STAT 226 Lecture 18 Goodness of Fit and the Deviance Section 5.2.1-5.2.3

Yibi Huang

Binomial response data in grouped data, wide format:

	condition of the trials (explanatory variables)				number of successes	number of failures
Condition 1	<i>x</i> ₁₁	<i>x</i> ₁₂		x_{1k}	<i>y</i> 1	$n_1 - y_1$
Condition 2	<i>x</i> ₂₁	<i>x</i> ₂₂		x_{2k}	<i>Y</i> 2	$n_2 - y_2$
:	÷	÷	·	÷	:	:
Condition N	x_{N1}	x_{N2}		x_{Nk}	y_N	$n_N - y_N$

where y_1, y_2, \ldots, y_N are independent and

 $y_i \sim \text{Binomial}(n_i, \pi(\mathbf{x}_i)).$

where $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{ik}).$

E.g., the fatal falls data in Slides L09.pdf are of this form.

Fatal Falls Data

```
ff = read.table(
  "http://www.stat.uchicago.edu/~yibi/s226/falls.txt",
  h=T)
ff
                                    1.0 -
  floor fatal live
                                                 identity link
                             Fatality Rate
) .0
.80
               2
                    35
                                                 logit link
1
       1
2
       2
               6
                    48
3
       3
               8
                    38
4
       4
              13
                    25
5
       5
              10
                    22
                                    0.2-
6
       6
              10
                     1
                                    0.0
7
       7
               1
                     1
                                                2
                                                                       8
                                                                              10
                                         0
                                                               6
                                                        Floor Level
```

Which model fits data better, identity link or logit link?

Likelihood Revisit

A way to choose models is to compare their max. (log-)likelihoods. likelihood : $\prod_{i} [\pi(\mathbf{x}_{i})]^{y_{i}} [1 - \pi(\mathbf{x}_{i})]^{n_{i} - y_{i}}$ log-likelihood : $\sum_{i} \{y_{i} \log \pi(\mathbf{x}_{i}) + (n_{i} - y_{i}) \log[1 - \pi(\mathbf{x}_{i})]\}$

where

$$\pi(x) = \begin{cases} \alpha + \beta x & \text{for linear prob model (identity link)} \\ \frac{\exp(\alpha + \beta x)}{1 + \exp(\alpha + \beta x)} & \text{for logistic model (logit link)} \end{cases}$$

For the fatal falls data:

Model	Max. Log-Likelihood
linear (identity link)	-102.4135
logistic (logit link)	-101.1594

The logistic model has a higher max. log-likelihood. Is it better?

Upper Bound of Maximized (Log-)Likelihood

Regardless of the functional form of $\pi(\mathbf{x}_i)$, the likelihood and log-likelihood must be of the form

likelihood : $\prod_{i} [\pi(\mathbf{x}_{i})]^{y_{i}} [1 - \pi(\mathbf{x}_{i})]^{n_{i}-y_{i}}$ log-likelihood : $\sum_{i} \{y_{i} \log \pi(\mathbf{x}_{i}) + (n_{i} - y_{i}) \log[1 - \pi(\mathbf{x}_{i})]\}$ Since $y_{i} \log \pi(\mathbf{x}_{i}) + (n_{i} - y_{i}) \log[1 - \pi(\mathbf{x}_{i})]$ is the log-likelihood for a single observation $y_{i} \sim \text{binomial}(n_{i}, \pi(\mathbf{x}_{i}))$, which reaches its max when $\pi(\mathbf{x}_{i})$ equals its MLE y_{i}/n_{i} , we know

$$y_i \log \widehat{\pi}(\mathbf{x}_i) + (n_i - y_i) \log[1 - \widehat{\pi}(\mathbf{x}_i)] \le y_i \log\left(\frac{y_i}{n_i}\right) + (n_i - y_i) \log\left(\frac{n_i - y_i}{n_i}\right)$$

So

the max. possible log-likelihood of any model

$$= \sum_{i} \{y_i \log \widehat{\pi}(\mathbf{x}_i) + (n_i - y_i) \log[1 - \widehat{\pi}(\mathbf{x}_i)] \\ \leq \sum_{i} \{y_i \log\left(\frac{y_i}{n_i}\right) + (n_i - y_i) \log\left(\frac{n_i - y_i}{n_i}\right)\}$$

floor	total	fatal
level	falls	falls
х	n_x	y_x
1	37	2
2	54	6
3	46	8
4	38	13
5	32	10
6	11	10
7	2	1

