STAT 226 Lecture 19 Residuals for Logit Models Section 5.2.4-5.2.5

Yibi Huang

Residuals for Binomial Response Models

Pearson Residuals & Standardized Pearson Residuals

When goodness-of-fit test suggests a GLM fits poorly, residuals can highlight where the fit is poor.

Pearson Residual $e_i = \frac{y_i - n_i \widehat{\pi}_i}{\sqrt{n_i \widehat{\pi}_i (1 - \widehat{\pi}_i)}}$ Standardized (Pearson) Residual $r_i = \frac{e_i}{\sqrt{1 - h_i}}$

- *h_i* = *leverage* of the observation *i* (details are skipped). The greater an observation's leverage, the greater its influence on the model fit.
- Note $\sum_{i} e_i^2 = X^2$ (Pearson chi-square)
- When model holds and $n_i \hat{\pi}_i$ are large,
 - e_i is approx. $N(0, \nu)$ but $\nu < 1$, r_i is approx. N(0, 1)
 - $|r_i| > 2$ or 3 means lack of fit
- Useful for grouped data only

The deviance residual is defined as

$$d_{i} = \operatorname{sign}(y_{i} - \widehat{\mu}_{i}) \sqrt{2 \left[y_{i} \log \left(\frac{y_{i}}{\widehat{\mu}_{i}} \right) + (n_{i} - y_{i}) \log \left(\frac{n_{i} - y_{i}}{n_{i} - \widehat{\mu}_{i}} \right) \right]}$$

where $\widehat{\mu}_i = n_i \widehat{\pi}(\mathbf{x}_i)$.

Standardized deviance residual = $\frac{d_i}{\sqrt{1-h_i}}$ where h_i is leverage.

- Observe that $\sum_i d_i^2 = \text{Deviance}$
- When model holds and $n_i \widehat{\pi}_i$ large
 - d_i approx. N(0, v) but v < 1, should use standardized d_i
- Useful for grouped data only.

Example (Berkeley Graduate Admissions)

		Men		Women			
_	Number	Number	Percent	Number	Number	Percent	
Dept	Admitted	Rejected	Admitted	Admitted	Rejected	Admitted	
А	512	313	62%	89	19	82%	
В	353	207	63%	17	8	68%	
С	120	205	37%	202	391	34%	
D	138	279	33%	131	244	35%	
Е	53	138	28%	94	299	24%	
F	22	351	6%	24	317	7%	

UCB = read.table(

summary(UCB.fit1)

Deviance Residuals:

2 3 4 5 6 7 8 1 -1.2487 -0.0560 1.2533 0.0826 1.2205 -0.2076 3.7189 0.2706 9 10 11 12 -0.9243 -0.0858 -0.8509 0.2052

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	0.68192	0.09911	6.880	5.97e-12	***
DeptB	-0.04340	0.10984	-0.395	0.693	
DeptC	-1.26260	0.10663	-11.841	< 2e-16	***
DeptD	-1.29461	0.10582	-12.234	< 2e-16	***
DeptE	-1.73931	0.12611	-13.792	< 2e-16	***
DeptF	-3.30648	0.16998	-19.452	< 2e-16	***
GenderMale	-0.09987	0.08085	-1.235	0.217	

Null deviance: 877.056 on 11 degrees of freedom Residual deviance: 20.204 on 5 degrees of freedom AIC: 103.14 LRT indicates strong Dept effect, but little Gender effect (*P*-value ≈ 0.22). \Rightarrow little evidence of gender bias in UCB graduate admissions.

```
drop1(UCB.fit1, test="Chisq")
Single term deletions
Model:
cbind(Admitted, Rejected) ~ Dept + Gender
        Df Deviance AIC LRT Pr(>Chi)
<none>        20 103
Dept   5      784 857 763 <2e-16
Gender 1        22 103   2      0.22</pre>
```

However, ...

