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Yibi Huang

1



Residuals for Binomial Response
Models



Pearson Residuals & Standardized Pearson Residuals

When goodness-of-fit test suggests a GLM fits poorly, residuals
can highlight where the fit is poor.

Pearson Residual ei =
yi − nîπi√
nîπi(1 − π̂i)

Standardized (Pearson) Residual ri =
ei

√
1 − hi

• hi = leverage of the observation i (details are skipped).
The greater an observation’s leverage, the greater its
influence on the model fit.

• Note
∑

i e2
i = X2 (Pearson chi-square)

• When model holds and nîπi are large,
• ei is approx. N(0, ν) but ν < 1, ri is approx. N(0, 1)
• |ri| > 2 or 3 means lack of fit

• Useful for grouped data only
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Deviance Residuals for Binomial Response Models

The deviance residual is defined as

di = sign(yi − µ̂i)

√
2
[
yi log

(
yi

µ̂i

)
+ (ni − yi) log

(
ni − yi

ni − µ̂i

)]
where µ̂i = nîπ(xi).

Standardized deviance residual =
di

√
1 − hi

where hi is leverage.

• Observe that
∑

i d2
i = Deviance

• When model holds and nîπi large
• di approx. N(0, ν) but ν < 1, should use standardized di

• Useful for grouped data only.
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Example (Berkeley Graduate Admissions)

Men Women

Number Number Percent Number Number Percent
Dept Admitted Rejected Admitted Admitted Rejected Admitted

A 512 313 62% 89 19 82%
B 353 207 63% 17 8 68%
C 120 205 37% 202 391 34%
D 138 279 33% 131 244 35%
E 53 138 28% 94 299 24%
F 22 351 6% 24 317 7%

UCB = read.table(

"http://www.stat.uchicago.edu/~yibi/s226/UCBadmissions.txt",h=T)

UCB.fit1 = glm(cbind(Admitted,Rejected) ~ Dept + Gender,

family=binomial, data=UCB)
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summary(UCB.fit1)

Deviance Residuals:

1 2 3 4 5 6 7 8

-1.2487 -0.0560 1.2533 0.0826 1.2205 -0.2076 3.7189 0.2706

9 10 11 12

-0.9243 -0.0858 -0.8509 0.2052

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.68192 0.09911 6.880 5.97e-12 ***

DeptB -0.04340 0.10984 -0.395 0.693

DeptC -1.26260 0.10663 -11.841 < 2e-16 ***

DeptD -1.29461 0.10582 -12.234 < 2e-16 ***

DeptE -1.73931 0.12611 -13.792 < 2e-16 ***

DeptF -3.30648 0.16998 -19.452 < 2e-16 ***

GenderMale -0.09987 0.08085 -1.235 0.217

---

Null deviance: 877.056 on 11 degrees of freedom

Residual deviance: 20.204 on 5 degrees of freedom

AIC: 103.14
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LRT indicates strong Dept effect, but little Gender effect (P-value
≈ 0.22). ⇒ little evidence of gender bias in UCB graduate
admissions.

drop1(UCB.fit1, test="Chisq")

Single term deletions

Model:

cbind(Admitted, Rejected) ~ Dept + Gender

Df Deviance AIC LRT Pr(>Chi)

<none> 20 103

Dept 5 784 857 763 <2e-16

Gender 1 22 103 2 0.22

However, . . .
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However, goodness of fit test shows the main effect model fits
poorly. The Deviance = 20.204 can be obtained from the summary
output, or from the commands below

UCB.fit1$deviance

[1] 20.204

The P-value for goodness of fit test ≈ 0.00114 is computed as
follows.

pchisq(20.204, df=5, lower.tail=F)

[1] 0.001144

Apparently there is Gender*Dept interaction
(because the saturated model is the two-way interaction model).
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R function residuals() gives deviance residuals by default, and
Pearson residuals with option type="pearson".

residuals(UCB.fit1) # deviance residuals

1 2 3 4 5 6 7 8

-1.24867 -0.05601 1.25334 0.08257 1.22051 -0.20756 3.71892 0.27061

9 10 11 12

-0.92434 -0.08577 -0.85093 0.20518

residuals(UCB.fit1, type="pearson") # Pearson residuals

1 2 3 4 5 6 7 8

-1.25381 -0.05602 1.26287 0.08261 1.24151 -0.20620 3.51867 0.26895

9 10 11 12

-0.92078 -0.08573 -0.84403 0.20648
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By default, R function rstandard() gives standardized deviance
residuals.

rstandard(UCB.fit1)

1 2 3 4 5 6 7 8 9 10

-4.0108 -0.2797 1.8666 0.1412 1.6059 -0.3046 4.2565 0.2814 -1.8881 -0.1413

11 12

-1.6468 0.3007

With option type="pearson", rstandard() reports standardized
Pearson residuals.

rstandard(UCB.fit1, type="pearson")

1 2 3 4 5 6 7 8 9 10

-4.0273 -0.2797 1.8808 0.1413 1.6335 -0.3026 4.0273 0.2797 -1.8808 -0.1413

11 12

-1.6335 0.3026
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pearson.res = round(residuals(UCB.fit1, type="pearson"),2)

std.res = round(rstandard(UCB.fit1,type="pearson"), 2)

cbind(UCB, pearson.res, std.res)

Gender Dept Admitted Rejected pearson.res std.res

1 Male A 512 313 -1.25 -4.03 <--

2 Male B 353 207 -0.06 -0.28

3 Male C 120 205 1.26 1.88

4 Male D 138 279 0.08 0.14

5 Male E 53 138 1.24 1.63

6 Male F 22 351 -0.21 -0.30

7 Female A 89 19 3.52 4.03 <--

8 Female B 17 8 0.27 0.28

9 Female C 202 391 -0.92 -1.88

10 Female D 131 244 -0.09 -0.14

11 Female E 94 299 -0.84 -1.63

12 Female F 24 317 0.21 0.30

Standardized Pearson residuals suggest Dept. A as main source of lack

of fit (ri = −4.03 and 4.03), while Pearson residuals fail to catch the lack

of fit of the first observation (Gender = Male, Dept = A).
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Leaving out Dept. A, the model with Dept main effects and gender
main effects fits well (Deviance = 2.556, df = 4, P-value ≈ 0.63.)

