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Example (Mouse Muscle Tension)

• A study to examine relationship between two drugs and
muscle tension

• 4-way flat contingency table (2 × 2 × 2 × 2) with 4 variables
• Tension (response): change in muscle tension: High, Low
• Drug: drug 1, drug 2 . . . . . . . . . . . . . . . . . . . . . . . . primary predictor
• Weight: weight of muscle: High, Low
• Muscle: muscle type: 1, 2

Drug 1 Drug 2
Muscle Type

Tension Weight 1 2 1 2

High High 3 23 21 11
Low 22 4 32 12

Low High 3 41 10 21
Low 45 6 23 22

The layout of this flat table is
bad because ...
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A better layout:

Muscle Type 1 Type 2
Tension

Weight Drug High Low High Low

High 1 3 3 23 41
2 21 10 11 21

Low 1 22 45 4 6
2 32 23 12 22

Conditional odds ratios
between Drug and Tension:

Muscle

Wt. Type 1 Type 2

High 3×10
3×21 ≈0.48 23×21

41×11 ≈1.07

Low 22×23
45×32 ≈0.35 4×22

6×12 ≈1.22

• The table splits in to 4 partial tables for the primary predictor
(Drug) and the response (Tension), controlling for the other
two variables.

• Conditional odds ratios between Drug and Tension can be
easily computed from this table but not from the table on the
previous slide.

• Tip: response and the primary predictor (if any) should be
placed in the inner most layer of the table
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Conditional distributions of Tension
given Drug, Weight, and Muscle type:

Muscle

Type 1 Type 2
Tension

Weight Drug High Low High Low

High 1 50% 50% 36% 64%
2 68% 32% 34% 66%

Low 1 33% 67% 40% 60%
2 58% 42% 35% 65%

Observation:

• For Type 1 muscle, Drug 1 looks more effective in lowering
muscle tension than Drug 2 does

• For Type 2 muscle, the effect of the two drugs looks similar
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Creating Multi-Way Tables in R

In week 4 problem session, we showed how to create multi-way
tables in R

muscle.tab = array(

c( 3,21, 3,10, # Drug-Tension partial given W = High, Type 1

22,32,45,23, # Drug-Tension partial given W = Low, Type 1

23,11,41,21, # Drug-Tension partial given W = High, Type 2

4,12, 6,22), # Drug-Tension partial given W = Low, Type 2

dim = c(2,2,2,2),

dimnames = list(

drug = c("1","2"),

tension = c("High", "Low"),

weight = c("High", "Low"),

muscle = c("1","2")

)

)

muscle.tab = as.table(muscle.tab) # cannot skip this step!
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See week 4 problem session for how to print a multi-way table as a
flat-table.

ftable(muscle.tab, row.vars=c("weight","drug"),

col.vars=c("muscle","tension"))

muscle 1 2

tension High Low High Low

weight drug

High 1 3 3 23 41

2 21 10 11 21

Low 1 22 45 4 6

2 32 23 12 22

ftable(muscle.tab, row.vars=c("tension","weight"),

col.vars=c("drug","muscle"))

drug 1 2

muscle 1 2 1 2

tension weight

High High 3 23 21 11

Low 22 4 32 12

Low High 3 41 10 21

Low 45 6 23 22
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Various Formats of Multi-Way
Table Data



Various Formats of Multi-Way Table Data

There are several formats in R for multi-way table data.

1. Table, created using array() or xtabs()
• ftable() and CMH test require this format

2. Ungrouped data — data frame
3. Grouped data — long format — data frame
4. Grouped data — wide format — data frame

Data must be either either ungrouped or in wide format if
grouped to fit a glm() model.
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Ungrouped Data to Tables — xtabs()

xtabs() can convert a data frame of ungrouped data into to
multi-way tables.

muscle.ug = read.table(

"http://www.stat.uchicago.edu/~yibi/s226/mousemuscle_ungrouped.txt",

header=TRUE)

muscle.ug[1:8,]

drug tension weight muscle

1 1 High High 1

2 1 High High 1

3 1 High High 1

4 2 High High 1

5 2 High High 1

6 2 High High 1

7 2 High High 1

8 2 High High 1

# ...(291 more rows omitted)...
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Ungrouped Data to Tables (2)

muscle.tab = xtabs(~ weight + muscle + drug + tension, data=muscle.ug)

muscle.tab

, , drug = 1, tension = High

muscle

weight 1 2

High 3 23

Low 22 4

, , drug = 2, tension = High

muscle

weight 1 2

High 21 11

Low 32 12

, , drug = 1, tension = Low

muscle

weight 1 2

High 3 41

Low 45 6

, , drug = 2, tension = Low

muscle

weight 1 2

High 10 21

Low 23 22
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Long Format of Grouped Data

