STAT 226 Lecture 19
Residuals for Logit Models
Section 5.2.4-5.2.5

Yibi Huang



Residuals for Binomial Response
Models



Pearson Residuals & Standardized Pearson Residuals

When goodness-of-fit test suggests a GLM fits poorly, residuals
can highlight where the fit is poor.

Pearson Residual ¢; = %
.
Standardized (Pearson) Residual »; = i
| ) VI -1

h; = leverage of the observation i (details are skipped).
The greater an observation’s leverage, the greater its
influence on the model fit.
Note ¥; ¢? = X? (Pearson chi-square)
When model holds and n; are large,

e ¢;is approx. N(0,v) butv < 1, r; is approx. N(0, 1)

e |r;| > 2 or 3 means lack of fit
Useful for grouped data only



Deviance Residuals for Binomial Response Models

The deviance residual is defined as

d; = sign(y; — 1) \/2 [yi log (,y%) + (n; —y;) log(ﬁ)]
i~ Mi

i
where ﬁ[ = n,-'ﬁ(x,-).

i

Standardized deviance residual = where h; is leverage.

l
e Observe that 3, d? = Deviance

e When model holds and n/x; large
e d; approx. N(0,v) but v < 1, should use standardized d;

e Useful for grouped data only.



Example (Berkeley Graduate Admissions)

Men Women

Number Number Percent Number Number Percent
Dept Admitted Rejected Admitted Admitted Rejected Admitted

A 512 313 62% 89 19 82%
B 353 207 63% 17 8 68%
C 120 205 37% 202 391 34%
D 138 279 33% 131 244 35%
E 53 138 28% 94 299 24%
F 22 351 6% 24 317 7%

UCB = read.table(
"http://www.stat.uchicago.edu/~yibi/s226/UCBadmissions.txt",h=T)
UCB.fitl = glm(cbind(Admitted,Rejected) ~ Dept + Gender,
family=binomial, data=UCB)



summary (UCB.

Deviance Residuals:

1

-1.2487 -0.
9
-0.9243 -0.

(Intercept)
DeptB
DeptC
DeptD
DeptE
DeptF
GenderMale

Null deviance:
Residual deviance:

AIC: 103.14

fitl)
2 3
0560  1.2533
10 11

0858 -0.8509

Estimate Std.
0.68192
-0.04340
-1.26260
-1.29461
-1.73931
-3.30648
-0.09987

S @222 2

877.056
20.204

4

0.0826

12

0.2052

5 6

1.2205 -0.2076

Error z value Pr(>|z|)
880 5.97e-12 ***

6.

.09911
.10984 -0.
.10663 -11.
.10582 -12
.12611 -13.
.16998 -19.
.08085 -1
on 11
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395
841
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452

.235

AN AN A A

degrees
degrees

0.693
2e-16 ***
2e-16 ~°
2e-16
2e-16 ***
0.217

of freedom
of freedom

7
3.7189

8
0.2706



LRT indicates strong Dept effect, but little Gender effect (P-value
~ (0.22). = little evidence of gender bias in UCB graduate
admissions.

dropl(UCB.fitl, test="Chisqg")
Single term deletions

Model:
cbind(Admitted, Rejected) ~ Dept + Gender
Df Deviance AIC LRT Pr(>Chi)

<none> 20 103
Dept 5 784 857 763 <2e-16
Gender 1 22 103 2 0.22

However, ...



However, goodness of fit test shows the main effect model fits
poorly. The Deviance = 20.204 can be obtained from the summary
output, or from the commands below

UCB. fitl$deviance
[1] 20.204

The P-value for goodness of fit test ~ 0.00114 is computed as
follows.
pchisq(20.204, df=5, lower.tail=F)

[1] 0.001144

Apparently there is Gender*Dept interaction
(because the saturated model is the two-way interaction model).



