)
$(Y \leq 2)$ "dissat" or "little" rather than "mod" or "very sat." ($Y>2$)
$(Y \leq 3)$ "dissat" or "little" or "mod" rather than "very sat." ($Y>3$)
all become $e^{-0.045} \approx 0.96$ times as large for each 1 K increase in income.

If We Reverse the Order of Response Categories ...

If we reverse the order of response categories, β would change sign but has same SE.

With "very sat." < "mod" < "little" < "dissat":

```
jobsat.cl1r = vglm(cbind(Very,Mod,Little,Diss) ~ Income,
    family=cumulative(parallel=TRUE))
coef(jobsat.cl1r)
(Intercept):1 (Intercept):2 (Intercept):3 Income
    -2.07506 0.89698 2.58287 0.04486
```

$\widehat{\beta}=0.045$, estimated odds of satisfaction above any given level is multiplied by

$$
e^{10 \widehat{\beta}}=1.566=1 / 0.64
$$

for each 10K increase in income

Probabilities of Categories for Cumulative Logit Models

$$
\log \left(\frac{\mathrm{P}(Y \leq j)}{\mathrm{P}(Y>j)}\right)=\alpha_{j}+\beta x \Longleftrightarrow \mathrm{P}(Y \leq j)=\frac{e^{\alpha_{j}+\beta x}}{1+e^{\alpha_{j}+\beta x}} \quad j=1,2, \ldots, J-1 .
$$

The probability π_{j} for an individual category

$$
\begin{aligned}
& \pi_{1}=\mathrm{P}(Y=1)=\mathrm{P}(Y \leq 1)=\frac{e^{\alpha_{1}+\beta x}}{1+e^{\alpha_{1}+\beta x}} \\
& \pi_{2}=\mathrm{P}(Y=2)=\mathrm{P}(Y \leq 2)-\mathrm{P}(Y \leq 1)=\frac{e^{\alpha_{2}+\beta x}}{1+e^{\alpha_{2}+\beta x}}-\frac{e^{\alpha_{1}+\beta x}}{1+e^{\alpha_{1}+\beta x}} \\
& \pi_{3}=\mathrm{P}(Y=3)=\mathrm{P}(Y \leq 3)-\mathrm{P}(Y \leq 2)=\frac{e^{\alpha_{3}+\beta x}}{1+e^{\alpha_{3}+\beta x}}-\frac{e^{\alpha_{2}+\beta x}}{1+e^{\alpha_{2}+\beta x}} \\
& \vdots \\
& \pi_{J}=\mathrm{P}(Y=J)=\mathrm{P}(Y \leq J)-\mathrm{P}(Y \leq J-1) \\
&=1-\mathrm{P}(Y \leq J-1)=1-\frac{e^{\alpha_{J-1}+\beta x}}{1+e^{\alpha_{J-1}+\beta x}}
\end{aligned}
$$

Probabilities of Categories (Job Satisfaction)

$$
\log \left(\frac{\mathrm{P}(Y \leq j)}{\mathrm{P}(Y>j)}\right)= \begin{cases}-2.583-0.045 x, & \text { for } j=1 \text { (Dissat) } \\ -0.897-0.045 x, & \text { for } j=2 \text { (Dissat or little) } \\ 2.075-0.045 x, & \text { for } j=3 \text { (Dissat or little or mod) }\end{cases}
$$

E.g., at $x=20(\mathrm{~K})$, estimated prob. of the 4 categories are

$$
\begin{aligned}
\widehat{\pi}_{\text {dissat }} & =\widehat{\pi}_{1}=\frac{e^{-2.583-0.045(20)}}{1+e^{-2.583-0.045(20)}} \approx 0.03 \\
\widehat{\pi}_{\text {little }} & =\widehat{\pi}_{2}=\frac{e^{-0.897-0.045(20)}}{1+e^{-0.897-0.045(20)}}-\frac{e^{-2.583-0.045(20)}}{1+e^{-2.583-0.045(20)}} \approx 0.113 \\
\widehat{\pi}_{\text {mod }} & =\widehat{\pi}_{3}=\frac{e^{2.075-0.045(20)}}{1+e^{2.075-0.045(20)}}-\frac{e^{-0.897-0.045(20)}}{1+e^{-0.897-0.045(20)}} \approx 0.622 \\
\widehat{\pi}_{\text {verysat }} & =\widehat{\pi}_{4}=1-\frac{e^{2.075-0.045(20)}}{1+e^{2.075-0.045(20)}} \approx 0.235
\end{aligned}
$$