• One column for each variable of the multi-way table
• One column (Freq) for the cell counts of the multi-way table

weight muscle drug tension Freq

High 1 1 High 3

Low 1 1 High 22

High 2 1 High 23

Low 2 1 High 4

High 1 2 High 21

Low 1 2 High 32

High 2 2 High 11

Low 2 2 High 12

High 1 1 Low 3

Low 1 1 Low 45

High 2 1 Low 41

Low 2 1 Low 6

High 1 2 Low 10

Low 1 2 Low 23

High 2 2 Low 21

Low 2 2 Low 22
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Wide Format of Grouped Data

• One column for each explanatory variable
• k columns for the response if it has k levels

drug weight muscle tension.High tension.Low

1 High 1 3 3

1 High 2 23 41

1 Low 1 22 45

1 Low 2 4 6

2 High 1 21 10

2 High 2 11 21

2 Low 1 32 23

2 Low 2 12 22
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Table to Long Format — as.data.frame()

as.data.frame() can convert a multi-way table to a data frame in
long format.

muscle.long = as.data.frame(muscle.tab)

muscle.long

weight muscle drug tension Freq

1 High 1 1 High 3

2 Low 1 1 High 22

3 High 2 1 High 23

4 Low 2 1 High 4

5 High 1 2 High 21

6 Low 1 2 High 32

7 High 2 2 High 11

8 Low 2 2 High 12

9 High 1 1 Low 3

10 Low 1 1 Low 45

11 High 2 1 Low 41

12 Low 2 1 Low 6

13 High 1 2 Low 10

14 Low 1 2 Low 23

15 High 2 2 Low 21

16 Low 2 2 Low 22
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Long Format to Wide Format — dcast()

dcast() in the reshape2 library can convert data frames from
long to wide format.

# install.packages("reshape2") # only install ONCE!

library(reshape2)

muscle.wide = dcast(muscle.long,

drug+weight+muscle ~ tension,

value.var="Freq")

muscle.wide

drug weight muscle High Low

1 1 High 1 3 3

2 1 High 2 23 41

3 1 Low 1 22 45

4 1 Low 2 4 6

5 2 High 1 21 10

6 2 High 2 11 21

7 2 Low 1 32 23

8 2 Low 2 12 22 13



Wide Format to Long Format

Use the melt() function in the reshape2 library to convert data
from wide format to long format.

melt(muscle.wide, id.vars=c("weight","muscle","drug"))

weight muscle drug variable value

1 High 1 1 High 3

2 High 2 1 High 23

3 Low 1 1 High 22

4 Low 2 1 High 4

5 High 1 2 High 21

6 High 2 2 High 11

7 Low 1 2 High 32

8 Low 2 2 High 12

9 High 1 1 Low 3

10 High 2 1 Low 41

11 Low 1 1 Low 45

12 Low 2 1 Low 6

13 High 1 2 Low 10

14 High 2 2 Low 21

15 Low 1 2 Low 23

16 Low 2 2 Low 22
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Wide Format to Long Format (2)

muscle.long = melt(muscle.wide, id.vars=c("weight","muscle","drug"))

names(muscle.long)

[1] "weight" "muscle" "drug" "variable" "value"

names(muscle.long)[4] = "tension"

names(muscle.long)[5] = "Freq"

muscle.long

weight muscle drug tension Freq

1 High 1 1 High 3

2 High 2 1 High 23

3 Low 1 1 High 22

4 Low 2 1 High 4

5 High 1 2 High 21

6 High 2 2 High 11

7 Low 1 2 High 32

8 Low 2 2 High 12

9 High 1 1 Low 3

10 High 2 1 Low 41

11 Low 1 1 Low 45

12 Low 2 1 Low 6

13 High 1 2 Low 10

14 High 2 2 Low 21

15 Low 1 2 Low 23

16 Low 2 2 Low 22
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Long Format to Table

xtabs() can also convert grouped data in long format to tables.

