
STAT 226 Lecture 18
Goodness of Fit and the Deviance
Section 5.2.1-5.2.3

Yibi Huang
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Binomial response data in grouped data, wide format:

condition of the trials number of number of
(explanatory variables) successes failures

Condition 1 x11 x12 . . . x1k y1 n1 − y1

Condition 2 x21 x22 . . . x2k y2 n2 − y2
...

...
...

. . .
...

...
...

Condition N xN1 xN2 . . . xNk yN nN − yN

where y1, y2, . . . , yN are independent and

yi ∼ Binomial(ni, π(xi)).

where xi = (xi1, xi2, . . . , xik).

E.g., the fatal falls data in Slides L09.pdf are of this form.
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Fatal Falls Data

ff = read.table(

"http://www.stat.uchicago.edu/~yibi/s226/falls.txt",

h=T)

ff

floor fatal live

1 1 2 35

2 2 6 48

3 3 8 38

4 4 13 25

5 5 10 22

6 6 10 1

7 7 1 1
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Which model fits data better, identity link or logit link?
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Likelihood Revisit

A way to choose models is to compare their max. (log-)likelihoods.

likelihood :
∏

i
[π(xi)]yi [1 − π(xi)]ni−yi

log-likelihood :
∑

i
{yi log π(xi) + (ni − yi) log[1 − π(xi)]}

where

π(x) =

α + βx for linear prob model (identity link)
exp(α+βx)

1+exp(α+βx) for logistic model (logit link)

For the fatal falls data:

Model Max. Log-Likelihood
linear (identity link) −102.4135
logistic (logit link) −101.1594

The logistic model has a higher max. log-likelihood. Is it better?
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Upper Bound of Maximized (Log-)Likelihood

Regardless of the functional form of π(xi), the likelihood and
log-likelihood must be of the form

likelihood :
∏

i
[π(xi)]yi [1 − π(xi)]ni−yi

log-likelihood :
∑

i
{yi log π(xi) + (ni − yi) log[1 − π(xi)]}

Since yi log π(xi) + (ni − yi) log[1 − π(xi)] is the log-likelihood for a
single observation yi ∼ binomial(ni, π(xi)), which reaches its max
when π(xi) equals its MLE yi/ni, we know

yi log π̂(xi)+ (ni−yi) log[1− π̂(xi)] ≤ yi log
(

yi

ni

)
+ (ni−yi) log

(
ni − yi

ni

)
.

So the max. possible log-likelihood of any model

=
∑

i
{yi log π̂(xi) + (ni − yi) log[1 − π̂(xi)]

≤
∑

i

{
yi log

(
yi

ni

)
+ (ni − yi) log

(
ni − yi

ni

)}
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floor total fatal
level falls falls

x nx yx

1 37 2
2 54 6
3 46 8
4 38 13
5 32 10
6 11 10
7 2 1

For the data of fatal falls, this upper bound
for the max. log-likelihood is

2 log
(

2
37

)
+ (37 − 2) log

(
37 − 2

37

)
+ 6 log

(
6

54

)
+ (54 − 6) log

(
54 − 6

54

)
+ · · ·

+ 1 log
(

1
2

)
+ (2 − 1) log

(
2 − 1

2

)
= − 96.89521

Model Max. Log-Likelihood
linear (identity link) −102.4135
logistic (logit link) −101.1594
upper bound −96.8952
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Deviance

The deviance of a model is twice the diff. of its maximized
log-likelihood and the upper bound.

Deviance = −2(max. log-likelihood − upper bound)

= −2
(∑

i
{yi log π̂(xi) + (ni − yi) log[1 − π̂(xi)]}

−
∑

i

{
yi log

(
yi

ni

)
+ (ni − yi) log

(
ni − yi

ni

)} )
= 2

∑
i

{
yi log

(
yi

nîπ(xi)

)
+ (ni − yi) log

(
ni − yi

ni(1 − π̂(xi))

)}
= 2

∑
i

(observed) log
(
observed

fitted

)
= G2
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For the logistic model of the fatal falls data,

floor observed fitted observed fitted
level fatal count fatal count live count live count

1 2 2.06 35 34.94
2 6 5.52 48 48.48
3 8 8.31 38 37.69
4 13 11.36 25 26.64
5 10 14.47 22 17.53
6 10 6.76 1 4.24
7 1 1.51 1 0.49

Deviance = 2
[
2 log

(
2

2.06

)
+ 35 log

(
35

34.94

)
+ 6 log

(
6

5.52

)
+ 48 log

(
48

48.48

)
+ . . .

