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Chapter 6 Multicategory Logit Models

Response Y has J > 2 categories.

Extensions of logistic regression for nominal and ordinal Y
assumes a multinomial distribution for Y.

• 6.1 Baseline-Categorical Logit Models for Nominal Responses
• 6.2 Cumulative Logit Models for Ordinal Responses

2



Review of Multinomial Distributions

If n trials are performed:

• in each trial there are J > 2 possible outcomes (categories)
• π j = P(category j), for each trial,

∑J
j=1 π j = 1

• trials are independent
• Y j = number of trials fall in category j out of n trials

then the joint distribution of (Y1,Y2, . . . ,YJ) is said to have a
multinomial distribution, with n trials and category probabilities
(π1, π2, . . . , πJ), denoted as

(Y1,Y2, . . . ,YJ) ∼ Multinom(n; π1, π2, . . . , πJ),

with probability function

P(Y1 = y1,Y2 = y2, . . . ,YJ = yJ) =
n!

y1! y2! · · · yJ!
π

y1
1 π

y2
2 · · · π

yJ
J

where 0 ≤ y j ≤ n for all j and
∑

j y j = n.
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Odds for Multi-Category Response Variable

For a binary response variable, there is only one kind of odds that
we may consider

π

1 − π
.

For a multi-category response variable with J > 2 categories and
category probabilities (π1, π2, . . . , πJ), we may consider various
kinds of odds, though some of them are more meaningful than
others.

• odds between two categories: πi/π j.

• odds between a group of categories vs another group of
categories, e.g.,

π1 + π3

π2 + π4 + π5
.

Note the two groups of categories should be non-overlapping.
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Odds for Multi-Category Response Variable (Cont’d)

E.g., if Y = choice of meat (in a broad sense) with 5 categories

beef, pork, chicken, turkey, fish

We may consider the odds of

• beef vs. chicken: πbeef/πchicken

• red meat vs. white meat:

πbeef + πpork

πchicken + πturkey + πfish

• red meat vs. poultry:

πbeef + πpork

πchicken + πturkey
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Odds for Ordinal Variables

If Y is ordinal with ordered categories:

1 < 2 < . . . < J

we may consider the odds of Y ≤ j

P(Y ≤ j)
P(Y > j)

=
π1 + π2 + · · · + π j

π j+1 + · · · + πJ

e.g., Y = political ideology, with 5 levels

very liberal < slightly liberal < moderate

< slightly conservative < very conservative

we may consider the odds

P(very or slightly liberal”)
P(moderate or conservative)

=
πvlib + πslib

πmod + πscon + πvcon
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Odds Ratios for XY When Y is Multi-Category

For any sensible odds between two (groups of) categories of Y can
be compared across two levels of X.

E.g., for Y = choice of meat, X = Country (Italy, Japan), we may
consider

OR between Y (fish vs. beef) and X = IT or JP

=
P(Y = fish | X = IT)/P(Y = beef | X = IT)
P(Y = fish|X = JP)/P(Y = beef | X = JP)

OR between Y (red meat vs. fish) and X = IT or JP

=
P(Y = beef or pork | X = IT)/P(Y = fish | X = IT)

P(Y = beef or pork | X = JP)/P(Y = fish | X = JP)

• Again, ORs can be estimated from both prospective and
retrospective studies.

• Usually we need more than 1 OR to describe XY associations
completely.
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6.1 Baseline-Category Logit
Models for Nominal Responses



6.1 Baseline-Category Logit Models for Nominal Responses

Let π j = P(Y = j), j = 1, 2, . . . , J.

Baseline-category logits are

log
(
π j

πJ

)
, j = 1, 2, . . . , J − 1.

Baseline-category logit model has form

log
(
π j

πJ

)
= α j + β jx, j = 1, 2, . . . , J − 1.

or equivalently,

π j = πJ exp(α j + β jx) j = 1, 2, . . . , J − 1.

• Separate set of parameters (α j, β j) for each logit.
• Equation for πJ is not needed since log(πJ/πJ) = 0
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Choice of the Baseline-Category Is Arbitrary

Equation for other pair of categories, say, categories a and b can
then be determined as

log
(
πa

πb

)
= log

(
πa/πJ

πb/πJ

)
= log

(
πa

πJ

)
− log

(
πb

πJ

)
= (αa + βax) − (αb + βbx)

= (αa − αb) + (βa − βb)x

Any of the categories can be chosen to be the baseline

• The model will fit equally well, achieving the same likelihood
and producing the same fitted values.

