STAT 226 Lecture 17

Yibi Huang

Example (Mouse Muscle Tension)

- A study to examine relationship between two drugs and muscle tension
- 4-way flat contingency table $(2 \times 2 \times 2 \times 2)$ with 4 variables
- Tension (response): change in muscle tension: High, Low
- Drug: drug 1, drug $2 \ldots$. . primary predictor
- Weight: weight of muscle: High, Low
- Muscle: muscle type: 1, 2

Tension	Weight	Drug 1 Drug 2 Muscle Type			
		1	2	1	2
High	High	3	23	21	11
	Low	22	4	32	12
Low	High	3	41	10	21
	Low	45	6	23	22

A better layout:

Muscle		Type 1		Type 2 ion		Conditional odds ratios between Drug and Tension:		
		High	Low	High	Low	Wt.	Muscle	
High	1	3	3	23	41		Type 1	Type 2
	2	21	10	11	21			
Low	1	22	45		6	High	$\frac{3 \times 10}{3 \times 21}$	$\frac{23 \times 21}{41 \times 11} \approx 1.07$
	2	32	23	12	22	Low	$\frac{22 \times 23}{45 \times 32} \approx 0.35$	$\frac{4 \times 22}{6 \times 12} \approx 1.22$

- The table splits in to 4 partial tables for the primary predictor (Drug) and the response (Tension), controlling for the other two variables.
- Conditional odds ratios between Drug and Tension can be easily computed from this table but not from the table on the previous slide.
- Tip: response and the primary predictor (if any) should be placed in the inner most layer of the table

Conditional distributions of Tension
given Drug, Weight, and Muscle type:
Muscle

		Type 1			Type 2	
Weight	Drug	High	Low		High	
	Low					
High	1	50%	50%	36%	64%	
	2	68%	32%	34%	66%	
Low	1	33%	67%	40%	60%	
	2	58%	42%	35%	65%	

Observation:

- For Type 1 muscle, Drug 1 looks more effective in lowering muscle tension than Drug 2 does
- For Type 2 muscle, the effect of the two drugs looks similar

Creating Multi-Way Tables in R

In week 4 problem session, we showed how to create multi-way tables in R

```
muscle.tab = array(
    c( 3,21, 3,10, # Drug-Tension partial given W = High, Type 1
        22,32,45,23, # Drug-Tension partial given W = Low, Type 1
        23,11,41,21, # Drug-Tension partial given W = High, Type 2
        4,12, 6,22), # Drug-Tension partial given W = Low, Type 2
    dim}=c(2,2,2,2)
    dimnames = list(
    drug = c("1","2"),
        tension = c("High", "Low"),
        weight = c("High", "Low"),
        muscle = c("1","2")
    )
)
muscle.tab = as.table(muscle.tab) # cannot skip this step!
```

See week 4 problem session for how to print a multi-way table as a flat-table.

Various Formats of Multi-Way

Table Data

Various Formats of Multi-Way Table Data

There are several formats in R for multi-way table data.

1. Table, created using array () or xtabs()

- ftable() and CMH test require this format

2. Ungrouped data - data frame
3. Grouped data - long format - data frame
4. Grouped data - wide format - data frame

Data must be either either ungrouped or in wide format if grouped to fit a glm() model.

Ungrouped Data to Tables - xtabs()

xtabs() can convert a data frame of ungrouped data into to multi-way tables.

```
muscle.ug = read.table(
    "http://www.stat.uchicago.edu/~yibi/s226/mousemuscle_ungrouped.txt",
    header=TRUE)
muscle.ug[1:8,]
    drug tension weight muscle
1 1 High High 1
2 1 High High 1
3 High High 1
4 High High 1
5 2 High High 1
6 High High 1
7 High High 1
8 High High 1
# ...(291 more rows omitted)...
```


Ungrouped Data to Tables (2)

```
muscle.tab = xtabs(~ weight + muscle + drug + tension, data=muscle.ug)
muscle.tab
, , drug = 1, tension = High
    muscle
weight 1 2
    High 3 23
    Low 22 4
, , drug = 2, tension = High
    muscle
weight 1 2
    High 21 11
    Low 32 12
, , drug = 1, tension = Low
```


Long Format of Grouped Data

- One column for each variable of the multi-way table
- One column (Freq) for the cell counts of the multi-way table

weight muscle drug tension Freq				
High	1	1	High	3
Low	1	1	High	22
High	2	1	High	23
Low	2	1	High	4
High	1	2	High	21
Low	1	2	High	32
High	2	2	High	11
Low	2	2	High	12
High	1	1	Low	3
Low	1	1	Low	45
High	2	1	Low	41
Low	2	1	Low	6
High	1	2	Low	10
Low	1	2	Low	23
High	2	2	Low	21
Low	2	2	Low	22