muscle.tab = xtabs(Freq ~ weight + muscle + drug + tension, data= muscle.long)

muscle.tab

, , drug = 1, tension = High

muscle

weight 1 2

High 3 23

Low 22 4

, , drug = 2, tension = High

muscle

weight 1 2

High 21 11

Low 32 12

, , drug = 1, tension = Low

muscle

weight 1 2

High 3 41

Low 45 6

, , drug = 2, tension = Low

muscle

weight 1 2

High 10 21

Low 23 22
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Summary of Conversions Between Data Formats

Ungrouped

xtabs() ↓

Table

as.data.frame() ↓↑ xtabs()

Long Format

dcast() ↓↑ melt()

Wide Format
17



Logistic Models for Multi-way
Tables



Logistic Models for Multi-way Tables

Let’s start w/ models for 4-way tables (1 response + 3 predictors)

• categorical predictors: A, B, C, with a, b, c levels respectively
• response: Y = 0 or 1

Let
πi jk = P(Y = 1|A = i, B = j,C = k)

The most complex model for a 4-way table is the three way
interaction model, denoted as A ∗ B ∗C, including all main effects
and 2-way, 3-way interactions

A + B +C + A ∗ B + B ∗C + A ∗C + A ∗ B ∗C

The model formula is

logit(πi jk) = α + βA
i + β

B
j + β

C
k︸          ︷︷          ︸

main effects

+ βAB
i j + β

BC
jk + β

AC
ik︸               ︷︷               ︸

two-way interactions

+βABC
i jk

for i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , c. 18



Let

• Ai, i = 1, . . . , a be the dummy variables for levels of A
• B j, j = 1, . . . , b be the dummy variables for levels of B
• Ck, k = 1, . . . , c be the dummy variables for levels of C

The model formula

logit(πi jk) = α + βA
i + β

B
j + β

C
k + β

AB
i j + β

BC
jk + β

AC
ik + β

ABC
i jk

can be written in terms of the dummy variables as

logit(πi jk) = α +
a∑
ℓ=1

βA
ℓ Aℓ +

b∑
m=1

βB
mBm +

c∑
n=1

βC
n Cn

+

a∑
ℓ=1

b∑
m=1

βAB
ℓm AℓBm +

b∑
m=1

c∑
n=1

βBC
mn BmCn +

a∑
ℓ=1

c∑
n=1

βAC
ℓn AℓCn

+

a∑
ℓ=1

b∑
m=1

c∑
n=1

βABC
ℓmn AℓBmCn

• How many parameters are there?
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In the 3-way on the previous page, many parameters are
redundant because

A1 + · · · + Aa = 1, B1 + · · · + Bb = 1, C1 + · · · +Cc = 1.

So, need to drop one of the dummy variables A1, B1, C1 for each
categorical predictor from the model, which is equivalent to setting
the coefficients for those dummy variables to 0.

βA
1 = β

B
1 = β

C
1 = 0

As A1, B1, and C1 are dropped, the interaction terms that involve
those levels are also dropped. So the coefficients for those
interaction terms are set to 0

βAB
1 j = β

AB
i1 = β

BC
1k = β

BC
j1 = β

AC
1k = β

AC
i1 = 0

βABC
1 jk = β

ABC
i1k = β

ABC
i j1 = 0
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• the effective number of parameters for a main effect is

number of levels −1

• the effective number of parameters for an interaction is the
product of (number of levels −1) for each factor involved in the
interaction.

The total number of effective parameters is

1 + (a − 1)︸ ︷︷ ︸
A main effects

+ (b − 1)︸ ︷︷ ︸
B main effects

+ (c − 1)︸ ︷︷ ︸
C main effects

+ (a − 1)(b − 1)︸           ︷︷           ︸
AB interactions

+ (b − 1)(c − 1)︸          ︷︷          ︸
BC interactions

+ (a − 1)(c − 1)︸          ︷︷          ︸
AC interactions

+ (a − 1)(b − 1)(c − 1)︸                    ︷︷                    ︸
ABC interactions

= abc
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There are several simplifications of the 3-way interaction model,
such as

• Model A ∗ B + B ∗C + A ∗C:

logit(πi jk) = α + βA
i + β

B
j + β

C
k + β

AB
i j + β

BC
jk + β

AC
ik

• Model A ∗ B + A ∗C

logit(πi jk) = α + βA
i + β

B
j + β

C
k + β

AB
i j + β

AC
ik

• Model A + B ∗C:

logit(πi jk) = α + βA
i + β

B
j + β

C
k + β

BC
jk

• Model A + B +C:

logit(πi jk) = α + βA
i + β

B
j + β

C
k

• Model A ∗ B:

logit(πi jk) = α + βA
i + β

B
j + β

AB
i j
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• In all the models, constraints on the main effects and
interactions are the same as those on the corresponding
parameters in the 3-way interaction models.