• The coefficients α j, β j’s will change, but their differences

αa − αb and βa − βb

between any two categories a and b will stay the same.
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Baseline-Category Logit Models w/ Ordinal Response

Could also use this model with ordinal response variables, but this
would ignore ordinal information.
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Exercise 2.21 (Job Satisfaction and Income, ICDA, p.61)

Data from General Social Survey (1991)
Income Job Satisfaction (Y)

(x) Dissat Little Moderate Very
0-5K 2 4 13 3
5-15K 2 6 22 4
15-25K 0 1 15 8
>25K 0 3 13 8

Goal: to know if one’s job satisfaction changes with income

From the table above, there seems to be higher percentages of
people in the more satisfied categories in the higher income
groups.

How to we test if the tendency is significant?
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Income Job Satisfaction (Y)
(x) Dissat Little Moderate Very

0-5K 2 4 13 3
5-15K 2 6 22 4
15-25K 0 1 15 8
>25K 0 3 13 8

Note X = Income is ordinal w/ 4 categories.

To utilize the ordinal info of X, instead of creating dummy variables
for the categories of X as if X is nominal, we convert the categories
to

X = income scores (3K, 10K, 20K, 35K),

and fit the baseline-category logit model

log
(
π j

πJ

)
= α j + β jx, j = 1, 2, 3.

for J = 4 job satisfaction categories.
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VGAM Library in R

ML estimates for coefficients (α j, β j) in logit model can be found via
the R function vglm() in the package VGAM w/ multinomial family.

You will have to install the VGAM library first, by the following
command. You only need to install ONCE!

install.packages("VGAM") # JUST RUN THIS ONCE!

Once installed, must load VGAM at every R session before it can be
used.

library(VGAM)
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Fitting Baseline-Category Logit Models in R

Income Job Satisfaction (Y)
(X) Dissat Little Moderate Very

0-5K 2 4 13 3
5-15K 2 6 22 4

15-25K 0 1 15 8
>25K 0 3 13 8

Recall we use X = income score (3K, 10K, 20K, 35K) as the
predictor.

Income = c(3,10,20,35)

Diss = c(2,2,0,0)

Little = c(4,6,1,3)

Mod = c(13,22,15,13)

Very = c(3,4,8,8)

jobsat.fit1 = vglm(cbind(Diss,Little,Mod,Very) ~ Income,

family=multinomial)
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coef(jobsat.fit1, matrix=TRUE)

log(mu[,1]/mu[,4]) log(mu[,2]/mu[,4]) log(mu[,3]/mu[,4])

(Intercept) 0.4298 0.45627 1.70393

Income -0.1854 -0.05441 -0.03739

The fitted model is

log
(
π̂1

π̂4

)
= α̂1 + β̂1x = 0.430 − 0.185x (Dissat. v.s. Very Sat.)

log
(
π̂2

π̂4

)
= α̂2 + β̂2x = 0.456 − 0.054x (Little v.s. Very Sat.)

log
(
π̂3

π̂4

)
= α̂3 + β̂3x = 1.704 − 0.037x (Moderate v.s. Very Sat.)

As β̂ j < 0 for j = 1, 2, 3, for each logit, estimated odds of being in
less satisfied category (instead of very satisfied) decrease as x =
income increases.
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Interpretation of Coefficients

Interpretation of βi in the model log(̂πi/̂πJ) = α̂i + β̂ix:
For every 1-unit increase in x, the odds of Y being in category i
rather than category J become eβi times as large.

Example (Job Satisfaction)

log(̂π1/̂π4) = 0.430 − 0.185x (Dissat. v.s. Very Sat.)

log(̂π2/̂π4) = 0.456 − 0.054x (Little v.s. Very Sat.)

log(̂π3/̂π4) = 1.704 − 0.037x (Moderate v.s. Very Sat.)

Estimated odds of being

"dissatisfied" e−0.185 ≈ 0.83
"little satisfied" rather than "very satisfied" become e−0.054 ≈ 0.95
"moderately satisfied" e−0.037 ≈ 0.96

times as large for each 1K increase in income.
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Interpretation of Coefficients

Example (Job Satisfaction)

log(̂π1/̂π4) = 0.430 − 0.185x (Dissat. v.s. Very Sat.)

log(̂π2/̂π4) = 0.456 − 0.054x (Little v.s. Very Sat.)

log(̂π3/̂π4) = 1.704 − 0.037x (Moderate v.s. Very Sat.)