Wide Format of Grouped Data

- One column for each explanatory variable
- k columns for the response if it has k levels

drug	weight muscle	tension. High	tension. Low	
1	High	1	3	3
1	High	2	23	41
1	Low	1	22	45
1	Low	2	4	6
2	High	1	21	10
2	High	2	11	21
2	Low	1	32	23
2	Low	2	12	22

Table to Long Format — as.data. frame()

as.data.frame() can convert a multi-way table to a data frame in long format.

Long Format to Wide Format - dcast()

dcast () in the reshape2 library can convert data frames from long to wide format.

```
# install.packages("reshape2") # only install ONCE!
library(reshape2)
muscle.wide = dcast(muscle.long,
    drug+weight+muscle ~ tension,
    value.var="Freq")
```

muscle.wide

drug					weight muscle
1	1	High	1	3	Low
2	1	High	2	23	41
3	1	Low	1	22	45
4	1	Low	2	4	6
5	2	High	1	21	10
6	2	High	2	11	21
7	2	Low	1	32	23
8	2	Low	2	12	22

Wide Format to Long Format

Use the melt () function in the reshape2 library to convert data from wide format to long format.

1	High	1	1	High	3
2	High	2	1	High	23
3	Low	1	1	High	22
4	Low	2	1	High	4
5	High	1	2	High	21
6	High	2	2	High	11
7	Low	1	2	High	32
8	Low	2	2	High	12
9	High	1	1	Low	3
10	High	2	1	Low	41
11	Low	1	1	Low	45
12	Low	2	1	Low	6
13	High	1	2	Low	10
14	High	2	2	Low	21

Wide Format to Long Format (2)

```
muscle.long = melt(muscle.wide, id.vars=c("weight","muscle","drug"))
names(muscle.long)
[1] "weight" "muscle" "drug" "variable" "value"
names(muscle.long)[4] = "tension"
names(muscle.long)[5] = "Freq"
muscle.long
    weight muscle drug tension Freq
1 High 1 1 High 3
2 High 2 1 High 23
3 Low 1 High 22
4 Low 2 High 4
5 High \(1 \quad 2\) High 21
6 High \(2 \quad 2\) High 11
7 Low \(1 \quad 2\) High 32
\begin{tabular}{lrllrr}
8 & Low & 2 & 2 & High & 12 \\
9 & High & 1 & 1 & Low & 3
\end{tabular}
10 High 2 Low 41
11 Low 1
12 I Ow \(\quad 7 \quad 1 \quad\) I Ow 6
```


Long Format to Table

stabs() can also convert grouped data in long format to tables.

```
muscle.tab = xtabs(Freq ~ weight + muscle + drug + tension, data= muscl
muscle.tab
, , drug = 1, tension = High
    muscle
weight 1 2
    High 3 23
    Low 22 4
, , drug = 2, tension = High
    muscle
weight 1 2
    High 21 11
    Low 32 12
```

, , drug $=1$, tension $=$ Low

Summary of Conversions Between Data Formats

Ungrouped

xtabs()

Table

as.data.frame()
$\downarrow \uparrow \quad x \operatorname{tabs}()$

Long Format

dcast()

melt()
Wide Format

Logistic Models for Multi-way

Tables

Logistic Models for Multi-way Tables

Let's start w/ models for 4-way tables (1 response +3 predictors)

- categorical predictors: A, B, C, with a, b, c levels respectively
- response: $Y=0$ or 1

Let

$$
\pi_{i j k}=\mathrm{P}(Y=1 \mid A=i, B=j, C=k)
$$

The most complex model for a 4-way table is the three way interaction model, denoted as $A * B * C$, including all main effects and 2-way, 3-way interactions

$$
A+B+C+A * B+B * C+A * C+A * B * C
$$

The model formula is

$$
\operatorname{logit}\left(\pi_{i j k}\right)=\alpha+\underbrace{\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}}_{\text {main effects }}+\underbrace{\beta_{i j}^{A B}+\beta_{j k}^{B C}+\beta_{i k}^{A C}}_{\text {two-way interactions }}+\beta_{i j k}^{A B C}
$$

for $i=1, \ldots, a, j=1, \ldots, b, k=1, \ldots, c$.

