STAT 226 Lecture 17

Yibi Huang

Example (Mouse Muscle Tension)

- A study to examine relationship between two drugs and muscle tension
- 4-way flat contingency table $(2 \times 2 \times 2 \times 2)$ with 4 variables
 - Tension (response): change in muscle tension: High, Low
 - Drug: drug 1, drug 2 primary predictor
 - Weight: weight of muscle: High, Low
 - Muscle: muscle type: 1, 2

			Drug 1 Drug 2 Muscle Type		
Tension	Weight	1	2	1	2
High	High	3	23	21	11
	Low	22	4	32	12
Low	High	3	41	10	21
	Low	45	6	23	22

The layout of this flat table is bad because ...

A better layout:

	Muscle	Тур	e 1 Tens	Type Type	e 2	Conditional odds ratios between Drug and Tension:		
Weigh	t Drug	High	Low	High	Low		Mus	cle
High	1	3	3	23	41	Wt.	Type 1	Type 2
	2	21	10	11	21	High	$\frac{3\times10}{3\times21}\approx0.48$	$\frac{23 \times 21}{41 \times 11} \approx 1.07$
Low	1 2	22 32	45 23	4 12	6 22	Low	$\frac{22\times23}{45\times32}\approx0.35$	

- The table splits in to 4 partial tables for the primary predictor (Drug) and the response (Tension), controlling for the other two variables.
- Conditional odds ratios between Drug and Tension can be easily computed from this table but not from the table on the previous slide.
- Tip: response and the primary predictor (if any) should be placed in the <u>inner most</u> layer of the table

Conditional distributions of Tension

given Drug, Weight, and Muscle type:

		Muscle				
		Тур	e 1 Tens	Type sion	e 2	
Weight	Drug	High	Low	High	Low	
High	1 2	50% 68%	50% 32%	36% 34%	64% 66%	
Low	1 2	33% 58%	67% 42%	40% 35%	60% 65%	

Observation:

- For Type 1 muscle, Drug 1 looks more effective in lowering muscle tension than Drug 2 does
- For Type 2 muscle, the effect of the two drugs looks similar

Creating Multi-Way Tables in R

In week 4 problem session, we showed how to create multi-way tables in R

```
muscle.tab = array(
  c( 3,21, 3,10, # Drug-Tension partial given W = High, Type 1
    22,32,45,23, # Drug-Tension partial given W = Low, Type 1
    23,11,41,21, # Drug-Tension partial given W = High, Type 2
    4,12, 6,22), # Drug-Tension partial given W = Low, Type 2
  \dim = c(2, 2, 2, 2),
  dimnames = list(
    drug = c("1", "2"),
    tension = c("High", "Low"),
    weight = c("High", "Low"),
    muscle = c("1", "2")
  )
muscle.tab = as.table(muscle.tab) # cannot skip this step!
```

See week 4 problem session for how to print a multi-way table as a flat-table.

```
ftable(muscle.tab, row.vars=c("weight","drug"),
              col.vars=c("muscle","tension"))
           muscle 1
                              2
           tension High Low High Low
weight drug
High
      1
                     3
                       3
                             23
                                 41
      2
                    21 10
                             11 21
      1
                    22 45 4 6
Low
      2
                     32
                        23
                             12 22
ftable(muscle.tab, row.vars=c("tension","weight"),
                    col.vars=c("drug", "muscle"))
              drug
                   1 2
              muscle 1 2 1 2
tension weight
                     3 23 21 11
High
       High
       LOW
                    22 4 32 12
I.OW
       High
                     3 41 10 21
       Low
                    45 6 23 22
```

Various Formats of Multi-Way Table Data

There are several formats in R for multi-way table data.

- 1. Table, created using array() or xtabs()
 - ftable() and CMH test require this format
- 2. Ungrouped data data frame
- 3. Grouped data long format data frame
- 4. Grouped data wide format data frame

Data must be either either **ungrouped** or in **wide format** if grouped to fit a glm() model.

xtabs() can convert a data frame of ungrouped data into to multi-way tables.

```
muscle.ug = read.table(
 "http://www.stat.uchicago.edu/~yibi/s226/mousemuscle_ungrouped.txt",
 header=TRUE)
muscle.ug[1:8,]
 drug tension weight muscle
    1
         High
               High
                         1
1
2
  1
        High High
                         1
3
    1
        High High
                         1
    2 High High
4
                         1
5
    2
        High High
                         1
6
    2 High High
                         1
7
    2
         High
               High
                         1
8
    2
         High
               High
                         1
# ...(291 more rows omitted)...
```