For the data of fatal falls, this upper bound for the max. log-likelihood is

$$2 \log\left(\frac{2}{37}\right) + (37 - 2) \log\left(\frac{37 - 2}{37}\right) + 6 \log\left(\frac{6}{54}\right) + (54 - 6) \log\left(\frac{54 - 6}{54}\right) + \cdots$$

$$+ 1 \log\left(\frac{1}{2}\right) + (2 - 1) \log\left(\frac{2 - 1}{2}\right)$$
$$= -96.89521$$

Model	Max. Log-Likelihood
linear (identity link)	-102.4135
logistic (logit link)	-101.1594
upper bound	-96.8952

Deviance

The deviance of a model is twice the diff. of its maximized log-likelihood and the upper bound.

Deviance = $-2(\max, \log-\text{likelihood} - \text{upper bound})$

$$= -2\left(\sum_{i} \{y_{i} \log \widehat{\pi}(\mathbf{x}_{i}) + (n_{i} - y_{i}) \log[1 - \widehat{\pi}(\mathbf{x}_{i})]\}\right)$$
$$-\sum_{i} \{y_{i} \log\left(\frac{y_{i}}{n_{i}}\right) + (n_{i} - y_{i}) \log\left(\frac{n_{i} - y_{i}}{n_{i}}\right)\}\right)$$
$$= 2\sum_{i} \{y_{i} \log\left(\frac{y_{i}}{n_{i}\widehat{\pi}(\mathbf{x}_{i})}\right) + (n_{i} - y_{i}) \log\left(\frac{n_{i} - y_{i}}{n_{i}(1 - \widehat{\pi}(\mathbf{x}_{i}))}\right)\}$$
$$= 2\sum_{i} (\text{observed}) \log\left(\frac{\text{observed}}{\text{fitted}}\right)$$
$$= G^{2}$$

floor level	observed fatal count	fitted fatal count	observed live count	fitted live count
1	2	2.06	35	34.94
2	6	5.52	48	48.48
3	8	8.31	38	37.69
4	13	11.36	25	26.64
5	10	14.47	22	17.53
6	10	6.76	1	4.24
7	1	1.51	1	0.49

For the logistic model of the fatal falls data,

Deviance =
$$2\left[2\log\left(\frac{2}{2.06}\right) + 35\log\left(\frac{35}{34.94}\right) + 6\log\left(\frac{6}{5.52}\right) + 48\log\left(\frac{48}{48.48}\right) + \dots + 1\log\left(\frac{1}{1.51}\right) + 1\log\left(\frac{1}{0.49}\right)\right] \approx 8.5283$$

See next page.

```
summary(ff.logit)
```

Call:

Deviance Residuals: 2 3 4 5 1 6 7 -0.0417 0.2112 -0.1194 0.5726 -1.6135 2.2206 -0.7780 Coefficients: Estimate Std. Error z value Pr(>|z|)(Intercept) -3.492 0.501 -6.97 0.000000000031 floor 0.660 0.125 5.27 0.0000001384974 (Dispersion parameter **for** binomial family taken to be 1) Null deviance: 42.0319 on 6 degrees of freedom Residual deviance: 8.5283 on 5 degrees of freedom ATC: 33.45

The upper bound for maximized log-likelihoods itself is also the maximized likelihood for a model — the **saturated model**.

The *saturated model* is the most complex model possible for the data, which has a separate parameter $\pi_i = \pi(\mathbf{x}_i)$ for each (n_i, y_i) and fits the data perfectly that

$$\widehat{\pi}_i = \frac{y_i}{n_i}.$$

Example (Fatal Falls). The saturate model has a separate parameter π_i for each floor level i = 1, 2, 3..., 7.

• In the *saturated* model

number of parameters = number of rows in the data

• If the number of parameters in a model is identical to the number of rows in the data, the model is usually the saturated model.

Example (Mouse Muscle Tension). The saturate model is the 3-way interaction model, for it has 8 parameters, and the data have 8 rows.