Obtaining Probabilities of Categories in R

In R, we can obtain the prob. of being "diss", "little", "moderate", or "very satisfied" when income is 20K using predict().
predict(jobsat.cl1, data.frame(Income=20), type="response")
Diss Little Mod Very
10.029890 .11270 .6220 .2354

We see $\widehat{\pi}_{\text {diss }} \approx 0.03, \widehat{\pi}_{\text {little }} \approx 0.113, \widehat{\pi}_{\text {mod }} \approx 0.622$, and $\widehat{\pi}_{\text {very }} \approx 0.235$. Observe that $\widehat{\pi}_{\text {diss }}+\widehat{\pi}_{\text {little }}+\widehat{\pi}_{\text {mod }}+\widehat{\pi}_{\text {very }}=1$.

Caution: without specifying type="response" in predict(), the predicted values would be the logits $\log \left(\frac{\mathrm{P}(Y \leq j)}{\mathrm{P}(Y>j)}\right)=\alpha_{j}+\beta x$, not the probabilities $\widehat{\pi}_{i}$.

```
predict(jobsat.cl1, data.frame(Income=20))
    logitlink(P[Y<=1]) logitlink(P[Y<=2]) logitlink(P[Y<=3])
1
    -3.48
    -1.794
    1.178
```


Wald Tests and Wald Cls for Parameters

Wald test of $\mathrm{H}_{0}: \beta=0$ (job satisfaction indep. of income):

$$
z=\frac{\widehat{\beta}-0}{\operatorname{SE}(\widehat{\beta})}=\frac{-0.0449}{0.0175}=-2.56, \quad\left(z^{2}=6.57, d f=1\right)
$$

P-value $=0.01038$

$$
\begin{aligned}
\underline{95 \% \mathrm{CI} \text { for } \beta}: \widehat{\beta} \pm 1.96 \mathrm{SE}(\widehat{\beta}) & =-0.0449 \pm 1.96 \times 0.0175 \\
& =(-0.079,-0.011)
\end{aligned}
$$

$95 \% \mathrm{Cl}$ for $e^{\beta}:\left(e^{-0.079}, e^{-0.011}\right)=(0.924,0.990)$
coef(summary(jobsat.cl1))
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept):1 -2.58287 0.5584 -4.625 0.000003740
(Intercept):2 -0.89698 0.3550 -2.5270 .011511413
(Intercept):3 $2.07506 \quad 0.4158 \quad 4.9900 .000000603$
Income -0.04486 0.0175 -2.5630 .010380707

LR Test for Parameters

LR test of $\mathrm{H}_{0}: \beta=0$ (job satisfaction indep. of income):
LR statistic $=-2\left(L_{0}-L_{1}\right)=-2((-21.358)-(-18.000))=6.718$

$$
P \text {-value }=0.0095
$$

lrtest(jobsat.cl1)
Likelihood ratio test

```
Model 1: cbind(Diss, Little, Mod, Very) ~ Income
Model 2: cbind(Diss, Little, Mod, Very) ~ 1
    #Df LogLik Df Chisq Pr(>Chisq)
1 8 -18.0
2
```


Pearson's X^{2} v.s. Baseline Category Logit v.s. Cumulative Logit

For the Income and Job Satisfaction data, we obtained stronger evidence of association if we use a cumulative logits model treating Y (Job Satisfaction) as ordinal than obtained if we treat:

- Y as nominal (baseline category logit model) and X as ordinal:

$$
\log \left(\pi_{j} / \pi_{4}\right)=\alpha_{j}+\beta_{j} x
$$

Recall P-value $=0.032$ for LR test.

- X, Y both as nominal: Pearson's test of independence had
$X^{2}=11.5, d f=9, P$-value $=0.24$
$G^{2}=13.47, d f=9, P$-value $=0.14$

Deviance and Goodness of Fit

Deviance can be used to test Goodness of Fit in the same way.
For cumulative logit model for Job Satisfaction data

$$
\text { Deviance }=6.749, \quad d f=8, \quad P \text {-value }=0.56
$$

The Model fits data well.

```
deviance(jobsat.cl1)
```

[1] 6.749
df.residual(jobsat.cl1)
[1] 8
pchisq(deviance(jobsat.cl1), $d f=8$, lower.tail=F)
[1] 0.5639

Remark. Generally, Goodness of fit test is appropriate if most of the fitted counts are ≥ 5. which is not the case for for the Job Satisfaction data. The P-value might not be reliable.