Ungrouped Data to Tables (2)

muscla

```
muscle.tab = xtabs(~ weight + muscle + drug + tension, data=muscle.ug)
muscle.tab
, , drug = 1, tension = High
     muscle
weight 1 2
 High 3 23
 Low 22 4
, , drug = 2, tension = High
      muscle
weight 1 2
 High 21 11
 Low 32 12
, , drug = 1, tension = Low
                                                                    9
```

Long Format of Grouped Data

- · One column for each variable of the multi-way table
- One column (Freq) for the cell counts of the multi-way table

weight	muscle	drug	tension	Freq
High	1	1	High	3
Low	1	1	High	22
High	2	1	High	23
Low	2	1	High	4
High	1	2	High	21
Low	1	2	High	32
High	2	2	High	11
Low	2	2	High	12
High	1	1	Low	3
Low	1	1	Low	45
High	2	1	Low	41
Low	2	1	Low	6
High	1	2	Low	10
Low	1	2	Low	23
High	2	2	Low	21
I.ow	2	2	L.OW	2.2

unight muscle drug toncion Ener

Wide Format of Grouped Data

- One column for each explanatory variable
- k columns for the response if it has k levels

drug weight muscle tension.High tension.Low

1	High	1	3	3
1	High	2	23	41
1	Low	1	22	45
1	Low	2	4	6
2	High	1	21	10
2	High	2	11	21
2	Low	1	32	23
2	Low	2	12	22

Table to Long Format — as.data.frame()

as.data.frame() can convert a multi-way table to a data frame in long format.

<pre>muscle.long = as.data.frame(muscle.tab)</pre>								
mu	muscle.long							
	weight	muscle	drug	tension	Freq			
1	High	1	1	High	3			
2	Low	1	1	High	22			
3	High	2	1	High	23			
4	Low	2	1	High	4			
5	High	1	2	High	21			
6	Low	1	2	High	32			
7	High	2	2	High	11			
8	Low	2	2	High	12			
9	High	1	1	Low	3			
10	Low	1	1	Low	45			
11	High	2	1	Low	41			
12	Low	2	1	Low	6			
13	High	1	2	Low	10			

Long Format to Wide Format — dcast()

5

6

7

8

2

2

2

2

High

High

LOW

I.OW

dcast() in the reshape2 library can convert data frames from long to wide format.

```
# install.packages("reshape2") # only install ONCE!
library(reshape2)
muscle.wide = dcast(muscle.long,
                  drug+weight+muscle ~ tension,
                  value.var="Freq")
muscle.wide
 drug weight muscle High Low
1
    1
       High
                1 3
                       3
2
       High 2 23 41
    1
3
                1
    1
       Low
                    22 45
4
                 2 4 6
    1 Low
```

21 10

32 23

12 22

2 11 21

1

1

2

Use the melt() function in the reshape2 library to convert data from wide format to long format.

me	lt(musc]	Le.wide,	id.v	vars=c("we	eight",	,"muscle","drug"))
	weight	muscle	drug	variable	value	
1	High	1	1	High	3	
2	High	2	1	High	23	
3	Low	1	1	High	22	
4	Low	2	1	High	4	
5	High	1	2	High	21	
6	High	2	2	High	11	
7	Low	1	2	High	32	
8	Low	2	2	High	12	
9	High	1	1	Low	3	
10	High	2	1	Low	41	
11	Low	1	1	Low	45	
12	Low	2	1	Low	6	
13	High	1	2	Low	10	
14	High	2	2	Low	21	

Wide Format to Long Format (2)

musc	le.long =	melt((musc	le.wide	, id.v	<pre>vars=c("weight","muscle","drug")</pre>))	
name	<pre>names(muscle.long)</pre>							
[1]	"weight"	"mus	scle"	"dru	g"	"variable" "value"		
name	s(muscle.1	.ong)[[4] =	"tensi	on"			
name	s(muscle.1	.ong)[[5] =	"Freq"				
musc	le.long							
W	eight musc	le dr	ug to	ension 1	Freq			
1	High	1	1	High	3			
2	High	2	1	High	23			
3	Low	1	1	High	22			
4	Low	2	1	High	4			
5	High	1	2	High	21			
6	High	2	2	High	11			
7	Low	1	2	High	32			
8	Low	2	2	High	12			
9	High	1	1	Low	3			
10	High	2	1	Low	41			
11	Low	1	1	Low	45		15	
12	Low	2	1	Low	6			