R function residuals () gives deviance residuals by default, and
Pearson residuals with option type="pearson".

residuals(UCB.fitl) # deviance residuals
1 2 3 4 5 6 7 8
-1.24867 -0.05601 1.25334 0.08257 1.22051 -0.20756 3.71892 0.27061
9 10 11 12

-0.92434 -0.08577 -0.85093 0.20518
residuals(UCB.fitl, type="pearson") # Pearson residuals

1 2 3 4 5 6 7 8
-1.25381 -0.05602 1.26287 0.08261 1.24151 -0.20620 3.51867 0.26895
9 10 11 12

-0.92078 -0.08573 -0.84403 0.20648



By default, R function rstandard () gives standardized deviance
residuals.

rstandard(UCB. fitl)

1 2 3 4 5 6 7 8 9
-4.0108 -0.2797 1.8666 0.1412 1.6059 -0.3046 4.2565 0.2814 -1.8881
11 12

-1.6468 0.3007

With option type="pearson", rstandard() reports standardized
Pearson residuals.

rstandard(UCB.fitl, type="pearson')

1 2 3 4 5 6 7 8 9
-4.0273 -0.2797 1.8808 0.1413 1.6335 -0.3026 4.0273 0.2797 -1.8808
11 12

-1.6335 0.3026



pearson.res = round(residuals(UCB.fitl, type="pearson"),2)
std.res = round(rstandard(UCB.fitl,type="pearson"), 2)
cbind(UCB, pearson.res, std.res)

Gender Dept Admitted Rejected pearson.res std.res

1 Male A 512 313 -1.25 -4.03 <--
2 Male B 353 207 -0.06 -0.28
3 Male C 120 205 1.26 1.88
4 Male D 138 279 0.08 0.14
5 Male E 53 138 1.24 1.63
6 Male F 22 351 -0.21 -0.30
7 Female A 89 19 3.52 4.03 <--
8 Female B 17 8 0.27 0.28
9 Female C 202 391 -0.92 -1.88
10 Female D 131 244 -0.09 -0.14
11 Female E 94 299 -0.84 -1.63
12 Female F 24 317 0.21 0.30

Standardized Pearson residuals suggest Dept. A as main source of lack
of fit (r;, = —4.03 and 4.03), while Pearson residuals fail to catch the lack
of fit of the first observation (Gender = Male, Dept = A).



Leaving out Dept. A, the model with Dept main effects and gender
main effects fits well (Deviance = 2.556, df = 4, P-value ~ 0.63.)

UCB.fit2 = glm(cbind(Admitted,Rejected) ~ Dept + Gender,
family=binomial, data=UCB, subset=(Dept != "A"))

UCB.fit2$deviance

[1] 2.556

UCB.fit2$df.residual

[1] 4

pchisq(2.556, df=4, lower.tail=F)

[1] 0.6346



Knowing the main effect model fits the data well when leaving out
Dept. A, we can use it to do inference.

LRT shows Gender effect is not significant (P-value = 0.72),
little evidence of Gender bias in admissions in Dept. B-F.

dropl(UCB.fit2, test="Chisqg")
Single term deletions

Model:
cbind(Admitted, Rejected) ~ Dept + Gender
Df Deviance AIC LRT Pr(>Chi)

<none> 3 72
Dept 4 501 562 498 <2e-16
Gender 1 3 70 0 0.72
In Dept. A, odds of admission for ) )
P 512 % 19 Dept A ‘Admltted Rejected
menare soo——5 = 0.35 times the Male 512 313

odds for women. Female 89 19



Conclusion:

e In Dept. A, women are more likely to be admitted
e In Dept. B-F, no significant diff. in admission rates of men and
women.



Conclusion:

e In Dept. A, women are more likely to be admitted
e In Dept. B-F, no significant diff. in admission rates of men and
women.

However, if we ignore Dept, Gender is significant but in the
opposite direction — odds of admission for men are ¢%¢! = 1.84
times the odds for women, Men were significantly more likely to be
admitted. Why?

UCB3 = glm(cbind(Admitted,Rejected) ~ Gender, family=binomial, data=UCB)
summary (UCB3) $coef
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.8305 0.05077 -16.357 3.868e-60
GenderMale 0.6104 0.06389 9.553 1.263e-21



Conclusion:

e In Dept. A, women are more likely to be admitted
e In Dept. B-F, no significant diff. in admission rates of men and
women.