• Generally, models must maintain hierarchy — cannot include
an interaction terms without including the relevant main
effects and lower order interactions
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• In all the models, constraints on the main effects and
interactions are the same as those on the corresponding
parameters in the 3-way interaction models.

• Generally, models must maintain hierarchy — cannot include
an interaction terms without including the relevant main
effects and lower order interactions
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Interpretation of Model A + B +C and its Coefficients

In the Model A + B +C:

log
(
πi jk

1 − πi jk

)
= log(odds of {Y = 1}) = α + βA

i + β
B
j + β

C
k

where πi jk = P(Y = 1|A = i, B = j,C = k),

• 1 + (a − 1) + (b − 1) + (c − 1) effective parameters in total since
βA

1 = β
B
1 = β

C
1 = 0

• Conditional OR between {Y = 0, 1} and {A = 1, i} given B = j and
C = k is

odds of (Y = 1 given A = i, B = j,C = k)
odds of (Y = 1 given A = 1, B = j,C = k)

=
exp(�α + β

A
i +��
βB

j + ��β
C
k )

exp(�α + β
A
1 +��
βB

j + ��β
C
k )
= exp(βA

i − β
A
1 ) = exp(βA

i )

which doesn’t change with the levels of B and C.
• Interpretation for exp(βB

j ) and exp(βC
k ): Likewise

• Homogeneous YA, YB, and YC association 24



Example (Mouse Muscle Tension)

# wide-format data

names(muscle.wide)

[1] "drug" "weight" "muscle" "High" "Low"

names(muscle.wide)[c(1,2,3)] = c("D","W","M")

muscle.wide$M = as.factor(muscle.wide$M)

muscle.wide$D = as.factor(muscle.wide$D)

Let’s first fit a model with W, M, and D main effects only.

glm1 = glm(cbind(High,Low) ~ W + M + D, family=binomial,

data=muscle.wide)

Fitted model coefficients:

glm1$coef

(Intercept) WLow M2 D2

-0.03424 -0.41866 -0.70899 0.58657
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For the model W + M + D: log
(
πi jk

1 − πi jk

)
= α + βW

i + β
M
j + β

D
k where

πi jk = P(High Tension |W = i,M = j,D = k),

glm1$coef

(Intercept) WLow M2 D2

-0.03424 -0.41866 -0.70899 0.58657

R gives the estimated coefficients:

α̂ ≈ −0.0342, β̂W
L ≈ −0.419, β̂M

2 ≈ −0.709, β̂D
2 ≈ 0.587.

• What are the values for β̂W
H , β̂M

1 and β̂D
1 ?

All zero!

• What is the estimated value for π = P(tension = High) for low
muscle weight, Type 1 muscle, when Drug 1 is applied?

When W = L, M = 1, D = 1,

π̂ =
exp(α̂ + β̂W

L + β̂
M
1 + β̂

D
1 )

1 + exp(α̂ + β̂W
L + β̂

M
1 + β̂

D
1 )

=
exp(−0.0342 + (−0.419) + 0 + 0)

1 + exp(−0.0342 + (−0.419) + 0 + 0)
≈ 0.39
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For the model W + M + D: log
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πi jk
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M
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M
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M
1 + β̂

D
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(
πi jk
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)
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M
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π̂ =
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L + β̂
M
1 + β̂

D
1 )
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M
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D
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For the main effect model

log
(
πi jk

1 − πi jk

)
= α + βW

i + β
M
j + β

D
k

how to interpret the parameter estimates below?