Long Format to Table

xtabs() can also convert grouped data in long format to tables.

```
muscle.tab = xtabs(Freq ~ weight + muscle + drug + tension, data= muscl
muscle.tab
, , drug = 1, tension = High
      muscle
weight 1 2
 High 3 23
 Low 22 4
, , drug = 2, tension = High
      muscle
weight 1 2
 High 21 11
 Low 32 12
                                                                   16
, , drug = 1, tension = Low
```


Logistic Models for Multi-way Tables

Let's start w/ models for 4-way tables (1 response + 3 predictors)

- categorical predictors: A, B, C, with a, b, c levels respectively
- response: Y = 0 or 1

$$\pi_{ijk} = P(Y = 1 | A = i, B = j, C = k)$$

The most complex model for a 4-way table is the **three way interaction model**, denoted as A * B * C, including all main effects and 2-way, 3-way interactions

$$A + B + C + A * B + B * C + A * C + A * B * C$$

The model formula is

$$logit(\pi_{ijk}) = \alpha + \underbrace{\beta_i^A + \beta_j^B + \beta_k^C}_{main \text{ effects}} + \underbrace{\beta_{ij}^{AB} + \beta_{jk}^{BC} + \beta_{ik}^{AC}}_{two-way interactions} + \beta_{ijk}^{ABC}$$
for $i = 1, \dots, a, j = 1, \dots, b, k = 1, \dots, c$.

18

Let

- A_i , i = 1, ..., a be the dummy variables for levels of A
- B_j , j = 1, ..., b be the dummy variables for levels of B
- C_k , k = 1, ..., c be the dummy variables for levels of C

The model formula

$$\operatorname{logit}(\pi_{ijk}) = \alpha + \beta_i^A + \beta_j^B + \beta_k^C + \beta_{ij}^{AB} + \beta_{jk}^{BC} + \beta_{ik}^{AC} + \beta_{ijk}^{ABC}$$

can be written in terms of the dummy variables as

$$logit(\pi_{ijk}) = \alpha + \sum_{\ell=1}^{a} \beta_{\ell}^{A} A_{\ell} + \sum_{m=1}^{b} \beta_{m}^{B} B_{m} + \sum_{n=1}^{c} \beta_{n}^{C} C_{n}$$
$$+ \sum_{\ell=1}^{a} \sum_{m=1}^{b} \beta_{\ell m}^{AB} A_{\ell} B_{m} + \sum_{m=1}^{b} \sum_{n=1}^{c} \beta_{mn}^{BC} B_{m} C_{n} + \sum_{\ell=1}^{a} \sum_{n=1}^{c} \beta_{\ell n}^{AC} A_{\ell} C_{n}$$
$$+ \sum_{\ell=1}^{a} \sum_{m=1}^{b} \sum_{n=1}^{c} \beta_{\ell mn}^{ABC} A_{\ell} B_{m} C_{n}$$

• How many parameters are there?

In the 3-way on the previous page, many parameters are redundant because

 $A_1 + \dots + A_a = 1$, $B_1 + \dots + B_b = 1$, $C_1 + \dots + C_c = 1$.

So, need to drop one of the dummy variables A_1 , B_1 , C_1 for each categorical predictor from the model, which is equivalent to setting the coefficients for those dummy variables to 0.

$$\beta_1^A = \beta_1^B = \beta_1^C = 0$$

As A_1 , B_1 , and C_1 are dropped, the interaction terms that involve those levels are also dropped. So the coefficients for those interaction terms are set to 0

$$\begin{split} \beta_{1j}^{AB} &= \beta_{i1}^{AB} = \beta_{1k}^{BC} = \beta_{j1}^{BC} = \beta_{1k}^{AC} = \beta_{i1}^{AC} = 0\\ \beta_{1jk}^{ABC} &= \beta_{i1k}^{ABC} = \beta_{ij1}^{ABC} = 0 \end{split}$$

- the effective number of parameters for a main effect is
 number of levels -1
- the effective number of parameters for an interaction is the product of (number of levels -1) for each factor involved in the interaction.