+ 1 log
(

1
1.51

)
+ 1 log

(
1

0.49

) ]
≈ 8.5283
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ff = read.table(

"http://www.stat.uchicago.edu/~yibi/s226/falls.txt",

h=T)

ff.logit = glm(cbind(fatal,live) ~ floor,

family = binomial(link="logit"),data=ff)

See next page.
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summary(ff.logit)

Call:

glm(formula = cbind(fatal, live) ~ floor, family = binomial(link = "logit"),

data = ff)

Deviance Residuals:

1 2 3 4 5 6 7

-0.0417 0.2112 -0.1194 0.5726 -1.6135 2.2206 -0.7780

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.492 0.501 -6.97 0.0000000000031

floor 0.660 0.125 5.27 0.0000001384974

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 42.0319 on 6 degrees of freedom

Residual deviance: 8.5283 on 5 degrees of freedom

AIC: 33.45

Number of Fisher Scoring iterations: 4
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The Saturated Model

The upper bound for maximized log-likelihoods itself is also the
maximized likelihood for a model — the saturated model.

The saturated model is the most complex model possible for the
data, which has a separate parameter πi = π(xi) for each (ni, yi)
and fits the data perfectly that

π̂i =
yi

ni
.

Example (Fatal Falls). The saturate model has a separate
parameter πi for each floor level i = 1, 2, 3 . . . , 7.
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The Saturated Model

• In the saturated model

number of parameters = number of rows in the data

• If the number of parameters in a model is identical to the
number of rows in the data, the model is usually the saturated
model.

Example (Mouse Muscle Tension). The saturate model is the
3-way interaction model, for it has 8 parameters, and the data have
8 rows.

• Deviance for the saturated model = 0
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mouse = read.table(

"http://www.stat.uchicago.edu/~yibi/s226/mousemuscle_wide.txt",

header=T)

mouse

drug weight muscle tension.High tension.Low

1 1 High 1 3 3

2 1 High 2 23 41

3 1 Low 1 22 45

4 1 Low 2 4 6

5 2 High 1 21 10

6 2 High 2 11 21

7 2 Low 1 32 23

8 2 Low 2 12 22
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mouse$W= mouse$weight

mouse$M= mouse$muscle

mouse$D= as.factor(mouse$drug)

glm3 = glm(cbind(tension.High,tension.Low) ~ W*M*D,

family=binomial, data=mouse)

summary(glm3)

See next page.
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glm(formula = cbind(tension.high, tension.low) ~ W * M * D, family = binomial,

data = mouse.muscle)

Deviance Residuals:

[1] 0 0 0 0 0 0 0 0

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.9743 3.4157 -0.285 0.775

WLow -2.3438 3.8528 -0.608 0.543

M 0.2324 1.7956 0.129 0.897

D 1.5524 1.8611 0.834 0.404

WLow:M 1.3243 2.3163 0.572 0.568

WLow:D 0.7400 2.1398 0.346 0.729

M:D -0.8105 1.0103 -0.802 0.422

WLow:M:D -0.4360 1.3071 -0.334 0.739

Null deviance: 1.9019e+01 on 7 degrees of freedom

Residual deviance: 1.1324e-14 on 0 degrees of freedom

AIC: 46.117 15



Goodness of Fit (GOF) Test and the Deviance

Let LM be the max. log-likelihood of some Model M of interest. As
the upper bound for max. log-likelihood itself is the max.
log-likelihood for the saturated model LS , the deviance of Model M

Deviance = −2[LM − (upper bound)] = −2(LM − LS ),

is just the likelihood ratio test statistic comparing

H0 : Model M v.s. Ha : saturated model.

Deviance has an approx. chi-squared distribution w/

df = (# of parameters in saturated model)

− (# of parameters in Model M)

= (# of rows in the data) − (# of parameters in Model M)

However, this approx. is good only when most yi ≥ 5 and
ni − yi ≥ 5.