- $A_{i}, i=1, \ldots, a$ be the dummy variables for levels of A
- $B_{j}, j=1, \ldots, b$ be the dummy variables for levels of B
- $C_{k}, k=1, \ldots, c$ be the dummy variables for levels of C

The model formula

$$
\operatorname{logit}\left(\pi_{i j k}\right)=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{i j}^{A B}+\beta_{j k}^{B C}+\beta_{i k}^{A C}+\beta_{i j k}^{A B C}
$$

can be written in terms of the dummy variables as

$$
\begin{aligned}
\operatorname{logit}\left(\pi_{i j k}\right)= & \alpha+\sum_{\ell=1}^{a} \beta_{\ell}^{A} A_{\ell}+\sum_{m=1}^{b} \beta_{m}^{B} B_{m}+\sum_{n=1}^{c} \beta_{n}^{C} C_{n} \\
& +\sum_{\ell=1}^{a} \sum_{m=1}^{b} \beta_{\ell m}^{A B} A_{\ell} B_{m}+\sum_{m=1}^{b} \sum_{n=1}^{c} \beta_{m n}^{B C} B_{m} C_{n}+\sum_{\ell=1}^{a} \sum_{n=1}^{c} \beta_{\ell n}^{A C} A_{\ell} C_{n} \\
& +\sum_{\ell=1}^{a} \sum_{m=1}^{b} \sum_{n=1}^{c} \beta_{\ell m n}^{A B C} A_{\ell} B_{m} C_{n}
\end{aligned}
$$

- How many parameters are there?

In the 3-way on the previous page, many parameters are redundant because

$$
A_{1}+\cdots+A_{a}=1, \quad B_{1}+\cdots+B_{b}=1, \quad C_{1}+\cdots+C_{c}=1 .
$$

So, need to drop one of the dummy variables A_{1}, B_{1}, C_{1} for each categorical predictor from the model, which is equivalent to setting the coefficients for those dummy variables to 0 .

$$
\beta_{1}^{A}=\beta_{1}^{B}=\beta_{1}^{C}=0
$$

As A_{1}, B_{1}, and C_{1} are dropped, the interaction terms that involve those levels are also dropped. So the coefficients for those interaction terms are set to 0

$$
\begin{array}{r}
\beta_{1 j}^{A B}=\beta_{i 1}^{A B}=\beta_{1 k}^{B C}=\beta_{j 1}^{B C}=\beta_{1 k}^{A C}=\beta_{i 1}^{A C}=0 \\
\beta_{1 j k}^{A B C}=\beta_{i 1 k}^{A B C}=\beta_{i j 1}^{A B C}=0
\end{array}
$$

- the effective number of parameters for a main effect is number of levels -1
- the effective number of parameters for an interaction is the product of (number of levels -1) for each factor involved in the interaction.

The total number of effective parameters is

$$
\begin{aligned}
& 1+\underbrace{(a-1)}_{A \text { main effects }}+\underbrace{(b-1)}_{B \text { main effects }}+\underbrace{(c-1)}_{C \text { main effects }} \\
&+\underbrace{(a-1)(b-1)}_{A B \text { interactions }}+\underbrace{(b-1)(c-1)}_{B C \text { interactions }}+\underbrace{(a-1)(c-1)}_{A C \text { interactions }} \\
&+\underbrace{(a-1)(b-1)(c-1)}_{A B C \text { interactions }} \\
&=a b c
\end{aligned}
$$

There are several simplifications of the 3-way interaction model, such as

- Model $A * B+B * C+A * C$:

$$
\operatorname{logit}\left(\pi_{i j k}\right)=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{i j}^{A B}+\beta_{j k}^{B C}+\beta_{i k}^{A C}
$$

- Model $A * B+A * C$

$$
\operatorname{logit}\left(\pi_{i j k}\right)=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{i j}^{A B}+\beta_{i k}^{A C}
$$

- Model $A+B * C$:

$$
\operatorname{logit}\left(\pi_{i j k}\right)=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{j k}^{B C}
$$

- Model $A+B+C$:

$$
\operatorname{logit}\left(\pi_{i j k}\right)=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}
$$

- Model $A * B$:

$$
\operatorname{logit}\left(\pi_{i j k}\right)=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{i j}^{A B}
$$

- In all the models, constraints on the main effects and interactions are the same as those on the corresponding parameters in the 3-way interaction models.
- In all the models, constraints on the main effects and interactions are the same as those on the corresponding parameters in the 3-way interaction models.
- Generally, models must maintain hierarchy - cannot include an interaction terms without including the relevant main effects and lower order interactions