The total number of effective parameters is

$$1 + \underbrace{(a-1)}_{A \text{ main effects } B \text{ main effects } C \text{ main effects}}_{B \text{ main effects } C \text{ main effects}}$$

$$+ \underbrace{(a-1)(b-1)}_{AB \text{ interactions } BC \text{ interactions } + \underbrace{(a-1)(c-1)}_{AC \text{ interactions } AC \text{ interactions}}$$

$$+ \underbrace{(a-1)(b-1)(c-1)}_{ABC \text{ interactions } BC \text{ interactions } BC \text{ interactions } BC \text{ interactions } BC \text{ interactions } C \text{ interactions }$$

= abc

There are several simplifications of the 3-way interaction model, such as

$$\mathsf{logit}(\pi_{ijk}) = \alpha + \beta_i^A + \beta_j^B + \beta_k^C + \beta_{jk}^{BC}$$

• Model A + B + C:

$$\mathsf{logit}(\pi_{ijk}) = \alpha + \beta_i^A + \beta_j^B + \beta_k^C$$

• Model A * B:

$$\operatorname{logit}(\pi_{ijk}) = \alpha + \beta_i^A + \beta_j^B + \beta_{ij}^{AB}$$

• In all the models, constraints on the main effects and interactions are the same as those on the corresponding parameters in the 3-way interaction models.

- In all the models, constraints on the main effects and interactions are the same as those on the corresponding parameters in the 3-way interaction models.
- Generally, models must maintain *hierarchy* cannot include an interaction terms without including the relevant main effects and lower order interactions

In the Model A + B + C:

$$\log\left(\frac{\pi_{ijk}}{1-\pi_{ijk}}\right) = \log(\text{odds of } \{Y=1\}) = \alpha + \beta_i^A + \beta_j^B + \beta_k^C$$

where $\pi_{ijk} = P(Y = 1 | A = i, B = j, C = k)$,

- 1 + (a 1) + (b 1) + (c 1) effective parameters in total since $\beta_1^A = \beta_1^B = \beta_1^C = 0$
- Conditional OR between {*Y* = 0, 1} and {*A* = 1, *i*} given *B* = *j* and *C* = *k* is

$$\frac{\text{odds of } (Y = 1 \text{ given } A = i, B = j, C = k)}{\text{odds of } (Y = 1 \text{ given } A = 1, B = j, C = k)}$$
$$= \frac{\exp(\not A + \beta_i^A + \beta_j^B + \beta_k^Q)}{\exp(\not A + \beta_1^A + \beta_j^B + \beta_k^Q)} = \exp(\beta_i^A - \beta_1^A) = \exp(\beta_i^A)$$

which doesn't change with the levels of B and C.

- Interpretation for $\exp(\beta_i^B)$ and $\exp(\beta_k^C)$: Likewise
- Homogeneous YA, YB, and YC association

wide-format data

names(muscle.wide)
[1] "drug" "weight" "muscle" "High" "Low"
names(muscle.wide)[c(1,2,3)] = c("D","W","M")
muscle.wide\$M = as.factor(muscle.wide\$M)
muscle.wide\$D = as.factor(muscle.wide\$D)

Let's first fit a model with W, M, and D main effects only.

Fitted model coefficients:

glm1\$coef			
(Intercept)	WLow	M2	D2
-0.03424	-0.41866	-0.70899	0.58657

For the model W + M + D: $\log\left(\frac{\pi_{ijk}}{1 - \pi_{ijk}}\right) = \alpha + \beta_i^W + \beta_j^M + \beta_k^D$ where $\pi_{ijk} = P(\text{High Tension} | W = i, M = j, D = k),$

gimi\$coei			
(Intercept)	WLow	M2	D2
-0.03424	-0.41866	-0.70899	0.58657

R gives the estimated coefficients:

alm1¢coof

 $\widehat{\alpha} \approx -0.0342, \quad \widehat{\beta}_L^W \approx -0.419, \quad \widehat{\beta}_2^M \approx -0.709, \quad \widehat{\beta}_2^D \approx 0.587.$

- What are the values for $\widehat{\beta}_{H}^{W}, \widehat{\beta}_{1}^{M}$ and $\widehat{\beta}_{1}^{D}$?
- What is the estimated value for π = P(tension = High) for low muscle weight, Type 1 muscle, when Drug 1 is applied?

For the model W + M + D: $\log\left(\frac{\pi_{ijk}}{1 - \pi_{ijk}}\right) = \alpha + \beta_i^W + \beta_j^M + \beta_k^D$ where $\pi_{ijk} = P(\text{High Tension} | W = i, M = j, D = k),$

gimiscoei			
(Intercept)	WLow	M2	D2
-0.03424	-0.41866	-0.70899	0.58657

R gives the estimated coefficients:

alm1¢coof

 $\widehat{\alpha} \approx -0.0342, \quad \widehat{\beta}_L^W \approx -0.419, \quad \widehat{\beta}_2^M \approx -0.709, \quad \widehat{\beta}_2^D \approx 0.587.$

- What are the values for $\widehat{\beta}_{H}^{W}$, $\widehat{\beta}_{1}^{M}$ and $\widehat{\beta}_{1}^{D}$? All zero!
- What is the estimated value for π = P(tension = High) for low muscle weight, Type 1 muscle, when Drug 1 is applied?