However, goodness of fit test shows the main effect model fits poorly. The Deviance = 20.204 can be obtained from the summary output, or from the commands below

UCB.fit1\$deviance
[1] 20.204

The *P*-value for goodness of fit test ≈ 0.00114 is computed as follows.

pchisq(20.204, df=5, lower.tail=F)
[1] 0.001144

Apparently there is Gender*Dept interaction (because the saturated model is the two-way interaction model). R function **residuals**() gives deviance residuals by default, and Pearson residuals with option type="pearson".

residuals(UCB.fit1) # deviance residuals -1.24867 - 0.05601 1.25334 0.08257 1.22051 - 0.20756 3.718920.27061 -0.92434 -0.08577 -0.85093 0.20518 residuals(UCB.fit1, type="pearson") # Pearson residuals -1.25381 -0.05602 1.26287 0.08261 1.24151 -0.20620 3.51867 0.26895-0.92078 -0.08573 -0.84403 0.20648

By default, R function rstandard() gives standardized deviance residuals.

```
rstandard(UCB.fit1)

1 2 3 4 5 6 7 8 9

-4.0108 -0.2797 1.8666 0.1412 1.6059 -0.3046 4.2565 0.2814 -1.8881

11 12

-1.6468 0.3007
```

With option type="pearson", rstandard() reports standardized Pearson residuals.

```
rstandard(UCB.fit1, type="pearson")
    1    2    3    4    5    6    7    8    9
-4.0273 -0.2797   1.8808   0.1413   1.6335 -0.3026   4.0273   0.2797 -1.8808
    11    12
-1.6335   0.3026
```

pearson.res = round(residuals(UCB.fit1, type="pearson"),2)
std.res = round(rstandard(UCB.fit1,type="pearson"), 2)
cbind(UCB, pearson.res, std.res)

Gender Dept Admitted Rejected pearson.res std.res

1	Male	А	512	313	-1.25	-4.03	<
2	Male	В	353	207	-0.06	-0.28	
3	Male	С	120	205	1.26	1.88	
4	Male	D	138	279	0.08	0.14	
5	Male	Е	53	138	1.24	1.63	
6	Male	F	22	351	-0.21	-0.30	
7	Female	А	89	19	3.52	4.03	<
8	Female	В	17	8	0.27	0.28	
9	Female	С	202	391	-0.92	-1.88	
10	Female	D	131	244	-0.09	-0.14	
11	Female	Е	94	299	-0.84	-1.63	
12	Female	F	24	317	0.21	0.30	

Standardized Pearson residuals suggest Dept. A as main source of lack of fit ($r_i = -4.03$ and 4.03), while Pearson residuals fail to catch the lack of fit of the first observation (Gender = Male, Dept = A).

Leaving out Dept. A, the model with Dept main effects and gender main effects fits well (Deviance = 2.556, df = 4, *P*-value ≈ 0.63 .)

Knowing the main effect model fits the data well when leaving out Dept. A, we can use it to do inference.

LRT shows Gender effect is not significant (P-value = 0.72), little evidence of Gender bias in admissions in Dept. B-F.

```
drop1(UCB.fit2, test="Chisq")
Single term deletions
Model:
cbind(Admitted, Rejected) ~ Dept + Gender
        Df Deviance AIC LRT Pr(>Chi)
<none> 3 72
Dept 4 501 562 498 <2e-16
Gender 1 3 70 0 0.72</pre>
```

In Dept. A, odds of admission for 512×19	Dept A	Admitted	Rejected
men are $\frac{312 \times 89}{313 \times 89} = 0.35$ times the	Male	512	313
odds for women.	Female	89	19

Conclusion:

- In Dept. A, women are more likely to be admitted
- In Dept. B-F, no significant diff. in admission rates of men and women.

Conclusion:

- In Dept. A, women are more likely to be admitted
- In Dept. B-F, no significant diff. in admission rates of men and women.

However, if we ignore Dept, Gender is significant but in the <u>opposite</u> direction — odds of admission for men are $e^{0.61} = 1.84$ times the odds for women, Men were significantly more likely to be admitted. Why?