α̂ ≈ −0.0342, β̂W
H = 0, β̂M

1 = 0, β̂D
1 = 0,

β̂W
L ≈ −0.419, β̂M

2 ≈ −0.709, β̂D
2 ≈ 0.587

• The odds of High tension if Drug 2 is applied are
eβ̂

D
2 = e0.587 ≈ 1.8 times the odds if Drug 1 is applied on the

same type of muscle of the same weight.
• The odds of High tension for Type 2 muscle are

eβ̂
M
2 = e−0.709 ≈ 0.49 times the odds for Type 1 muscle of the

same weight with the same drug applied.
• The odds of High tension for high-weight muscle are

e−β̂
W
L = e0.419 ≈ 1.52 times the odds for low-weight muscle of

the same type with the same drug applied.
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Model A ∗ B +C

log
(
πi jk

1 − πi jk

)
= log(odds of {Y = 1}) = α + βA

i + β
B
j + β

C
k + β

AB
i j

• By model hierarchy, must include A and B if A ∗ B is included
in the model.
So the model A ∗ B +C is equivalent to A + B +C + A ∗ B

• Number of parameters
= 1 + (a − 1) + (b − 1) + (c − 1) + (a − 1)(b − 1) because of the
constraints

βA
1 = β

B
1 = β

C
1 = 0

βAB
i1 = 0 for i = 1, . . . , a

βAB
1 j = 0 for j = 1, . . . , b
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Model A ∗ B +C: Interpretation

log
(
πi jk

1 − πi jk

)
= log(odds of {Y = 1}) = α + βA

i + β
B
j + β

C
k + β

AB
i j

The conditional OR between {Y = 0, 1} and {A = 1, i} given B = j
and C = k is

odds of (Y = 1 given A = i, B = j,C = k)
odds of (Y = 1 given A = 1, B = j,C = k)

=
exp(�α + β

A
i +��
βB

j + ��β
C
k + β

AB
i j )

exp(�α + β
A
1 +��
βB

j + ��β
C
k + β

AB
1 j )

= exp(βA
i − β

A
1︸︷︷︸
=0

+βAB
i j − β

AB
1 j︸︷︷︸
=0

) = eβ
A
i +β

AB
i j =

eβ
A
i if B = 1

eβ
A
i +β

AB
i j if B = j

which changes with the levels of B (but not C)

• YA association is NOT homogeneous
• can show likewise that the conditional ORs of YB change with

A (but not C). ⇒ No homogeneous YB association 29



Model A ∗ B +C: Interpretation

Under the A ∗ B +C model

log
(
πi jk

1 − πi jk

)
= log(odds of {Y = 1}) = α + βA

i + β
B
j + β

C
k + β

AB
i j ,

the conditional OR between {Y = 0, 1} and {C = 1, k} given A = i
and B = j is

odds of (Y = 1 given A = i, B = j,C = k)
odds of (Y = 1 given A = i, B = j,C = 1)

=
exp(�α + ��β

A
i +�

�βB
j + β

C
k +�

�βAB
i j )

exp(�α + ��β
A
i +�

�βB
j + β

C
1 +�

�βAB
i j )
= exp(βC

k − β
C
1 ) = eβ

C
k

which doesn’t change with the levels of A and B.

• homogeneous YC association given A and B.
• If one further assumes that βC

k = 0 for all k, then Y and C
would be conditionally independent given A, B
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Example (Mouse Muscle Tension) — W + M ∗ D

glm2 = glm(cbind(High,Low) ~ W + M * D, family=binomial,

data=muscle.wide)

glm2$coef

(Intercept) WLow M2 D2 M2:D2

-0.4682 -0.2011 -0.0596 1.0717 -1.0676

α̂ ≈ −0.4682, β̂W
H = 0, β̂M

1 = 0, β̂D
1 = 0,

β̂W
L ≈ −0.2011, β̂M

2 ≈ −0.0596, β̂D
2 ≈ 1.0717

β̂MD
11 = 0, β̂MD

12 = 0, β̂MD
21 = 0, β̂MD

22 = −1.0676

The estimated π when W = L, M = 1, D = 1 is

π̂ =
exp(α̂ + β̂W

L + β̂
M
1 + β̂

D
1 + β̂

MD
11 )

1 + exp(α̂ + β̂W
L + β̂

M
1 + β̂

D
1 + β̂

MD
11 )

=
exp(−0.4676 + (−0.2011) + 0 + 0 + 0)

1 + exp(−0.4676 + (−0.2011) + 0 + 0 + 0)
≈ 0.34
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Example (Mouse Muscle Tension) — Drug Effect Under W+M∗D

Under the model W + M ∗ D

log(odds of high tension) = α + βW
i + β

M
j + β

D
k + β

MD
jk

The conditional OR between {Tension = H, L} and {D = 1, 2} given
W = j and M = k is

odds of high tension given W = i,M = j,D = 2
odds of high tension given W = i,M = j,D = 1

