STAT 226 Lecture 19
 Residuals for Logit Models

Section 5.2.4-5.2.5

Yibi Huang

Residuals for Binomial Response

Models

Pearson Residuals \& Standardized Pearson Residuals

When goodness-of-fit test suggests a GLM fits poorly, residuals can highlight where the fit is poor.

$$
\text { Pearson Residual } e_{i}=\frac{y_{i}-n_{i} \widehat{\pi}_{i}}{\sqrt{n_{i} \widehat{\pi}_{i}\left(1-\widehat{\pi}_{i}\right)}}
$$

Standardized (Pearson) Residual $r_{i}=\frac{e_{i}}{\sqrt{1-h_{i}}}$

- $h_{i}=$ leverage of the observation i (details are skipped).

The greater an observation's leverage, the greater its influence on the model fit.

- Note $\sum_{i} e_{i}^{2}=X^{2}$ (Pearson chi-square)
- When model holds and $n_{i} \widehat{\pi}_{i}$ are large,
- e_{i} is approx. $N(0, v)$ but $v<1, r_{i}$ is approx. $N(0,1)$
- $\left|r_{i}\right|>2$ or 3 means lack of fit
- Useful for grouped data only

Deviance Residuals for Binomial Response Models

The deviance residual is defined as

$$
d_{i}=\operatorname{sign}\left(y_{i}-\widehat{\mu}_{i}\right) \sqrt{2\left[y_{i} \log \left(\frac{y_{i}}{\widehat{\mu}_{i}}\right)+\left(n_{i}-y_{i}\right) \log \left(\frac{n_{i}-y_{i}}{n_{i}-\widehat{\mu}_{i}}\right)\right]}
$$

where $\widehat{\mu}_{i}=n_{i} \widehat{\pi}\left(\mathbf{x}_{i}\right)$.
Standardized deviance residual $=\frac{d_{i}}{\sqrt{1-h_{i}}}$ where h_{i} is leverage.

- Observe that $\sum_{i} d_{i}^{2}=$ Deviance
- When model holds and $n_{i} \widehat{\pi}_{i}$ large
- d_{i} approx. $N(0, v)$ but $v<1$, should use standardized d_{i}
- Useful for grouped data only.

Example (Berkeley Graduate Admissions)

	Men					Women		
	Number	Number	Percent		Number	Number	Percent	
Dept	Admitted	Rejected	Admitted		Admitted	Rejected	Admitted	
A	512	313	62%		89	19	82%	
B	353	207	63%		17	8	68%	
C	120	205	37%		202	391	34%	
D	138	279	33%		131	244	35%	
E	53	138	28%		94	299	24%	
F	22	351	6%		24	317	7%	

```
UCB = read.table(
    "http://www.stat.uchicago.edu/~yibi/s226/UCBadmissions.txt",h=T)
UCB.fit1 = glm(cbind(Admitted,Rejected) ~ Dept + Gender,
    family=binomial, data=UCB)
```

summary (UCB.fit1)
Deviance Residuals:

1	2	3	4	5	6	7
-1.2487	-0.0560	1.2533	0.0826	1.2205	-0.2076	3.7189
9	10	11	12		0.2706	
-0.9243	-0.0858	-0.8509	0.2052			

Null deviance: 877.056 on 11 degrees of freedom Residual deviance: 20.204 on 5 degrees of freedom ATC: 103.14

LRT indicates strong Dept effect, but little Gender effect (P-value ≈ 0.22). \Rightarrow little evidence of gender bias in UCB graduate admissions.

```
drop1(UCB.fit1, test="Chisq")
Single term deletions
Model:
cbind(Admitted, Rejected) ~ Dept + Gender
    Df Deviance AIC LRT Pr(>Chi)
<none> 20 103
Dept 5 784 857 763 <2e-16
Gender 1 22 103 2 0.22
```

However, ...

However, goodness of fit test shows the main effect model fits poorly. The Deviance $=20.204$ can be obtained from the summary output, or from the commands below

UCB.fit1\$deviance
[1] 20.204

The P-value for goodness of fit test ≈ 0.00114 is computed as follows.
pchisq(20.204, df=5, lower.tail=F)
[1] 0.001144

Apparently there is Gender*Dept interaction
(because the saturated model is the two-way interaction model).