UCB.fit2 = glm(cbind(Admitted,Rejected) ~ Dept + Gender,

family=binomial, data=UCB, subset=(Dept != "A"))

UCB.fit2$deviance

[1] 2.556

UCB.fit2$df.residual

[1] 4

pchisq(2.556, df=4, lower.tail=F)

[1] 0.6346
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Knowing the main effect model fits the data well when leaving out
Dept. A, we can use it to do inference.

LRT shows Gender effect is not significant (P-value = 0.72),
little evidence of Gender bias in admissions in Dept. B-F.

drop1(UCB.fit2, test="Chisq")

Single term deletions

Model:

cbind(Admitted, Rejected) ~ Dept + Gender

Df Deviance AIC LRT Pr(>Chi)

<none> 3 72

Dept 4 501 562 498 <2e-16

Gender 1 3 70 0 0.72

In Dept. A, odds of admission for

men are
512 × 19
313 × 89

= 0.35 times the
odds for women.

Dept A Admitted Rejected
Male 512 313

Female 89 19
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Conclusion:

• In Dept. A, women are more likely to be admitted
• In Dept. B-F, no significant diff. in admission rates of men and

women.

However, if we ignore Dept, Gender is significant but in the
opposite direction — odds of admission for men are e0.61 = 1.84
times the odds for women, Men were significantly more likely to be
admitted. Why?

UCB3 = glm(cbind(Admitted,Rejected) ~ Gender,family=binomial, data=UCB)

summary(UCB3)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.8305 0.05077 -16.357 3.868e-60

GenderMale 0.6104 0.06389 9.553 1.263e-21

• This is an example of Simpson’s paradox.
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Sparse Data



Caution: Parameter Estimates in Logistic Models Can be Infinite!
Example 1:

S F
X = 1 8 2
X = 2 10 0

Model:

P(S ) =
exp(α + βx)

1 + exp(α + βx)

eβ̂ = odds-ratio =
8 × 0
2 × 10

= 0 ⇒ β̂ = log-odds-ratio = −∞

Empty cells in multi-way contingency table can cause infinite
estimates.

Software may not realize this, and gives a finite estimate!

• Large Number of Fisher Scoring iterations is a
warning sign of infinite parameter estimate(s)

• Large values of SEs for coefficients are also warning signs
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S = c(8,10)

F = c(2,0)

X = c(1,2)

glm1 = glm(cbind(S,F) ~ X, family = binomial)

summary(glm1)

Call:

glm(formula = cbind(S, F) ~ X, family = binomial)

Deviance Residuals:

[1] 0 0

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -22.35 54605.92 0 1

X 23.73 54605.92 0 1

Null deviance: 2.9953e+00 on 1 degrees of freedom

Residual deviance: 2.4675e-10 on 0 degrees of freedom

AIC: 6.3947

Number of Fisher Scoring iterations: 22
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Infinite estimates exist when x-values with y = 1 can be perfectly
separated from x-values with y = 0.

Example 2:

X = c(0,1,2,3,4,5,6,7)

Y = c(0,0,0,0,1,1,1,1)

Model: π(x) = P(Y = 1|x) =
exp(α + βx)

1 + exp(α + βx)

0 1 2 3 4 5 6 7
X

Y

0.0

0.5

1.0

π(x) =



exp(x − 3.5)
1 + exp(x − 3.5)

blue

exp(5(x − 3.5)
1 + exp(5(x − 3.5))

red

exp(50(x − 3.5)
1 + exp(50(x − 3.5))

brown

The higher the β value, the closer the logistic curve to the data
points. 16



glm2 = glm(Y ~ X, family = binomial)

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

summary(glm2)

Call:

glm(formula = Y ~ X, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.504e-05 -2.110e-08 0.000e+00 2.110e-08 1.504e-05

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -160.3 285119.4 -0.001 1

X 45.8 80643.9 0.001 1

Null deviance: 1.1090e+01 on 7 degrees of freedom

Residual deviance: 4.5253e-10 on 6 degrees of freedom

AIC: 4

Number of Fisher Scoring iterations: 25
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Example 3.

X1 = c(0.5, 2, 10, 6, 8, 1, 8, 4, 0, 7, 5, 1.1)

X2 = c(7, 9.5, 6, 0, 8.1, 9, 10, 0, 8, 5, 3, 4)

Y = c(0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0)

summary(glm(Y ~ X1+X2, family = binomial))

Deviance Residuals:

Min 1Q Median 3Q Max

-0.000018180 -0.000000021 0.000000000 0.000000021 0.000018302

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -208.0 1127014.6 0 1

X1 21.8 141530.0 0 1

X2 23.2 139959.6 0 1

Null deviance: 16.63553233343869 on 11 degrees of freedom

Residual deviance: 0.00000000066586 on 9 degrees of freedom

AIC: 6

Number of Fisher Scoring iterations: 25
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Observe points with Y = 1 and Y = 0 are completely separated in
the X1-X2 plane.
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