=
exp(�̂α + ��̂β

W
i +�

�̂βM
j + β̂

D
2 + β̂

MD
j2 )

exp(�̂α + ��̂β
W
i +�

�̂βM
j + β̂

D
1 + β̂

MD
j1 )
= exp(̂βD

2 − β̂
D
1︸︷︷︸
=0

+β̂MD
j2 − β̂

MD
j1︸︷︷︸
=0

) = eβ̂
D
2 −β̂

MD
j2

=

e1.071+0 ≈ 2.9 for Type 1 muscle

e1.071+(−1.068) ≈ 1.004 for Type 2 muscle

Conclusion: Drug 1 and 2 have nearly identical effects on Type 2
muscle, while Drug 1 is significantly more effective in reducing
muscle tension than drug 2. 32



Example (Mouse Muscle Tension) — Weight Effects

Under the model W + M ∗ D

log(odds of high tension) = α + βW
i + β

M
j + β

D
k + β

MD
jk

the estimated conditional OR between {Tension = H, L} and
{W = H, L} given M = j, D = k is eβ̂

W
H−β̂

W
L ≈ e0−(−0.2011) ≈ 1.22, which

doesn’t change with the levels of M or D.

Interpretation: If muscle weight is high, the odds of high tension
were 1.22 times the odds when the muscle weight is low, given the
same drug and same muscle type.
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Wald CI for Conditional OR

summary(glm2)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.4682 0.3648 -1.2836 0.199284

WLow -0.2011 0.2941 -0.6837 0.494173

M2 -0.0596 0.4155 -0.1434 0.885937

D2 1.0717 0.3408 3.1450 0.001661

M2:D2 -1.0676 0.5198 -2.0536 0.040014

95% Wald CI for the conditional OR for W & Tension given D & M:

exp(−β̂W
L ± 1.96SE) = exp(0.2011 ± 1.96 × 0.2941) ≈ (0.687, 2.176).

As the CI contains 1, we see that Tension and W could be
conditionally independent given M & D.
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Test of Conditional Independence

Under Model W + M ∗ D,

conditional indep. of Tension & W given M & D ⇐⇒ βW
L = 0.

Both Wald and LR tests of βW
L = 0 give P-values ≈ 0.49 (next page)

• Tension and W could be conditionally indep. given M and D.
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> summary(glm2)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.4682 0.3648 -1.284 0.19928

WL -0.2011 0.2941 -0.684 0.49417 <-- Wald test p-value

M2 -0.0596 0.4155 -0.143 0.88594

D2 1.0717 0.3408 3.145 0.00166 **

M2:D2 -1.0675 0.5198 -2.054 0.04001 *

> drop1(glm2, test="Chisq")

Model:

T ~ W + M * D

Df Deviance AIC LRT Pr(>Chi)

<none> 1.0596 41.176

W 1 1.5289 39.646 0.4693 0.49332 <-- LR test p-value

M:D 1 5.3106 43.427 4.2510 0.03923 *
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Model A ∗ B + B ∗C

log
(
πi jk

1 − πi jk

)
= log(odds of {Y = 1}) = α + βA

i + β
B
j + β

C
k + β

AB
i j + β

BC
jk

• By model hierarchy, it’s equivalent to A + B +C + A ∗ B + B ∗C
as A, B, and C must be included if A ∗ B and B ∗C have been
included in the model

• Number of parameters
= 1 + (a − 1) + (b − 1) + (c − 1) + (a − 1)(b − 1) + (b − 1)(c − 1)
because of the constraints

βA
1 = β

B
1 = β

C
1 = 0

βAB
1 j = 0 for j = 1, . . . , b

βAB
i1 = 0 for i = 1, . . . , a

βBC
1k = 0 for k = 1, . . . , c

βBC
j1 = 0 for j = 1, . . . , b
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Model A ∗ B + B ∗C

log
(
πi jk

1 − πi jk

)
= log(odds of {Y = 1}) = α + βA

i + β
B
j + β

C
k + β

AB
i j + β

BC
jk

• By model hierarchy, it’s equivalent to A + B +C + A ∗ B + B ∗C
as A, B, and C must be included if A ∗ B and B ∗C have been
included in the model

• Number of parameters
= 1 + (a − 1) + (b − 1) + (c − 1) + (a − 1)(b − 1) + (b − 1)(c − 1)
because of the constraints