R function residuals() gives deviance residuals by default, and Pearson residuals with option type="pearson".

| residuals(UCB.fit1) | \# deviance residuals | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| -1.24867 | -0.05601 | 1.25334 | 0.08257 | 1.22051 | -0.20756 | 3.71892 | 0.27061 |
| 9 | 10 | 11 | 12 | | | | |
| -0.92434 | -0.08577 | -0.85093 | 0.20518 | | | | |
| residuals(UCB.fit1, type="pearson") | \# Pearson residuals | | | | | | |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| -1.25381 | -0.05602 | 1.26287 | 0.08261 | 1.24151 | -0.20620 | 3.51867 | 0.26895 |
| 9 | 10 | 11 | 12 | | | | |

By default, R function rstandard() gives standardized deviance residuals.

```
rstandard(UCB.fit1)
\begin{tabular}{rrrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{tabular}
    1 1 \quad 1 2
-1.6468 0.3007
```

With option type="pearson", standard() reports standardized Pearson residuals.

```
rstandard(UCB.fit1, type="pearson")
\begin{tabular}{rrrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{tabular}
    11 12
-1.6335 0.3026
```

pearson.res $=$ round(residuals(UCB.fit1, type="pearson"), 2)
std.res = round(rstandard(UCB.fit1,type="pearson"), 2)
cbind(UCB, pearson.res, std.res)
Gender Dept Admitted Rejected pearson.res std.res

1	Male	A	512	313	-1.25	-4.03	$<--$
2	Male	B	353	207	-0.06	-0.28	
3	Male	C	120	205	1.26	1.88	
4	Male	D	138	279	0.08	0.14	
5	Male	E	53	138	1.24	1.63	
6	Male	F	22	351	-0.21	-0.30	
7	Female	A	89	19	3.52	4.03	$<--$
8	Female	B	17	8	0.27	0.28	
9	Female	C	202	391	-0.92	-1.88	
10	Female	D	131	244	-0.09	-0.14	
11	Female	E	94	299	-0.84	-1.63	
12	Female	F	24	317	0.21	0.30	

Standardized Pearson residuals suggest Dept. A as main source of lack of fit ($r_{i}=-4.03$ and 4.03), while Pearson residuals fail to catch the lack of fit of the first observation (Gender = Male, Dept $=A$).

Leaving out Dept. A, the model with Dept main effects and gender main effects fits well (Deviance $=2.556$, df $=4, P$-value ≈ 0.63.)

```
UCB.fit2 = glm(cbind(Admitted,Rejected) ~ Dept + Gender,
family=binomial, data=UCB, subset=(Dept != "A"))
```

UCB.fit2\$deviance
[1] 2.556
UCB.fit2\$df.residual
[1] 4
pchisq(2.556, df=4, lower.tail=F)
[1] 0.6346

Knowing the main effect model fits the data well when leaving out Dept. A, we can use it to do inference.

LRT shows Gender effect is not significant (P-value $=0.72$), little evidence of Gender bias in admissions in Dept. B-F.

```
drop1(UCB.fit2, test="Chisq")
Single term deletions
```

Model:
cbind(Admitted, Rejected) ~ Dept + Gender
Df Deviance AIC LRT $\operatorname{Pr}(>C h i)$
<none>
372

Dept	4	501	562	498	$<2 \mathrm{e}-16$
Gender	1	3	70	0	0.72

In Dept. A, odds of admission for men are $\frac{512 \times 19}{313 \times 89}=0.35$ times the odds for women.

Dept A	Admitted	Rejected
Male	512	313
Female	89	19

Conclusion:

- In Dept. A, women are more likely to be admitted
- In Dept. B-F, no significant diff. in admission rates of men and women.

Conclusion:

- In Dept. A, women are more likely to be admitted
- In Dept. B-F, no significant diff. in admission rates of men and women.

However, if we ignore Dept, Gender is significant but in the opposite direction — odds of admission for men are $e^{0.61}=1.84$ times the odds for women, Men were significantly more likely to be admitted. Why?

```
UCB3 = glm(cbind(Admitted,Rejected) ~ Gender,family=binomial, data=UCB)
summary (UCB3) $coef
    Estimate Std. Error z value Pr(> |z|)
(Intercept) -0.8305 0.05077 -16.357 3.868e-60
GenderMale 0.6104 0.06389 9.553 1.263e-21
```

Conclusion:

- In Dept. A, women are more likely to be admitted
- In Dept. B-F, no significant diff. in admission rates of men and women.

However, if we ignore Dept, Gender is significant but in the opposite direction — odds of admission for men are $e^{0.61}=1.84$ times the odds for women, Men were significantly more likely to be admitted. Why?

```
UCB3 = glm(cbind(Admitted,Rejected) ~ Gender,family=binomial, data=UCB)
summary (UCB3) $coef
    Estimate Std. Error z value Pr(> |z|)
(Intercept) -0.8305 0.05077 -16.357 3.868e-60
GenderMale 0.6104 0.06389 9.553 1.263e-21
```

- This is an example of Simpson's paradox.