The estimated odds of being “little satisfied” rather than
“dissatisfied” (neither is the baseline category) become

e−0.054−(−0.185) ≈ 1.14

times as large for each 1K increase in income.
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Probabilities of Categories

Baseline-Category Logit Model:

log
(
π j

πJ

)
= α j + β jx ⇐⇒ π j = πJeα j+β j x j = 1, 2, . . . , J − 1.

The probability πJ for the baseline category can be determined
from

∑J
j=1 π j = 1 as follows:

1 =
∑J

j=1
π j = πJ +

∑J−1

j=1
πJeα j+β j x = πJ

(
1 +

∑J−1

j=1
eα j+β j x

)
So πJ =

1

1 +
∑J−1

k=1 eαk+βk x
. The probabilities π j for other categories

can be obtained from π j = πJeα j+β j x to be

π j =
eα j+β j x

1 +
∑J−1

k=1 eαk+βk x
, for j = 1, 2, . . . , J − 1
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Probabilities of Categories (Job Satisfaction)

π̂1 =
e0.430−0.185x

1 + e0.430−0.185x + e0.456−0.054x + e1.704−0.037x

π̂2 =
e0.456−0.054x

1 + e0.430−0.185x + e0.456−0.054x + e1.704−0.037x

π̂3 =
e1.704−0.037x

1 + e0.430−0.185x + e0.456−0.054x + e1.704−0.037x

π̂4 =
1

1 + e0.430−0.185x + e0.456−0.054x + e1.704−0.037x

E.g., at x = 20 (K), estimated prob. of being “dissatisfied” and “very
satisfied” are respectively,

π̂1 =
e0.430−0.185(20)

1 + e0.430−0.185(20) + e0.456−0.054(20) + e1.704−0.037(20) ≈ 0.009

π̂4 =
1

1 + e0.430−0.185(20) + e0.456−0.054(20) + e1.704−0.037(20) ≈ 0.240
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Obtaining Probabilities of Categories in R

In R, we can obtain the prob. of being “diss”, “little”, “moderate”, or
“very satisfied” when income is 20K using predict().

predict(jobsat.fit1, data.frame(Income=20), type="response")

Diss Little Mod Very

1 0.009043 0.1274 0.6238 0.2397

We see π̂1 ≈ 0.009, π̂2 ≈ 0.127, π̂3 ≈ 0.624, and π4 ≈ 0.240.
Observe that π̂1 + π̂2 + π̂3 + π̂4 = 1.

Caution: without specifying type="response", predict() would
return the values of the logits log(̂πi/̂πJ) = αi + βix, not the
probabilities π̂i.

predict(jobsat.fit1, data.frame(Income=20))

log(mu[,1]/mu[,4]) log(mu[,2]/mu[,4]) log(mu[,3]/mu[,4])

1 -3.278 -0.632 0.9562
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Plot of sample proportions and estimated probabilities of Job
Satisfaction as a function of Income
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Observe that though π j/πJ is a monotone function of x,
π j may NOT be monotone in x.
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Deviance and Goodness of Fit

For grouped multinomial response data,

conditions of trial number
(explanatory variables) of trials multinomial counts

Condition 1 x11 x12 . . . x1p n1 y11 y12 . . . y1J

Condition 2 x21 x22 . . . x2p n2 y21 y22 . . . y2J
...

...
...
. . .

...
...

...
...
. . .

...

Condition N xN1 xN2 . . . xN p nN yN1 yN2 . . . yNJ

(Residual) Deviance for a Model M is defined as

Deviance = −2(LM − LS ) = 2
∑

i j
yi j log

(
yi j

nîπ j(xi)

)
= 2

∑
i j

(observed) log
(
observed

fitted

)
where π̂ j(xi) = estimated prob. based on Model M

LM = max. log-likelihood for Model M

LS = max. log-likelihood for the saturated model 22



DF of Deviance

df for deviance of Model M is

N(J − 1) − (# of parameters in the model).

where N = # of rows in the data, J = # of levels of the response

If the model has p explanatory variables,

log
(
π j

πJ

)
= α j + β1 jx1 + · · · + βp jxp, j = 1, 2, . . . , J − 1.

there are p + 1 coefficients per equation, hence (J − 1)(p + 1)
coefficients in total.

df for deviance = N(J − 1) − (J − 1)(p + 1) = (J − 1)(N − p − 1).

deviance(jobsat.fit1)

[1] 4.658

df.residual(jobsat.fit1)

[1] 6
23



Goodness of Fit Test (GOF test)

If the estimated expected counts nîπ j(xi) are large enough (≥ 5),
the deviance has a large sample chi-squared distribution with df =
df of deviance.