• Deviance for the saturated model = 0

```
mouse = read.table(
    "http://www.stat.uchicago.edu/~yibi/s226/mousemuscle_wide.txt",
    header=T)
```

mouse

drug weight muscle tension.High tension.Low

1	1	High	1	3	3
2	1	High	2	23	41
3	1	Low	1	22	45
4	1	Low	2	4	6
5	2	High	1	21	10
6	2	High	2	11	21
7	2	Low	1	32	23
8	2	Low	2	12	22

summary(glm3)

See next page.

glm(formula = cbind(tension.high, tension.low) ~ W * M * D, family = bi
data = mouse.muscle)

Deviance Residuals: [1] 0 0 0 0 0 0 0 0

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.9743	3.4157	-0.285	0.775
WLow	-2.3438	3.8528	-0.608	0.543
Μ	0.2324	1.7956	0.129	0.897
D	1.5524	1.8611	0.834	0.404
WLow:M	1.3243	2.3163	0.572	0.568
WLow:D	0.7400	2.1398	0.346	0.729
M:D	-0.8105	1.0103	-0.802	0.422
WLow:M:D	-0.4360	1.3071	-0.334	0.739

Null deviance: 1.9019e+01 on 7 degrees of freedom Residual deviance: 1.1324e-14 on 0 degrees of freedom AIC: 46.117

Goodness of Fit (GOF) Test and the Deviance

Let L_M be the max. log-likelihood of some Model M of interest. As the upper bound for max. log-likelihood itself is the max. log-likelihood for the saturated model L_S , the *deviance* of Model M

Deviance = $-2[L_M - (\text{upper bound})] = -2(L_M - L_S),$

is just the likelihood ratio test statistic comparing

 H_0 : Model *M* v.s. H_a : saturated model.

Deviance has an approx. chi-squared distribution w/

df = (# of parameters in saturated model)

- (# of parameters in Model M)

= (# of rows in the data) - (# of parameters in Model *M*)

However, this approx. is good only when most $y_i \ge 5$ and $n_i - y_i \ge 5$.

Goodness of Fit and the Deviance

- Large deviance indicates lack of fit
- Small deviance means the model fits nearly as good as the best possible model

Goodness of Fit test for the four models of fatal falls data:

Model	Deviance	d.f.	P-value
linear (identity link)	11.0365	5	0.0507
logistic (logit link)	8.5283	5	0.1294

```
# pchisq(deviance, df, lower.tail=FALSE) # GOF test P-value
pchisq(11.0365, df=5, lower.tail=FALSE)
[1] 0.05066
pchisq(8.5283, df=5, lower.tail=FALSE)
[1] 0.1294
```

Goodness-of-fit tests show the logistic model fit a bit better than the model w/ identity link. For the mouse muscle tension data, the saturated model is the 3-way interaction model, the Goodness of fit test of a model is simply comparing the model with the 3-way interaction model.

```
glm3 = glm(cbind(tension.High,tension.Low) ~ W*M*D, family=binomial, da
glm2 = glm(cbind(tension.High,tension.Low) ~ M*D, family=binomial, data
glm2$deviance
[1] 1.529
anova(glm2, glm3,test="Chisq")
Analysis of Deviance Table
Model 1: cbind(tension.High, tension.Low) ~ M * D
Model 2: cbind(tension.High, tension.Low) ~ W * M * D
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
          4
                  1.53
2
          0
                  0.00 4
                              1.53
                                       0.82
```

Observe the deviance of the M * D model 1.53 is exactly the LR statistic comparing M * D with W * M * D.

Goodness-of Fit Based on Pearson's Chi-Squared

One can also use Pearson's Chi-Squared statistic

$$X^{2} = \sum_{i} \left\{ \frac{(y_{i} - n_{i}\pi(\mathbf{x}_{i}))^{2}}{n_{i}\widehat{\pi}(\mathbf{x}_{i})} + \frac{[n_{i} - y_{i} - n_{i}(1 - \widehat{\pi}(\mathbf{x}_{i}))]^{2}}{n_{i}(1 - \widehat{\pi}(\mathbf{x}_{i}))} \right\}$$
$$= \sum_{i} \frac{(\text{observed} - \text{fitted})^{2}}{\text{fitted}}$$

to do goodness-of-fit test comparing

```
H_0: Model M v.s. H_a: saturated model.
```

 X^2 is different from Deviance but it has an approx. **chi-squared** distribution w/ same d.f. as Deviance.