Example (Political Ideology and Party Affiliation)

Gender	Political Party	Political Ideology				
		very	slightly		slightly	very
		liberal	liberal	moderate	conservative	conservative
Female	Democrat	44	47	118	23	32
	Republican	18	28	86	39	48
Male	Democrat	36	34	53	18	23
	Republican	12	18	62	45	51

$Y=$ political ideology ($1=$ very liberal, $\ldots, 5=$ very conservative)
$G=\operatorname{gender}(1=M, 0=F)$
$P=$ political party ($1=$ Republican, $0=$ Democrat $)$
Cumulative Logit Model:

$$
\operatorname{logit}[\mathrm{P}(Y \leq j)]=\alpha_{j}+\beta_{G} G+\beta_{P} P, \quad j=1,2,3,4
$$

```
Gender = c("F","F","M","M")
Party = c("Dem","Rep","Dem","Rep")
VLib = c(44,18,36,12)
SLib = c(47,28,34,18)
Mod = c(118,86,53,62)
SCon = c(23,39,18,45)
VCon = c(32,48,23,51)
ideo.cl1 = vglm(cbind(VLib,SLib,Mod,SCon,VCon) ~ Gender + Party,
                                    family=cumulative(parallel=TRUE))
coef(ideo.cl1)
(Intercept):1 (Intercept):2 (Intercept):3 (Intercept):4 GenderM
    -1.4518 -0.4583 1.2550 2.0890 -0.1169
    PartyRep
    -0.9636
```

Fitted Model:

$$
\operatorname{logit}[\widehat{\mathrm{P}}(Y \leq j)]=\widehat{\alpha}_{j}-0.1169 G-0.9636 P, \quad j=1,2,3,4
$$

coef(summary(ideo.cl1))

	Estimate Std. Error	z value	$\operatorname{Pr}(>\|z\|)$	
(Intercept):1	-1.4518	0.1228	-11.8182	$3.144 \mathrm{e}-32$
(Intercept):2	-0.4583	0.1058	-4.3334	$1.468 \mathrm{e}-05$
(Intercept):3	1.2550	0.1145	10.9560	$6.220 \mathrm{e}-28$
(Intercept): 4	2.0890	0.1292	16.1737	$7.726 \mathrm{e}-59$
GenderM	-0.1169	0.1268	-0.9215	$3.568 \mathrm{e}-01$
PartyRep	-0.9636	0.1294	-7.4492	$9.393 \mathrm{e}-14$

- Controlling for Gender, estimated odds that a Republican is in liberal direction $(Y \leq j)$ rather than conservative $(Y>j)$ are

$$
e^{\widehat{\beta}_{P}}=e^{-0.9636} \approx 0.38
$$

times the estimated odds for a Democrat, for all $j=1,2,3,4$.

- 95% Wald Cl for $e^{\beta_{P}}$ is

$$
e^{\left.\widehat{\beta}_{P \pm 1.96 \operatorname{SE}\left(\widehat{\beta}_{P}\right)} \approx e^{-0.9636 \pm 1.96 \times 0.1294} \approx(0.30,0.49), ~\right)}
$$

- Based on Wald test, Party effect is significant (controlling for Gender) but Gender is not significant (controlling for Party).

```
LR test of H0}\mp@subsup{\textrm{H}}{0}{}:\mp@subsup{\beta}{G}{}=0\mathrm{ (no Gender effect, given Party):
lrtest(ideo.cl1, "Gender") # LR test for Gender effect
Likelihood ratio test
Model 1: cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender + Party
Model 2: cbind(VLib, SLib, Mod, SCon, VCon) ~ Party
    #Df LogLik Df Chisq Pr(>Chisq)
10 -47.4
2
```

LR test of $\mathrm{H}_{0}: \beta_{P}=0$ (no Party effect, given Gender):
lrtest(ideo.cl1, "Party") \# LR test for Party effect
Likelihood ratio test
Model 1: cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender + Party
Model 2: cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender
\#Df LogLik Df Chisq Pr(>Chisq)
$1 \begin{array}{lll}10 & -47.4\end{array}$
$\begin{array}{llllll}2 & 11 & -75.8 & 1 & 56.9 & 4.7 e-14\end{array}$

Interaction?