Interpretation of Model $A+B+C$ and its Coefficients

In the Model $A+B+C$:

$$
\log \left(\frac{\pi_{i j k}}{1-\pi_{i j k}}\right)=\log (\text { odds of }\{Y=1\})=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}
$$

where $\pi_{i j k}=P(Y=1 \mid A=i, B=j, C=k)$,

- $1+(a-1)+(b-1)+(c-1)$ effective parameters in total since $\beta_{1}^{A}=\beta_{1}^{B}=\beta_{1}^{C}=0$
- Conditional OR between $\{Y=0,1\}$ and $\{A=1, i\}$ given $B=j$ and $C=k$ is

$$
\begin{aligned}
& \frac{\text { odds of }(Y=1 \text { given } A=i, B=j, C=k)}{\text { odds of }(Y=1 \text { given } A=1, B=j, C=k)} \\
= & \frac{\exp \left(\not \subset+\beta_{i}^{A}+\beta_{j}^{A}+\beta_{k}^{G}\right)}{\exp \left(\not \subset+\beta_{1}^{A}+\beta_{j}^{B}+\beta_{k}^{C}\right)}=\exp \left(\beta_{i}^{A}-\beta_{1}^{A}\right)=\exp \left(\beta_{i}^{A}\right)
\end{aligned}
$$

which doesn't change with the levels of B and C.

- Interpretation for $\exp \left(\beta_{j}^{B}\right)$ and $\exp \left(\beta_{k}^{C}\right)$: Likewise
- Homogeneous $Y A, Y B$, and $Y C$ association

Example (Mouse Muscle Tension)

```
# wide-format data
names(muscle.wide)
[1] "drug" "weight" "muscle" "High" "Low"
names(muscle.wide)[c(1,2,3)] = c("D","W","M")
muscle.wide$M = as.factor(muscle.wide$M)
muscle.wide$D = as.factor(muscle.wide$D)
```

Let's first fit a model with W, M, and D main effects only.

```
glm1 = glm(cbind(High,Low) ~ W + M + D, family=binomial,
    data=muscle.wide)
```

Fitted model coefficients:
glm1\$coef

(Intercept)	WLow	M2	D2
-0.03424	-0.41866	-0.70899	0.58657

For the model $W+M+D: \log \left(\frac{\pi_{i j k}}{1-\pi_{i j k}}\right)=\alpha+\beta_{i}^{W}+\beta_{j}^{M}+\beta_{k}^{D}$ where $\pi_{i j k}=P($ High Tension $\mid W=i, M=j, D=k)$,
glm1\$coef

(Intercept)	WLow	M2	D2
-0.03424	-0.41866	-0.70899	0.58657

R gives the estimated coefficients:

$$
\widehat{\alpha} \approx-0.0342, \quad \widehat{\beta}_{L}^{W} \approx-0.419, \quad \widehat{\beta}_{2}^{M} \approx-0.709, \quad \widehat{\beta}_{2}^{D} \approx 0.587
$$

- What are the values for $\widehat{\beta}_{H}^{W}, \widehat{\beta}_{1}^{M}$ and $\widehat{\beta}_{1}^{D}$?
- What is the estimated value for $\pi=P$ (tension $=$ High) for low muscle weight, Type 1 muscle, when Drug 1 is applied?

For the model $W+M+D: \log \left(\frac{\pi_{i j k}}{1-\pi_{i j k}}\right)=\alpha+\beta_{i}^{W}+\beta_{j}^{M}+\beta_{k}^{D}$ where $\pi_{i j k}=P($ High Tension $\mid W=i, M=j, D=k)$,
glm1\$coef

(Intercept)	WLow	M2	D2
-0.03424	-0.41866	-0.70899	0.58657

R gives the estimated coefficients:

$$
\widehat{\alpha} \approx-0.0342, \quad \widehat{\beta}_{L}^{W} \approx-0.419, \quad \widehat{\beta}_{2}^{M} \approx-0.709, \quad \widehat{\beta}_{2}^{D} \approx 0.587
$$

- What are the values for $\widehat{\beta}_{H}^{W}, \widehat{\beta}_{1}^{M}$ and $\widehat{\beta}_{1}^{D}$? All zero!
- What is the estimated value for $\pi=P$ (tension $=$ High) for low muscle weight, Type 1 muscle, when Drug 1 is applied?