βA
1 = β

B
1 = β

C
1 = 0

βAB
1 j = 0 for j = 1, . . . , b

βAB
i1 = 0 for i = 1, . . . , a

βBC
1k = 0 for k = 1, . . . , c

βBC
j1 = 0 for j = 1, . . . , b
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Model A ∗ B + B ∗C: YA Association

log
(
πi jk

1 − πi jk

)
= log(odds of {Y = 1}) = α + βA

i + β
B
j + β

C
k + β

AB
i j + β

BC
jk

The conditional OR between {Y = 0, 1} and {A = 1, i} given B = j
and C = k is

odds of (Y = 1 given A = i, B = j,C = k)
odds of (Y = 1 given A = 1, B = j,C = k)

=
exp(�α + β

A
i +��
βB

j + ��β
C
k + β

AB
i j +�

�βBC
jk )

exp(�α + β
A
1 +��
βB

j + ��β
C
k + β

AB
1 j +�

�βBC
jk )

= exp(βA
i − β

A
1︸︷︷︸
=0

+βAB
i j − β

AB
1 j︸︷︷︸
=0

) = eβ
A
i +β

AB
i j =

eβ
A
i if B = 1

eβ
A
i +β

AB
i j if B = j

which changes with the levels of B (but not C)

• YA association is NOT homogeneous
• Likewise, can show the conditional OR of YC changes with B

(but not A). ⇒ No homogeneous YC association 38



Model A ∗ B + B ∗C: YB Association

log
(
πi jk

1 − πi jk

)
= log(odds of {Y = 1}) = α + βA

i + β
B
j + β

C
k + β

AB
i j + β

BC
jk

The conditional OR between {Y = 0, 1} and {B = 1, j} given A = i
and C = k is

odds of (Y = 1 given A = i, B = j,C = k)
odds of (Y = 1 given A = i, B = 1,C = k)

=
exp(�α +��β

A
i + β

B
j + ��β

C
k + β

AB
i j + β

BC
jk )

exp(�α +��β
A
i + β

B
1︸︷︷︸
=0

+��β
C
k + β

AB
i1︸︷︷︸
=0

+ βBC
1k︸︷︷︸
=0

)
= eβ

B
j +β

AB
i j +β

BC
jk

=



eβ
B
j if i = k = 1

eβ
B
j +β

AB
i j if i , 1, k = 1

eβ
B
j +β

BC
jk if i = 1, k , 1

eβ
B
j +β

AB
i j +β

BC
jk if i , 1, k , 1

which changes with the levels of both A and C. 39



If No 3-way Interaction. . .

Under the Model A ∗ B + B ∗C or A ∗ B + B ∗C + A ∗C

YB odds ratio given A = i and C = k is



eβ
B
j if i = k = 1

eβ
B
j +β

AB
i j if i , 1, k = 1

eβ
B
j +β

BC
jk if i = 1, k , 1

eβ
B
j +β

AB
i j +β

BC
jk if i , 1, k , 1

So

YB odds ratio when A = i and C = k
YB odds ratio when A = 1 and C = k

=


e
βBj +β

AB
i j

e
βBj
= eβ

AB
i j when k = 1;

e
βBj +β

AB
i j +β

BC
jk

e
βBj +β

BC
jk
= eβ

AB
i j when k , 1.

which doesn’t change w/ the level of C.
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Model A ∗ B ∗C

logit(πi jk) = α + βA
i + β

B
j + β

C
k + β

AB
i j + β

BC
jk + β

AC
ik + β

ABC
i jk

YA odds ratio given B = j & C = k is



eβ
A
i when B = 1,C = 1;

eβ
A
i +β

AB
i j when B = j,C = 1;

eβ
A
i +β

AC
ik when B = 1,C = k;

eβ
A
i +β

AB
i j +β

AC
ik +β

ABC
i jk when B = j,C = k.

So

YA odds ratio when B = j
YA odds ratio when B = 1

=

eβ
AB
i j when C = 1;

eβ
AB
i j +β

ABC
i jk when C = k.

The 3-way interaction eβ
ABC
i jk is the ratio of the ratios of odds ratios.
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Model A ∗ B + B ∗C + A ∗C:

• YA odds ratios change with both B and C

• YB odds ratios change with both A and C

• YC odds ratios change with both A and B

• no 3-way interactions means that

YA odds ratio when B = j1
YA odds ratio when B = j2

do not change with C

Model A ∗ B + B ∗C:

• YA odds ratios change with B but not C

• YC odds ratios change with B but not A

• YB odds ratios change with both A and C
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