For the model W + M + D: $\log\left(\frac{\pi_{ijk}}{1 - \pi_{ijk}}\right) = \alpha + \beta_i^W + \beta_j^M + \beta_k^D$ where $\pi_{ijk} = P(\text{High Tension} | W = i, M = j, D = k),$

gimiscoei			
(Intercept)	WLow	M2	D2
-0.03424	-0.41866	-0.70899	0.58657

R gives the estimated coefficients:

alm1¢coof

$$\widehat{\alpha} \approx -0.0342, \quad \widehat{\beta}_L^W \approx -0.419, \quad \widehat{\beta}_2^M \approx -0.709, \quad \widehat{\beta}_2^D \approx 0.587.$$

- What are the values for $\widehat{\beta}_{H}^{W}, \widehat{\beta}_{1}^{M}$ and $\widehat{\beta}_{1}^{D}$? All zero!
- What is the estimated value for π = P(tension = High) for low muscle weight, Type 1 muscle, when Drug 1 is applied? When W = L, M = 1, D = 1,

$$\widehat{\pi} = \frac{\exp(\widehat{\alpha} + \widehat{\beta}_{L}^{W} + \widehat{\beta}_{1}^{M} + \widehat{\beta}_{1}^{D})}{1 + \exp(\widehat{\alpha} + \widehat{\beta}_{L}^{W} + \widehat{\beta}_{1}^{M} + \widehat{\beta}_{1}^{D})} = \frac{\exp(-0.0342 + (-0.419) + 0 + 0)}{1 + \exp(-0.0342 + (-0.419) + 0 + 0)} \approx 0.39$$

For the main effect model

$$\log\left(\frac{\pi_{ijk}}{1-\pi_{ijk}}\right) = \alpha + \beta_i^W + \beta_j^M + \beta_k^D$$

how to interpret the parameter estimates below?

$$\begin{aligned} \widehat{\alpha} &\approx -0.0342, \quad \widehat{\beta}_{H}^{W} = 0, \qquad \widehat{\beta}_{1}^{M} = 0, \qquad \widehat{\beta}_{1}^{D} = 0, \\ \widehat{\beta}_{L}^{W} &\approx -0.419, \quad \widehat{\beta}_{2}^{M} \approx -0.709, \quad \widehat{\beta}_{2}^{D} \approx 0.587 \end{aligned}$$

- The odds of High tension if Drug 2 is applied are $e^{\widehat{\beta}_2^D} = e^{0.587} \approx 1.8$ times the odds if Drug 1 is applied on the same type of muscle of the same weight.
- The odds of High tension for Type 2 muscle are $e^{\widehat{\beta}_2^M} = e^{-0.709} \approx 0.49$ times the odds for Type 1 muscle of the same weight with the same drug applied.
- The odds of High tension for high-weight muscle are $e^{-\widehat{\beta}_L^W} = e^{0.419} \approx 1.52$ times the odds for low-weight muscle of the same type with the same drug applied.

$$\log\left(\frac{\pi_{ijk}}{1-\pi_{ijk}}\right) = \log(\text{odds of } \{Y=1\}) = \alpha + \beta_i^A + \beta_j^B + \beta_k^C + \beta_{ij}^{AB}$$

• By model hierarchy, must include *A* and *B* if *A* * *B* is included in the model.

So the model A * B + C is equivalent to A + B + C + A * B

$$\log\left(\frac{\pi_{ijk}}{1-\pi_{ijk}}\right) = \log(\text{odds of } \{Y=1\}) = \alpha + \beta_i^A + \beta_j^B + \beta_k^C + \beta_{ij}^{AB}$$

• By model hierarchy, must include *A* and *B* if *A* * *B* is included in the model.