For the model $W+M+D: \log \left(\frac{\pi_{i j k}}{1-\pi_{i j k}}\right)=\alpha+\beta_{i}^{W}+\beta_{j}^{M}+\beta_{k}^{D}$ where $\pi_{i j k}=P($ High Tension $\mid W=i, M=j, D=k)$,
glm1\$coef

(Intercept)	WLow	M2	D2
-0.03424	-0.41866	-0.70899	0.58657

R gives the estimated coefficients:

$$
\widehat{\alpha} \approx-0.0342, \quad \widehat{\beta}_{L}^{W} \approx-0.419, \quad \widehat{\beta}_{2}^{M} \approx-0.709, \quad \widehat{\beta}_{2}^{D} \approx 0.587
$$

- What are the values for $\widehat{\beta}_{H}^{W}, \widehat{\beta}_{1}^{M}$ and $\widehat{\beta}_{1}^{D}$? All zero!
- What is the estimated value for $\pi=P$ (tension $=$ High) for low muscle weight, Type 1 muscle, when Drug 1 is applied?
When $W=L, M=1, D=1$,

$$
\begin{aligned}
\widehat{\pi} & =\frac{\exp \left(\widehat{\alpha}+\widehat{\beta}_{L}^{W}+\widehat{\beta}_{1}^{M}+\widehat{\beta}_{1}^{D}\right)}{1+\exp \left(\widehat{\alpha}+\widehat{\beta}_{L}^{W}+\widehat{\beta}_{1}^{M}+\widehat{\beta}_{1}^{D}\right)} \\
& =\frac{\exp (-0.0342+(-0.419)+0+0)}{1+\exp (-0.0342+(-0.419)+0+0)} \approx 0.39
\end{aligned}
$$

For the main effect model

$$
\log \left(\frac{\pi_{i j k}}{1-\pi_{i j k}}\right)=\alpha+\beta_{i}^{W}+\beta_{j}^{M}+\beta_{k}^{D}
$$

how to interpret the parameter estimates below?

$$
\begin{array}{llll}
\widehat{\alpha} \approx-0.0342, & \widehat{\beta}_{H}^{W}=0, & \widehat{\beta}_{1}^{M}=0, & \widehat{\beta}_{1}^{D}=0, \\
& \widehat{\beta}_{L}^{W} \approx-0.419, & \widehat{\beta}_{2}^{M} \approx-0.709, & \widehat{\beta}_{2}^{D} \approx 0.587
\end{array}
$$

- The odds of High tension if Drug 2 is applied are $e^{\widehat{\beta}_{2}^{D}}=e^{0.587} \approx 1.8$ times the odds if Drug 1 is applied on the same type of muscle of the same weight.
- The odds of High tension for Type 2 muscle are $e^{\widehat{\beta}_{2}^{M}}=e^{-0.709} \approx 0.49$ times the odds for Type 1 muscle of the same weight with the same drug applied.
- The odds of High tension for high-weight muscle are $e^{-\widehat{\beta}_{L}^{W}}=e^{0.419} \approx 1.52$ times the odds for low-weight muscle of the same type with the same drug applied.

Model $A * B+C$

$$
\log \left(\frac{\pi_{i j k}}{1-\pi_{i j k}}\right)=\log (\text { odds of }\{Y=1\})=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{i j}^{A B}
$$

- By model hierarchy, must include A and B if $A * B$ is included in the model.
So the model $A * B+C$ is equivalent to $A+B+C+A * B$

Model $A * B+C$

$$
\log \left(\frac{\pi_{i j k}}{1-\pi_{i j k}}\right)=\log (\text { odds of }\{Y=1\})=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{i j}^{A B}
$$

- By model hierarchy, must include A and B if $A * B$ is included in the model.
So the model $A * B+C$ is equivalent to $A+B+C+A * B$
- Number of parameters
$=1+(a-1)+(b-1)+(c-1)+(a-1)(b-1)$ because of the constraints

$$
\begin{aligned}
\beta_{1}^{A} & =\beta_{1}^{B}=\beta_{1}^{C}=0 \\
\beta_{i 1}^{A B} & =0 \quad \text { for } i=1, \ldots, a \\
\beta_{1 j}^{A B} & =0 \quad \text { for } j=1, \ldots, b
\end{aligned}
$$

Model $A * B+C$: Interpretation

$$
\log \left(\frac{\pi_{i j k}}{1-\pi_{i j k}}\right)=\log (\text { odds of }\{Y=1\})=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{i j}^{A B}
$$