Sparse Data

Caution: Parameter Estimates in Logistic Models Can be Infinite! Example 1:

Model:

$$
\begin{array}{c|cl}
& S & F \\
X=1 & 8 & 2 \\
X=2 & 10 & 0
\end{array} \quad P(S)=\frac{\exp (\alpha+\beta x)}{1+\exp (\alpha+\beta x)}
$$

Empty cells in multi-way contingency table can cause infinite estimates.

Software may not realize this, and gives a finite estimate!

- Large Number of Fisher Scoring iterations is a warning sign of infinite parameter estimate(s)
- Large values of SEs for coefficients are also warning signs

```
\(S=c(8,10)\)
\(\mathrm{F}=\mathrm{c}(2,0)\)
\(\mathrm{X}=\mathrm{c}(1,2)\)
glm1 = glm(cbind(S,F) ~ X, family = binomial)
summary (glm1)
```

Call:
glm(formula $=$ cbind(S, F) ~ X, family = binomial)
Deviance Residuals:
[1] 0 0
Coefficients:

| | Estimate | Std. Error | z value $\operatorname{Pr}(>\|z\|)$ | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | -22.35 | 54605.92 | 0 | 1 |
| X | 23.73 | 54605.92 | 0 | 1 |

 Null deviance: \(2.9953 \mathrm{e}+00\) on 1 degrees of freedom
 Residual deviance: $2.4675 \mathrm{e}-10$ on 0 degrees of freedom
AIC: 6.3947
Number of Fisher Scoring iterations: 22

Infinite estimates exist when x-values with $y=1$ can be perfectly separated from x-values with $y=0$.

Example 2:
$\mathrm{X}=\mathrm{c}(\boldsymbol{0}, 1,2,3,4,5,6,7)$
$Y=c(0,0,0,0,1,1,1,1)$
Model: $\pi(x)=P(Y=1 \mid x)=\frac{\exp (\alpha+\beta x)}{1+\exp (\alpha+\beta x)}$

$$
\pi(x)= \begin{cases}\frac{\exp (x-3.5)}{1+\exp (x-3.5)} & \text { blue } \\ \frac{\exp (5(x-3.5)}{1+\exp (5(x-3.5))} & \text { red } \\ \frac{\exp (50(x-3.5)}{1+\exp (50(x-3.5))} & \text { brown }\end{cases}
$$

The higher the β value, the closer the logistic curve to the data points.
glm2 $=\operatorname{glm}(\mathrm{Y} \sim \mathrm{X}$, family $=$ binomial $)$
Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary (glm2)
Call:
glm(formula $=\mathrm{Y} \sim \mathrm{X}$, family $=$ binomial)

Deviance Residuals:

Min	$1 Q$	Median	$3 Q$	Max
$-1.504 \mathrm{e}-05$	$-2.110 \mathrm{e}-08$	$0.000 \mathrm{e}+00$	$2.110 \mathrm{e}-08$	$1.504 \mathrm{e}-05$

Coefficients:

	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$
(Intercept)	-160.3	285119.4	-0.001	1
X	45.8	80643.9	0.001	1

Null deviance: $1.1090 \mathrm{e}+01$ on 7 degrees of freedom Residual deviance: 4.5253e-10 on 6 degrees of freedom AIC: 4

Number of Fisher Scoring iterations: 25

Example 3.

```
\(\mathrm{X} 1=\mathrm{c}(0.5,2,10,6,8,1,8,4,0,7,5,1.1)\)
\(\mathrm{X} 2=\mathrm{c}(7,9.5,6,0,8.1,9,10,0,8,5,3,4)\)
\(\mathrm{Y}=\mathrm{c}(\theta, 1,1,0,1,1,1,0,0,1,0,0)\)
summary (glm(Y ~ X1+X2, family = binomial))
Deviance Residuals:
```

Min	$1 Q$	Median	$3 Q$	Max
-0.000018180	-0.000000021	0.000000000	0.000000021	0.000018302

Coefficients:

| | Estimate Std. Error | z value $\operatorname{Pr}(>\|z\|)$ | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | -208.0 | 1127014.6 | 0 | 1 |
| X1 | 21.8 | 141530.0 | 0 | 1 |
| X2 | 23.2 | 139959.6 | 0 | 1 |

Null deviance: 16.63553233343869 on 11 degrees of freedom Residual deviance: 0.00000000066586 on 9 degrees of freedom AIC: 6

Number of Fisher Scoring iterations: 25

Observe points with $Y=1$ and $Y=0$ are completely separated in the X1-X2 plane.