So the model A * B + C is equivalent to A + B + C + A * B

• Number of parameters

= 1 + (a - 1) + (b - 1) + (c - 1) + (a - 1)(b - 1) because of the constraints

$$\beta_1^A = \beta_1^B = \beta_1^C = 0$$

$$\beta_{i1}^{AB} = 0 \quad \text{for } i = 1, \dots, a$$

$$\beta_{1j}^{AB} = 0 \quad \text{for } j = 1, \dots, b$$

Model A * B + C: Interpretation

$$\log\left(\frac{\pi_{ijk}}{1-\pi_{ijk}}\right) = \log(\text{odds of } \{Y=1\}) = \alpha + \beta_i^A + \beta_j^B + \beta_k^C + \beta_{ij}^{AB}$$

The conditional OR between $\{Y = 0, 1\}$ and $\{A = 1, i\}$ given B = j and C = k is

$$\frac{\text{odds of } (Y = 1 \text{ given } A = i, B = j, C = k)}{\text{odds of } (Y = 1 \text{ given } A = 1, B = j, C = k)}$$

$$= \frac{\exp(\not A + \beta_i^A + \beta_j^B + \beta_k^C + \beta_{ij}^{AB})}{\exp(\not A + \beta_1^A + \beta_j^B + \beta_k^C + \beta_{1j}^{AB})}$$

$$= \exp(\beta_i^A - \underbrace{\beta_1^A}_{=0} + \beta_{ij}^{AB} - \underbrace{\beta_{1j}^A}_{=0}) = e^{\beta_i^A + \beta_{ij}^A} = \begin{cases} e^{\beta_i^A} & \text{if } B = 1\\ e^{\beta_i^A + \beta_{ij}^{AB}} & \text{if } B = j \end{cases}$$

which changes with the levels of B (but not C)

- YA association is NOT homogeneous
- can show likewise that the conditional ORs of *YB* change with *A* (but not *C*). ⇒ No homogeneous *YB* association

Under the A * B + C model

$$\log\left(\frac{\pi_{ijk}}{1-\pi_{ijk}}\right) = \log(\text{odds of } \{Y=1\}) = \alpha + \beta_i^A + \beta_j^B + \beta_k^C + \beta_{ij}^{AB},$$

the conditional OR between $\{Y = 0, 1\}$ and $\{C = 1, k\}$ given A = i and B = j is

$$\frac{\text{odds of } (Y = 1 \text{ given } A = i, B = j, C = k)}{\text{odds of } (Y = 1 \text{ given } A = i, B = j, C = 1)}$$
$$= \frac{\exp(\alpha' + \beta_i^{A} + \beta_j^{B'} + \beta_k^{C} + \beta_{j}^{AB'})}{\exp(\alpha' + \beta_i^{A} + \beta_j^{B'} + \beta_1^{C} + \beta_{j}^{AB'})} = \exp(\beta_k^C - \beta_1^C) = e^{\beta_k^C}$$

which doesn't change with the levels of A and B.

- homogeneous YC association given A and B.
- If one further assumes that β^C_k = 0 for all k, then Y and C would be conditionally independent given A, B

Example (Mouse Muscle Tension) — W + M * D

glm2\$coef

(Intercept)	WLow	M2	D2	M2:D2
-0.4682	-0.2011	-0.0596	1.0717	-1.0676

$$\begin{split} \widehat{\alpha} &\approx -0.4682, \quad \widehat{\beta}_{H}^{W} = 0, \qquad \widehat{\beta}_{1}^{M} = 0, \qquad \widehat{\beta}_{1}^{D} = 0, \\ \widehat{\beta}_{L}^{W} &\approx -0.2011, \quad \widehat{\beta}_{2}^{M} \approx -0.0596, \quad \widehat{\beta}_{2}^{D} \approx 1.0717 \\ \widehat{\beta}_{11}^{MD} &= 0, \qquad \widehat{\beta}_{12}^{MD} = 0, \qquad \widehat{\beta}_{21}^{MD} = 0, \qquad \widehat{\beta}_{22}^{MD} = -1.0676 \end{split}$$

The estimated π when W = L, M = 1, D = 1 is

$$\begin{aligned} \widehat{\pi} &= \frac{\exp(\widehat{\alpha} + \widehat{\beta}_{L}^{W} + \widehat{\beta}_{1}^{M} + \widehat{\beta}_{1}^{D} + \widehat{\beta}_{11}^{MD})}{1 + \exp(\widehat{\alpha} + \widehat{\beta}_{L}^{W} + \widehat{\beta}_{1}^{M} + \widehat{\beta}_{1}^{D} + \widehat{\beta}_{11}^{MD})} \\ &= \frac{\exp(-0.4676 + (-0.2011) + 0 + 0 + 0)}{1 + \exp(-0.4676 + (-0.2011) + 0 + 0 + 0)} \approx 0.34 \end{aligned}$$

Under the model W + M * D

log(odds of high tension) = $\alpha + \beta_i^W + \beta_j^M + \beta_k^D + \beta_{jk}^{MD}$

The conditional OR between {Tension = H, L} and {D = 1, 2} given W = i and M = k is