UCB3 = glm(cbind(Admitted,Rejected) ~ Gender,family=binomial, data=UCB)
summary(UCB3)\$coef

	Estimate	Std.	Error	z value	Pr(> z)
(Intercept)	-0.8305	0.	05077	-16.357	3.868e-60
GenderMale	0.6104	0.	06389	9.553	1.263e-21

Conclusion:

- In Dept. A, women are more likely to be admitted
- In Dept. B-F, no significant diff. in admission rates of men and women.

However, if we ignore Dept, Gender is significant but in the <u>opposite</u> direction — odds of admission for men are $e^{0.61} = 1.84$ times the odds for women, Men were significantly more likely to be admitted. Why?

UCB3 = glm(cbind(Admitted,Rejected) ~ Gender,family=binomial, data=UCB)
summary(UCB3)\$coef

	Estimate	Std.	Error	z value	Pr(> z)
(Intercept)	-0.8305	0.	05077	-16.357	3.868e-60
GenderMale	0.6104	0.	06389	9.553	1.263e-21

• This is an example of Simpson's paradox.

Caution: Parameter Estimates in Logistic Models Can be *Infinite*! Example 1:

Model.

$$e^{\widehat{\beta}} = \text{odds-ratio} = \frac{8 \times 0}{2 \times 10} = 0 \implies \widehat{\beta} = \text{log-odds-ratio} = -\infty$$

Empty cells in multi-way contingency table can cause infinite estimates.

Software may not realize this, and gives a finite estimate!

- Large Number of Fisher Scoring iterations is a warning sign of infinite parameter estimate(s)
- Large values of SEs for coefficients are also warning signs

```
S = c(8,10)
F = c(2,0)
X = c(1,2)
glm1 = glm(cbind(S,F) ~ X, family = binomial)
summary(glm1)
```

```
Call:
glm(formula = cbind(S, F) \sim X, family = binomial)
Deviance Residuals:
[1] 0 0
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -22.35 54605.92
                                    0
                                             1
Х
              23.73 54605.92 0
                                             1
   Null deviance: 2.9953e+00 on 1 degrees of freedom
Residual deviance: 2.4675e-10 on 0 degrees of freedom
ATC: 6.3947
```

Number of Fisher Scoring iterations: 22

Infinite estimates exist when *x*-values with y = 1 can be *perfectly* separated from *x*-values with y = 0.

Example 2:

X = c(0,1,2,3,4,5,6,7)Y = c(0,0,0,0,1,1,1,1)

The higher the β value, the closer the logistic curve to the data points.

```
glm2 = glm(Y ~ X, family = binomial)
Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
```

```
summary(glm2)
Call:
glm(formula = Y ~ X, family = binomial)
```

```
Deviance Residuals:

Min 1Q Median 3Q Max

-1.504e-05 -2.110e-08 0.000e+00 2.110e-08 1.504e-05
```

```
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -160.3 285119.4 -0.001 1

X 45.8 80643.9 0.001 1

Null deviance: 1.1090e+01 on 7 degrees of freedom
```

Residual deviance: 4.5253e-10 on 6 degrees of freedom AIC: 4

```
Number of Fisher Scoring iterations: 25
```

Example 3.

X1 = c(0.5, 2, 10, 6, 8, 1, 8, 4, 0, 7, 5, 1.1)X2 = c(7, 9.5, 6, 0, 8.1, 9, 10, 0, 8, 5, 3, 4)Y = c(0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0)summary(qlm(Y ~ X1+X2, family = binomial))Deviance Residuals: Min 10 Median 30 Max -0.000018180 -0.000000021 0.00000000 0.000000021 0.000018302 Coefficients: Estimate Std. Error z value Pr(>|z|)(Intercept) -208.0 1127014.6 0 1 **X**1 21.8 141530.0 0 1 **X**2 23.2 139959.6 0 1

Null deviance: 16.63553233343869 on 11 degrees of freedom Residual deviance: 0.0000000066586 on 9 degrees of freedom AIC: 6

Number of Fisher Scoring iterations: 25

Observe points with Y = 1 and Y = 0 are completely separated in the X1-X2 plane.