16



Goodness of Fit and the Deviance

• Large deviance indicates lack of fit
• Small deviance means the model fits nearly as good as the

best possible model

Goodness of Fit test for the four models of fatal falls data:

Model Deviance d.f. P-value
linear (identity link) 11.0365 5 0.0507
logistic (logit link) 8.5283 5 0.1294

# pchisq(deviance, df, lower.tail=FALSE) # GOF test P-value

pchisq(11.0365, df=5, lower.tail=FALSE)

[1] 0.05066

pchisq(8.5283, df=5, lower.tail=FALSE)

[1] 0.1294

Goodness-of-fit tests show the logistic model fit a bit better than
the model w/ identity link.
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For the mouse muscle tension data, the saturated model is the
3-way interaction model, the Goodness of fit test of a model is
simply comparing the model with the 3-way interaction model.

glm3 = glm(cbind(tension.High,tension.Low) ~ W*M*D, family=binomial, data=mouse)

glm2 = glm(cbind(tension.High,tension.Low) ~ M*D, family=binomial, data=mouse)

glm2$deviance

[1] 1.529

anova(glm2, glm3,test="Chisq")

Analysis of Deviance Table

Model 1: cbind(tension.High, tension.Low) ~ M * D

Model 2: cbind(tension.High, tension.Low) ~ W * M * D

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 4 1.53

2 0 0.00 4 1.53 0.82

Observe the deviance of the M ∗ D model 1.53 is exactly the LR
statistic comparing M ∗ D with W ∗ M ∗ D.
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Goodness-of Fit Based on Pearson’s Chi-Squared

One can also use Pearson’s Chi-Squared statistic

X2 =
∑

i

{
(yi − niπ(xi))2

nîπ(xi)
+

[ni − yi − ni(1 − π̂(xi))]2

ni(1 − π̂(xi))

}
=

∑ (observed − fitted)2

fitted

to do goodness-of-fit test comparing

H0 : Model M v.s. Ha : saturated model.

X2 is different from Deviance but it has an approx. chi-squared
distribution w/ same d.f. as Deviance.

Like deviance, the approx. for X2 is good only when all
observations (ni, yi) have large ni.
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Grouped Data v.s. Ungrouped Data

Although the ML estimates of parameters are the same for
grouped or ungrouped data, the deviances are different.

For ungrouped data, ni = 1 for all i and yi = 0 or 1, so

LS =
∑

i

{
yi log

(
yi

ni

)
+ (ni − yi) log

(
ni − yi

ni

)}
=

∑
i
{yi log(yi) + (1 − yi) log(1 − yi)} = 0

and hence
Deviance = −2(LM − LS ) = −2LM.
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Grouped Data v.s. Ungrouped Data

ff = read.table(

"http://www.stat.uchicago.edu/~yibi/s226/falls.txt",

h=T) # Grouped data

ff.ug = read.table(

"http://www.stat.uchicago.edu/~yibi/s226/fallsUG.txt",

h=T) # Ungrouped data

ff.ug

floor outcome

1 2 live

2 5 live

3 5 live

4 2 live

5 1 live

(... omitted...)

219 1 live

220 4 live
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Grouped Data v.s. Ungrouped Data

ff.logit = glm(cbind(fatal,live) ~ floor, family=binomial, data=ff)

ffug.logit =glm((outcome == "fatal")~floor,family=binomial, data=ff.ug)

ff.logit$coef

(Intercept) floor

-3.492 0.660

ffug.logit$coef # same coefficient estimates

(Intercept) floor

-3.492 0.660

ff.logit$deviance

[1] 8.528

ffug.logit$deviance # different deviances

[1] 202.3

ff.logit$df.residual # different df for deviances

[1] 5

ffug.logit$df.residual

[1] 218
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Grouped Data, Ungrouped Data, Continuous Predictors

• GOF test only apply on Grouped Data.
Deviances computed from ungrouped data don’t not have an
approx. chi-squared distribution.

• Continuous predictors usually have too many levels (e.g.,
Width in horseshoe crabs data) that the deviance of model w/
such predictors do not have approx. chi-squared dist. if the
number of observations at each level is too small.

• Even though deviances may not have approx. chi-squared
dist., the difference of deviances of two models is often
approx. chi-squared.
One can safely use the diff. of deviances to do likelihood
ratio test for model comparison no matter the data are
grouped or not grouped.
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Summary for Deviance

For a Model M of interest

Deviance = −2(LM − LS )

= 2
∑

i

{
yi log

(
yi

nîπ(xi)

)
+ (ni − yi) log

(
ni − yi

ni(1 − π̂(xi))

)}
= 2

∑
i

(observed) log
(
observed

fitted

)
= G2

where

LM = max. log-likelihood for Model M

LS = max. log-likelihood for the saturated model

= the upper bound for max. log-likelihood of ANY model

Deviance can be used to do goodness-of-fit test.
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