 $\begin{aligned} & \frac{\text{odds of high tension given } W = i, M = j, D = 2}{\text{odds of high tension given } W = i, M = j, D = 1} \\ &= \frac{\exp(\vec{\alpha} + \widehat{\beta}_i^{\mathcal{W}} + \widehat{\beta}_j^{\mathcal{M}} + \widehat{\beta}_2^{D} + \widehat{\beta}_{j2}^{MD})}{\exp(\vec{\alpha} + \widehat{\beta}_i^{\mathcal{W}} + \widehat{\beta}_j^{\mathcal{M}} + \widehat{\beta}_1^{D} + \widehat{\beta}_{j1}^{MD})} = \exp(\widehat{\beta}_2^D - \underbrace{\widehat{\beta}_1^D}_{=0} + \widehat{\beta}_{j2}^{MD} - \underbrace{\widehat{\beta}_{j1}^M}_{=0}) = e^{\widehat{\beta}_2^D - \widehat{\beta}_{j2}^M} \\ &= \begin{cases} e^{1.071+0} \approx 2.9 & \text{for Type 1 muscle} \\ e^{1.071+(-1.068)} \approx 1.004 & \text{for Type 2 muscle} \end{cases} \end{aligned}$

Conclusion: Drug 1 and 2 have nearly identical effects on Type 2 muscle, while Drug 1 is significantly more effective in reducing muscle tension than drug 2.

Under the model W + M * D

log(odds of high tension) = $\alpha + \beta_i^W + \beta_j^M + \beta_k^D + \beta_{jk}^{MD}$

the estimated conditional OR between {Tension = H, L} and {W = H, L} given M = j, D = k is $e^{\widehat{\beta}_{H}^{W} - \widehat{\beta}_{L}^{W}} \approx e^{0 - (-0.2011)} \approx 1.22$, which doesn't change with the levels of M or D.

Interpretation: If muscle weight is high, the odds of high tension were 1.22 times the odds when the muscle weight is low, given the same drug and same muscle type.

<pre>summary(glm2)\$coef</pre>						
	Estimate	Std. Error	z value	Pr(> z)		
(Intercept)	-0.4682	0.3648	-1.2836	0.199284		
WLow	-0.2011	0.2941	-0.6837	0.494173		
M2	-0.0596	0.4155	-0.1434	0.885937		
D2	1.0717	0.3408	3.1450	0.001661		
M2:D2	-1.0676	0.5198	-2.0536	0.040014		

95% Wald CI for the conditional OR for W & Tension given D & M:

 $\exp(-\widehat{\beta}_L^W \pm 1.96\text{SE}) = \exp(0.2011 \pm 1.96 \times 0.2941) \approx (0.687, 2.176).$

As the CI contains 1, we see that Tension and W could be *conditionally independent* given M & D.

Under Model W + M * D,

conditional indep. of Tension & W given M & D $\iff \beta_L^W = 0$.

Both Wald and LR tests of $\beta_L^W = 0$ give *P*-values ≈ 0.49 (next page)

• Tension and W could be conditionally indep. given M and D.

```
> summary(glm2)
          Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.4682 0.3648 -1.284 0.19928
WI.
          -0.2011
                     0.2941 -0.684 0.49417 <-- Wald test p-value
M2
          -0.0596 0.4155 -0.143 0.88594
D2
          1.0717 0.3408 3.145 0.00166 **
M2:D2 -1.0675 0.5198 -2.054 0.04001 *
> drop1(glm2, test="Chisq")
Model:
T \sim W + M * D
      Df Deviance AIC LRT Pr(>Chi)
      1.0596 41.176
<none>
W
      1 1.5289 39.646 0.4693 0.49332 <-- LR test p-value
M:D
      1 5.3106 43.427 4.2510 0.03923 *
```

Model A * B + B * C

$$\log\left(\frac{\pi_{ijk}}{1-\pi_{ijk}}\right) = \log(\text{odds of } \{Y=1\}) = \alpha + \beta_i^A + \beta_j^B + \beta_k^C + \beta_{ij}^{AB} + \beta_{jk}^{BC}$$

• By model hierarchy, it's equivalent to A + B + C + A * B + B * Cas A, B, and C must be included if A * B and B * C have been included in the model

Model A * B + B * C

$$\log\left(\frac{\pi_{ijk}}{1-\pi_{ijk}}\right) = \log(\text{odds of } \{Y=1\}) = \alpha + \beta_i^A + \beta_j^B + \beta_k^C + \beta_{ij}^{AB} + \beta_{jk}^{BC}$$