Like deviance, the approx. for X^2 is good only when all observations (n_i, y_i) have large n_i .

Although the ML estimates of parameters are the same for grouped or ungrouped data, the deviances are different.

For ungrouped data, $n_i = 1$ for all *i* and $y_i = 0$ or 1, so

$$L_S = \sum_i \left\{ y_i \log\left(\frac{y_i}{n_i}\right) + (n_i - y_i) \log\left(\frac{n_i - y_i}{n_i}\right) \right\}$$
$$= \sum_i \{y_i \log(y_i) + (1 - y_i) \log(1 - y_i)\} = 0$$

and hence

Deviance =
$$-2(L_M - L_S) = -2L_M$$
.

Grouped Data v.s. Ungrouped Data

```
ff = read.table(
    "http://www.stat.uchicago.edu/~yibi/s226/falls.txt",
    h=T) # Grouped data
ff.ug = read.table(
    "http://www.stat.uchicago.edu/~yibi/s226/fallsUG.txt",
    h=T) # Ungrouped data
```

ff.ug

11.0	.9	
	floor o	utcome
1	2	live
2	5	live
3	5	live
4	2	live
5	1	live
(omitte	d)
219	1	live
220	4	live

Grouped Data v.s. Ungrouped Data

ff.logit = glm(cbind(fatal,live) ~ floor, family=binomial, data=ff)
ffug.logit =glm((outcome == "fatal")~floor,family=binomial, data=ff.ug)

<pre>ff.logit\$coef</pre>		
(Intercept)	floor	
-3.492	0.660	
<pre>ffug.logit\$coef</pre>		<pre># same coefficient estimates</pre>
(Intercept)	floor	
-3.492	0.660	
<pre>ff.logit\$deviance</pre>		
[1] 8.528		
<pre>ffug.logit\$deviance</pre>		<pre># different deviances</pre>
[1] 202.3		
<pre>ff.logit\$df.residual</pre>		<pre># different df for deviances</pre>
[1] 5		
<pre>ffug.logit\$df.res</pre>	idual	

[1] 218

Grouped Data, Ungrouped Data, Continuous Predictors

• GOF test only apply on Grouped Data.

Deviances computed from ungrouped data don't not have an approx. chi-squared distribution.

Grouped Data, Ungrouped Data, Continuous Predictors

• GOF test only apply on Grouped Data.

Deviances computed from ungrouped data don't not have an approx. chi-squared distribution.

• **Continuous predictors** usually have too many levels (e.g., Width in horseshoe crabs data) that the deviance of model w/ such predictors do not have approx. chi-squared dist. if the number of observations at each level is too small. • GOF test only apply on Grouped Data.

Deviances computed from ungrouped data don't not have an approx. chi-squared distribution.

- **Continuous predictors** usually have too many levels (e.g., Width in horseshoe crabs data) that the deviance of model w/ such predictors do not have approx. chi-squared dist. if the number of observations at each level is too small.
- Even though deviances may not have approx. chi-squared dist., the difference of deviances of two models is often approx. chi-squared.

One can *safely* use the **diff. of deviances** to do **likelihood ratio test** for model comparison no matter the data are grouped or not grouped.

Summary for Deviance

For a Model M of interest

Deviance =
$$-2(L_M - L_S)$$

= $2\sum_i \left\{ y_i \log\left(\frac{y_i}{n_i \widehat{\pi}(\mathbf{x}_i)}\right) + (n_i - y_i) \log\left(\frac{n_i - y_i}{n_i(1 - \widehat{\pi}(\mathbf{x}_i))}\right) \right\}$
= $2\sum_i (\text{observed}) \log\left(\frac{\text{observed}}{\text{fitted}}\right)$
= G^2

where

 $L_M = \max$. log-likelihood for Model M

 L_S = max. log-likelihood for the saturated model

= the upper bound for max. log-likelihood of ANY model

Deviance can be used to do goodness-of-fit test.