The conditional OR between $\{Y=0,1\}$ and $\{A=1, i\}$ given $B=j$ and $C=k$ is

$$
\begin{aligned}
& \frac{\text { odds of }(Y=1 \text { given } A=i, B=j, C=k)}{\operatorname{odds} \text { of }(Y=1 \text { given } A=1, B=j, C=k)} \\
= & \frac{\exp \left(\not \subset+\beta_{i}^{A}+\beta_{j}^{W}+\beta_{k}^{C}+\beta_{i j}^{A B}\right)}{\exp \left(\not \subset+\beta_{1}^{A}+\beta_{j}^{\not B}+\beta_{k}^{C}+\beta_{1 j}^{A B}\right)} \\
= & \exp (\beta_{i}^{A}-\underbrace{\beta_{1}^{A}}_{=0}+\beta_{i j}^{A B}-\underbrace{\beta_{1 j}^{A B}}_{=0})=e^{\beta_{i}^{A}+\beta_{i j}^{A B}}= \begin{cases}e^{\beta_{i}^{A}} & \text { if } B=1 \\
e^{\beta_{i}^{A}+\beta_{i j}^{A B}} & \text { if } B=j\end{cases}
\end{aligned}
$$

which changes with the levels of B (but not C)

- YA association is NOT homogeneous
- can show likewise that the conditional ORs of $Y B$ change with A (but not C). \Rightarrow No homogeneous $Y B$ association

Model $A * B+C$: Interpretation

Under the $A * B+C$ model

$$
\log \left(\frac{\pi_{i j k}}{1-\pi_{i j k}}\right)=\log (\text { odds of }\{Y=1\})=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{i j}^{A B}
$$

the conditional OR between $\{Y=0,1\}$ and $\{C=1, k\}$ given $A=i$ and $B=j$ is

$$
\begin{aligned}
& \frac{\text { odds of }(Y=1 \text { given } A=i, B=j, C=k)}{\text { odds of }(Y=1 \text { given } A=i, B=j, C=1)} \\
= & \frac{\exp \left(\not \subset+\beta_{i}^{\not A}+\beta_{j}^{B_{X}}+\beta_{k}^{C}+\beta_{j i}^{A B}\right)}{\exp \left(\not \subset+\beta_{i}^{X}+\beta_{j}^{B_{j}^{\prime}}+\beta_{1}^{C}+\beta_{j}^{A B}\right)}=\exp \left(\beta_{k}^{C}-\beta_{1}^{C}\right)=e^{\beta_{k}^{C}}
\end{aligned}
$$

which doesn't change with the levels of A and B.

- homogeneous $Y C$ association given A and B.
- If one further assumes that $\beta_{k}^{C}=0$ for all k, then Y and C would be conditionally independent given A, B

Example (Mouse Muscle Tension) — $W+M * D$

glm2 = glm(cbind(High,Low) ~ W + M * D, family=binomial, data=muscle.wide)
glm2\$coef
(Intercept)

WLow	M2
-0.2011	-0.0596

D2
M2:D2
-0. 4682
-0.2011
-0.0596
1.0717
-1.0676

$$
\begin{array}{llll}
\widehat{\alpha} \approx-0.4682, & \widehat{\beta}_{H}^{W}=0, & \widehat{\beta}_{1}^{M}=0, & \widehat{\beta_{1}^{D}=0} \\
\widehat{\beta}_{11}^{M D}=0, & \widehat{\beta}_{L}^{M D} \approx-0.2011, & \widehat{\beta}_{2}^{M} \approx-0.0596, & \widehat{\beta}_{2}^{D} \approx 1.0717 \\
\widehat{\beta}_{12}^{M D}=0, & \widehat{\beta}_{21}^{M D}=0, & \widehat{\beta}_{22}=-1.0676
\end{array}
$$

The estimated π when $W=L, M=1, D=1$ is

$$
\begin{aligned}
\widehat{\pi} & =\frac{\exp \left(\widehat{\alpha}+\widehat{\beta}_{L}^{W}+\widehat{\beta}_{1}^{M}+\widehat{\beta}_{1}^{D}+\widehat{\beta}_{11}^{M D}\right)}{1+\exp \left(\widehat{\alpha}+\widehat{\beta}_{L}^{W}+\widehat{\beta}_{1}^{M}+\widehat{\beta}_{1}^{D}+\widehat{\beta}_{11}^{M D}\right)} \\
& =\frac{\exp (-0.4676+(-0.2011)+0+0+0)}{1+\exp (-0.4676+(-0.2011)+0+0+0)} \approx 0.34
\end{aligned}
$$