We can use deviance to conduct Goodness of Fit test

• H0: Model M is correct (fits the data as well as the saturated
model)

• HA: Saturated model is correct

When H0 is rejected, it means that Model M doesn’t fit as well as
the saturated model.
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Example (Job Satisfaction): the P-value for the GOF test is 58.8%,
no evidence of lack of fit. However, this P-value is not reliable
because most of the cell counts are small.

deviance(jobsat.fit1)

[1] 4.658

df.residual(jobsat.fit1)

[1] 6

pchisq(4.657999, df=6, lower.tail=F)

[1] 0.5884
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Wald CIs and Wald Tests for Coefficients

• Wald CI for β j is β̂ j ± zα/2SE(̂β j).

• Wald test of H0: β j = 0 uses z = β̂ j

SE(̂β j)
∼ N(0, 1)

Example (Job Satisfaction):

# the 4 to 6th coefficients, the 1st to 3rd are intercepts

coef(summary(jobsat.fit1))[4:6,]

Estimate Std. Error z value Pr(>|z|)

Income:1 -0.18537 0.10251 -1.808 0.07057

Income:2 -0.05441 0.03112 -1.748 0.08038

Income:3 -0.03739 0.02088 -1.790 0.07340

• 95% for β1: −0.185 ± 1.96 × 0.1025 ≈ (−0.386, 0.016)
• 95% for eβ1 : (e−0.386, e0.016) ≈ (0.680, 1.016)

Interpretation: Estimated odds of being “dissatisfied” rather than
“very satisfied” become 0.680 to 1.016 times as large for each 1K
increase in income w/ 95% confidence. 26



Likelihood Ratio Tests

Example (Job Satisfaction): Overall test of income effect

H0 : β1 = β2 = β3 = 0

is equivalent of the comparison of the two models

H0 : log
(
π j/π4

)
= α j, j = 1, 2, 3

H1 : log
(
π j/π4

)
= α j + β jx, j = 1, 2, 3.

LRT = −2(L0 − L1) = −2(−21.358 − (−16.954)) = 8.808

= diff in deviances = 13.467 − 4.658 = 8.809

D f = diff. in number of parameters = 6 − 3 = 3

= diff. in residual df = 9 − 6 = 3

P-value = P(χ2
3 > 8.809) ≈ 0.03194.
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lrtest(jobsat.fit1)

Likelihood ratio test

Model 1: cbind(Diss, Little, Mod, Very) ~ Income

Model 2: cbind(Diss, Little, Mod, Very) ~ 1

#Df LogLik Df Chisq Pr(>Chisq)

1 6 -16.9

2 9 -21.4 3 8.81 0.032

jobsat.fit2 = vglm(cbind(Diss,Little,Mod,Very) ~ 1,

family=multinomial)

logLik(jobsat.fit2)

[1] -21.36

logLik(jobsat.fit1)

[1] -16.95

Note that H0 implies job satisfaction is independent of income.
We got some evidence (P-value = 0.032) of dependence between
job satisfaction and income.
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Note we get a different conclusion if we conduct Pearson’s
Chi-square test of independence:

X2 = 11.5, d f = (4 − 1)(4 − 1) = 9 , P-value = 0.2415

jobsat = matrix(c(2,2,0,0,4,6,1,3,13,22,15,13,3,4,8,8), nrow=4)

options(digits=6)

chisq.test(jobsat)

Warning in chisq.test(jobsat): Chi-squared approximation may be incorrect

Pearson's Chi-squared test

data: jobsat

X-squared = 11.52, df = 9, p-value = 0.241

LR test of independence gives similar conclusion (G2 = 13.47,
d f = 9, P-value = 0.1426)

Why the Baseline Category Logit model give different conclusion
from Pearson’s test of independence? 29
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