However, if we ignore Dept, Gender is significant but in the
opposite direction — odds of admission for men are ¢%¢! = 1.84
times the odds for women, Men were significantly more likely to be
admitted. Why?

UCB3 = glm(cbind(Admitted,Rejected) ~ Gender, family=binomial, data=UCB)
summary (UCB3) $coef
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.8305 0.05077 -16.357 3.868e-60
GenderMale 0.6104 0.06389 9.553 1.263e-21

e This is an example of Simpson’s paradox.



Sparse Data




Caution: Parameter Estimates in Logistic Models Can be Infinite!

Example 1:
Model:

exp(a + Bx)

PS) = 1 + exp(a + Bx)

¢# = odds-ratio = % =0 = ,E: log-odds-ratio = —co

Empty cells in multi-way contingency table can cause infinite
estimates.

Software may not realize this, and gives a finite estimate!

e Large Number of Fisher Scoring iterationsisa
warning sign of infinite parameter estimate(s)
e Large values of SEs for coefficients are also warning signs



S = c(8,10)
F =c(2,0)
X =c(1,2)

glml = glm(cbind(S,F) ~ X, family = binomial)
summary (glml)

Call:
glm(formula = cbind(S, F) ~ X, family = binomial)

Deviance Residuals:

[11] O ©
Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -22.35 54605.92 0 1
X 23.73 54605.92 0 1

Null deviance: 2.9953e+00 on 1 degrees of freedom
Residual deviance: 2.4675e-10 on 0 degrees of freedom
AIC: 6.3947

Number of Fisher Scoring iterations: 22



Infinite estimates exist when x-values with y = 1 can be perfectly
separated from x-values with y = 0.

Example 2:

X
Y

c(,1,2,3,4,5,6,7)
c(0,0,0,0,1,1,1,1)

exp(a + Bx)

Model: z(x) = P(Y = 110 = 1= 0@ + o)

1.0
>~05 M blue
1+ exps(x - 33.55)
exp(5(x —3.5)
= red
0.0 ) = TF exp(5(x = 3.5))
exp(50(x — 3.5)
0O 1 2 3 4 5 6 7 brown

X 1 +exp(50(x — 3.5))

The higher the 8 value, the closer the logistic curve to the data
points. 16



glm2 = glm(Y ~ X, family = binomial)

Warning: glm.fit: fitted probabilities numerically ® or 1 occurred

summary (glm2)
Call:
glm(formula = Y ~ X, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max
-1.504e-05 -2.110e-08 0.000e+00 2.110e-08 1.504e-05

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -160.3 285119.4 -0.001 1
X 45.8 80643.9 0.001 1

Null deviance: 1.1090e+01 on 7 degrees of freedom
Residual deviance: 4.5253e-10 on 6 degrees of freedom
AIC: 4

Number of Fisher Scorina iterations: 25



Example 3.

X1l = c(0.5, 2, 10, 6, 8, 1, 8, 4, 0, 7, 5, 1.1)
X2 = c(7, 9.5, 6, 0, 8.1, 9, 10, O, 8, 5, 3, 4
Y=c@®, 1, 1,60, 1,1, 1, 0, 0, 1, 0, O

summary (glm(Y ~ X1+X2, family = binomial))
Deviance Residuals:

Min 1Q Median 3Q
-0.000018180 -0.000000021 0.000000000 0.000000021
Coefficients:

Estimate Std. Error z value Pr(>|z]|)

(Intercept) -208.0 1127014.6 0 1
X1 21.8 141530.0 0 1
X2 23.2 139959.6 0 1

Max
0.000018302

Null deviance: 16.63553233343869 on 11 degrees of freedom
Residual deviance: 0.00000000066586 on 9 degrees of freedom

AIC: 6

Number of Fisher Scoring iterations: 25



14 L o LI L2 14 * o o o0e

> >
0O1eee L e S 01 e L S o o
0.0 25 5.0 75 10.0 0.0 25 5.0 75 10.0
X1 X2

Observe points with Y = 1 and Y = 0 are completely separated in
the X1-X2 plane.
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