Example (Mouse Muscle Tension) — Drug Effect Under $W+M * D$

Under the model $W+M * D$

$$
\log (\text { odds of high tension })=\alpha+\beta_{i}^{W}+\beta_{j}^{M}+\beta_{k}^{D}+\beta_{j k}^{M D}
$$

The conditional OR between $\{$ Tension $=H, L\}$ and $\{D=1,2\}$ given $W=j$ and $M=k$ is
odds of high tension given $W=i, M=j, D=2$
odds of high tension given $W=i, M=j, D=1$

$= \begin{cases}e^{1.071+0} \approx 2.9 & \text { for Type } 1 \text { muscle } \\ e^{1.071+(-1.068)} \approx 1.004 & \text { for Type } 2 \text { muscle }\end{cases}$
Conclusion: Drug 1 and 2 have nearly identical effects on Type 2 muscle, while Drug 1 is significantly more effective in reducing muscle tension than drug 2.

Example (Mouse Muscle Tension) — Weight Effects

Under the model $W+M * D$

$$
\log (\text { odds of high tension })=\alpha+\beta_{i}^{W}+\beta_{j}^{M}+\beta_{k}^{D}+\beta_{j k}^{M D}
$$

the estimated conditional OR between $\{$ Tension $=H, L\}$ and
$\{W=H, L\}$ given $M=j, D=k$ is $e^{\widehat{\beta}_{H}^{W}-\widehat{\beta}_{L}^{W}} \approx e^{0-(-0.2011)} \approx 1.22$, which doesn't change with the levels of M or D .

Interpretation: If muscle weight is high, the odds of high tension were 1.22 times the odds when the muscle weight is low, given the same drug and same muscle type.

Wald Cl for Conditional OR

95\% Wald CI for the conditional OR for W \& Tension given D \& M:

$$
\exp \left(-\widehat{\beta}_{L}^{W} \pm 1.96 \text { SE }\right)=\exp (0.2011 \pm 1.96 \times 0.2941) \approx(0.687,2.176)
$$

As the Cl contains 1, we see that Tension and W could be conditionally independent given M \& D.

Test of Conditional Independence

Under Model $W+M * D$,
conditional indep. of Tension \& W given $\mathrm{M} \& \mathrm{D} \Longleftrightarrow \beta_{L}^{W}=0$.
Both Wald and LR tests of $\beta_{L}^{W}=0$ give P-values ≈ 0.49 (next page)

- Tension and W could be conditionally indep. given M and D.
> summary (glm2)

Model $A * B+B * C$

$$
\log \left(\frac{\pi_{i j k}}{1-\pi_{i j k}}\right)=\log (\text { odds of }\{Y=1\})=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{i j}^{A B}+\beta_{j k}^{B C}
$$

- By model hierarchy, it's equivalent to $A+B+C+A * B+B * C$ as A, B, and C must be included if $A * B$ and $B * C$ have been included in the model

Model $A * B+B * C$

$$
\log \left(\frac{\pi_{i j k}}{1-\pi_{i j k}}\right)=\log (\text { odds of }\{Y=1\})=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{i j}^{A B}+\beta_{j k}^{B C}
$$

- By model hierarchy, it's equivalent to $A+B+C+A * B+B * C$ as A, B, and C must be included if $A * B$ and $B * C$ have been included in the model
- Number of parameters
$=1+(a-1)+(b-1)+(c-1)+(a-1)(b-1)+(b-1)(c-1)$ because of the constraints

$$
\begin{aligned}
\beta_{1}^{A} & =\beta_{1}^{B}=\beta_{1}^{C}=0 \\
\beta_{1 j}^{A B} & =0 \text { for } j=1, \ldots, b \\
\beta_{i 1}^{A B} & =0 \text { for } i=1, \ldots, a \\
\beta_{1 k}^{B C} & =0 \text { for } k=1, \ldots, c \\
\beta_{j 1}^{B C} & =0 \quad \text { for } j=1, \ldots, b
\end{aligned}
$$

Model $A * B+B * C$: YA Association

$\log \left(\frac{\pi_{i j k}}{1-\pi_{i j k}}\right)=\log ($ odds of $\{Y=1\})=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{i j}^{A B}+\beta_{j k}^{B C}$
The conditional OR between $\{Y=0,1\}$ and $\{A=1, i\}$ given $B=j$ and $C=k$ is