Model w/ Gender*Party interaction:

$$
\operatorname{logit}[\mathrm{P}(Y \leq j)]=\alpha_{j}+\beta_{G} G+\beta_{P} P+\beta_{G P} G * P, \quad j=1,2,3,4
$$

For $\mathrm{H}_{0}: \beta_{G P}=0, \mathrm{LR}$ statistic $=3.99, \mathrm{df}=1, P$-value $=0.046$
\Rightarrow Evidence of Party effect depends on Gender (and vice versa)
ideo.cl2 = vglm(cbind(VLib,SLib,Mod,SCon,VCon) ~ Gender * Party , family=cumulative(parallel=TRUE))
lrtest(ideo.cl2,ideo.cl1)
Likelihood ratio test

Model 1: cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender * Party
Model 2: cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender + Party \#Df LogLik Df Chisq Pr(>Chisq)
$\begin{array}{lll}1 & 9 & -45.4\end{array}$
$\begin{array}{llllll}2 & 10 & -47.4 & 1 & 3.99 & 0.046\end{array}$

$$
\begin{gathered}
\operatorname{logit}[\mathrm{P}(Y \leq j)]=\alpha_{j}+\beta_{G} G+\beta_{P} P+\beta_{G P} G P \\
\Leftrightarrow \text { odds of }(Y \leq j)=\frac{\mathrm{P}(Y \leq j)}{\mathrm{P}(Y>j)}=\exp \left(\alpha_{j}+\beta_{G} G+\beta_{P} P+\beta_{G P} G P\right)
\end{gathered}
$$

Odds ratio for Party effect is

$$
\begin{aligned}
\frac{\text { odds of } Y \leq j \text { given } P=1, G}{\text { odds of } Y \leq j \text { given } P=0, G} & =\frac{\exp \left(\alpha_{j}+\beta_{G} G+\beta_{P}(1)+\beta_{G P} G(1)\right)}{\exp \left(\alpha_{j}+\beta_{G} G+\beta_{P}(0)+\beta_{G P} G(0)\right)} \\
& = \begin{cases}\exp \left(\beta_{P}\right) & \text { for females }(G=0) \\
\exp \left(\beta_{P}+\beta_{G P}\right) & \text { for males }(G=1)\end{cases}
\end{aligned}
$$

coef(ideo.cl2)

(Intercept):1	(Intercept):2	(Intercept):3	(Intercept):4
-1.5521	-0.5550	1.1647	2.0012
GenderM	PartyRep GenderM:PartyRep		
0.1431	-0.7562	-0.5091	

Fitted model w/ Gender*Party interaction:
$\operatorname{logit}[\widehat{\mathrm{P}}(Y \leq j)]=\widehat{\alpha}_{j}+0.143 G-0.756 P-0.509 G * P, \quad j=1,2,3,4$.
Estimated odds ratio for Party effect is

$$
\begin{cases}e^{-0.756}=0.47 & \text { for females }(G=0) \\ e^{-0.756-0.51}=e^{-1.266}=0.28 & \text { for males }(G=1)\end{cases}
$$

Greater discrepancies between male Dem. and male Rep. than between female Dem. and female Rep.

Observed Percentages

		Political Ideology				
		Very	Slightly		Slightly	Very
Gender	Party	Liberal	Liberal	Moderate	Conserve.	Conserve.
Female	Dem.	17%	18%	45%	9%	12%
	Rep.	8%	13%	39%	18%	22%
Male	Dem.	22%	21%	32%	11%	14%
	Rep.	6%	10%	33%	24%	27%

Fitted model w/ Gender×Party interaction:

$$
\operatorname{logit}[\widehat{\mathrm{P}}(Y \leq j)]=\widehat{\alpha}_{j}+0.143 G-0.756 P-0.509 G * P, \quad j=1,2,3,4 .
$$

Estimated odds ratio for Gender effect is

$$
\begin{cases}e^{0.143}=1.15 & \text { for } \operatorname{Dems}(P=0) \\ e^{0.143-0.51}=e^{-0.336}=0.69 & \text { for } \operatorname{Reps}(P=1)\end{cases}
$$

- Among Dems, males were more liberal than females.
- Among Reps, males were more conservative than females.

Goodness of Fit

$$
\text { Deviance }=11.063, \quad d f=9(\text { why? }), \quad P \text {-value }=0.2714
$$

The cumulative logits model w/ interaction fits data well.

```
deviance(ideo.cl2)
[1] 11.06
df.residual(ideo.cl2)
[1] 9
pchisq(deviance(ideo.cl2), df= 9, lower.tail=FALSE)
[1] 0.2714
```