$$
\begin{aligned}
& \frac{\text { odds of }(Y=1 \text { given } A=i, B=j, C=k)}{\text { odds of }(Y=1 \text { given } A=1, B=j, C=k)} \\
= & \frac{\exp \left(\not \subset+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{i j}^{A B}+\beta_{j k}^{B C}\right)}{\exp \left(\not \subset+\beta_{1}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{1 j}^{A B}+\beta_{j k}^{B C}\right)} \\
= & \exp (\beta_{i}^{A}-\underbrace{\beta_{1}^{A}}_{=0}+\beta_{i j}^{A B}-\underbrace{\beta_{1 j}^{A B}}_{=0})=e^{\beta_{i}^{A}+\beta_{i j}^{A B}}= \begin{cases}e^{\beta_{i}^{A}} & \text { if } B=1 \\
e^{\beta_{i}^{A}+\beta_{i j}^{A B}} & \text { if } B=j\end{cases}
\end{aligned}
$$

which changes with the levels of B (but not C)

- YA association is NOT homogeneous
- Likewise, can show the conditional OR of $Y C$ changes with B (but not A). \Rightarrow No homogeneous $Y C$ association

Model $A * B+B * C$: YB Association

$\log \left(\frac{\pi_{i j k}}{1-\pi_{i j k}}\right)=\log ($ odds of $\{Y=1\})=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{i j}^{A B}+\beta_{j k}^{B C}$
The conditional OR between $\{Y=0,1\}$ and $\{B=1, j\}$ given $A=i$ and $C=k$ is

$$
\begin{aligned}
& \frac{\text { odds of }(Y=1 \text { given } A=i, B=j, C=k)}{\text { odds of }(Y=1 \text { given } A=i, B=1, C=k)} \\
= & \frac{\exp \left(\not \subset k+\beta_{i}^{X}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{i j}^{A B}+\beta_{j k}^{B C}\right)}{\exp (\not \subset k+\beta_{i}^{X}+\underbrace{\beta_{1}^{B}}_{=0}+\beta_{k}^{C}+\underbrace{\beta_{i 1}^{A B}}_{=0}+\underbrace{\beta_{1 k}^{B C}}_{=0})}=e^{\beta_{j}^{B}+\beta_{i j}^{A B}+\beta_{j k}^{B C}} \\
= & \begin{cases}e^{\beta_{j}^{B}} & \text { if } i=k=1 \\
e^{\beta_{j}^{B}+\beta_{i j}^{A B}} & \text { if } i \neq 1, k=1 \\
e^{\beta_{j}^{B}+\beta_{j k}^{B C}} & \text { if } i=1, k \neq 1 \\
e^{\beta_{j}^{B}+\beta_{i j}^{A B}+\beta_{j k}^{B C}} & \text { if } i \neq 1, k \neq 1\end{cases}
\end{aligned}
$$

which changes with the levels of both A and C.

If No 3-way Interaction. . .

Under the Model $A * B+B * C$ or $A * B+B * C+A * C$

YB odds ratio given $A=i$ and $C=k$ is $\begin{cases}e^{\beta_{j}^{B}} & \text { if } i=k=1 \\ e^{\beta_{j}^{B}+\beta_{i j}^{A B}} & \text { if } i \neq 1, k=1 \\ e^{\beta_{j}^{B}+\beta_{j k}^{B C}} & \text { if } i=1, k \neq 1 \\ e^{\beta_{j}^{B}+\beta_{i j}^{A B}+\beta_{j k}^{B C}} & \text { if } i \neq 1, k \neq 1\end{cases}$
So
which doesn't change w/ the level of C.

Model $A * B * C$

$$
\operatorname{logit}\left(\pi_{i j k}\right)=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{i j}^{A B}+\beta_{j k}^{B C}+\beta_{i k}^{A C}+\beta_{i j k}^{A B C}
$$

So

$$
\frac{Y A \text { odds ratio when } B=j}{Y A \text { odds ratio when } B=1}= \begin{cases}e^{\beta_{i j}^{A B}} & \text { when } C=1 ; \\ e^{\beta_{i j}^{A B}}+\beta_{i j k}^{A B C} & \text { when } C=k .\end{cases}
$$

The 3-way interaction $e^{\beta_{i, k}^{A B C}}$ is the ratio of the ratios of odds ratios.

Model $A * B+B * C+A * C$:

- $Y A$ odds ratios change with both B and C
- $Y B$ odds ratios change with both A and C
- $Y C$ odds ratios change with both A and B
- no 3-way interactions means that

$$
\frac{Y A \text { odds ratio when } B=j_{1}}{Y A \text { odds ratio when } B=j_{2}}
$$

do not change with C

Model $A * B+B * C$:

- YA odds ratios change with B but not C
- $Y C$ odds ratios change with B but not A
- $Y B$ odds ratios change with both A and C