- By model hierarchy, it's equivalent to A + B + C + A * B + B * C as A, B, and C must be included if A * B and B * C have been included in the model
- Number of parameters

= 1 + (a - 1) + (b - 1) + (c - 1) + (a - 1)(b - 1) + (b - 1)(c - 1)because of the constraints

$$\beta_{1}^{A} = \beta_{1}^{B} = \beta_{1}^{C} = 0$$

$$\beta_{1j}^{AB} = 0 \quad \text{for } j = 1, \dots, b$$

$$\beta_{i1}^{AB} = 0 \quad \text{for } i = 1, \dots, a$$

$$\beta_{1k}^{BC} = 0 \quad \text{for } k = 1, \dots, c$$

$$\beta_{j1}^{BC} = 0 \quad \text{for } j = 1, \dots, b$$

$$\log\left(\frac{\pi_{ijk}}{1-\pi_{ijk}}\right) = \log(\text{odds of } \{Y=1\}) = \alpha + \beta_i^A + \beta_j^B + \beta_k^C + \beta_{ij}^{AB} + \beta_{jk}^{BC}$$

The conditional OB between $\{Y=0,1\}$ and $\{A=1,i\}$ given $B=i$

The conditional OR between $\{Y = 0, 1\}$ and $\{A = 1, i\}$ given B = j and C = k is

$$\frac{\operatorname{odds}\operatorname{of}(Y=1 \text{ given } A=i, B=j, C=k)}{\operatorname{odds}\operatorname{of}(Y=1 \text{ given } A=1, B=j, C=k)}$$

$$= \frac{\exp(\varphi + \beta_i^A + \beta_j^B + \beta_k^Q + \beta_{ij}^{AB} + \beta_{jk}^{BC})}{\exp(\varphi + \beta_1^A + \beta_j^P + \beta_k^Q + \beta_{1j}^{AB} + \beta_{jk}^{BC})}$$

$$= \exp(\beta_i^A - \underbrace{\beta_1^A}_{=0} + \beta_{ij}^{AB} - \underbrace{\beta_1^{AB}}_{=0}) = e^{\beta_i^A + \beta_{ij}^{AB}} = \begin{cases} e^{\beta_i^A} & \text{if } B=1\\ e^{\beta_i^A + \beta_{ij}^{AB}} & \text{if } B=j \end{cases}$$

which changes with the levels of B (but not C)

- YA association is NOT homogeneous
- Likewise, can show the conditional OR of *YC* changes with *B* (but not *A*). ⇒ No homogeneous *YC* association

$$\log\left(\frac{\pi_{ijk}}{1-\pi_{ijk}}\right) = \log(\text{odds of } \{Y=1\}) = \alpha + \beta_i^A + \beta_j^B + \beta_k^C + \beta_{ij}^{AB} + \beta_{jk}^{BC}$$
The conditional OR between $\{Y=0,1\}$ and $\{B=1,j\}$ given $A=i$
and $C = k$ is
$$\frac{\text{odds of } (Y=1 \text{ given } A=i, B=j, C=k)}{\text{odds of } (Y=1 \text{ given } A=i, B=1, C=k)}$$

$$= \frac{\exp(q\ell + \beta_i^A + \beta_j^B + \beta_k^Q + \beta_{ij}^{AB} + \beta_{jk}^{BC})}{\exp(q\ell + \beta_i^A + \beta_i^B + \beta_k^Q + \beta_{ij}^{AB} + \beta_{jk}^{BC})} = e^{\beta_j^B + \beta_{ij}^A + \beta_{jk}^{BC}}$$

$$= \begin{cases} e^{\beta_j^B} & \text{if } i=k=1\\ e^{\beta_j^B + \beta_{ij}^{AB}} & \text{if } i\neq 1, k=1\\ e^{\beta_j^B + \beta_{jk}^{AB}} & \text{if } i=1, k\neq 1\\ e^{\beta_j^B + \beta_{jk}^{AB} + \beta_{jk}^{BC}} & \text{if } i=1, k\neq 1 \end{cases}$$

which changes with the levels of both A and C.

If No 3-way Interaction...

Under the Model A * B + B * C or A * B + B * C + A * C

YB odds ratio given
$$A = i$$
 and $C = k$ is
$$\begin{cases} e^{\beta_j^B} & \text{if } i = k = 1\\ e^{\beta_j^B + \beta_{ij}^{AB}} & \text{if } i \neq 1, k = 1\\ e^{\beta_j^B + \beta_{jk}^{BC}} & \text{if } i = 1, k \neq 1\\ e^{\beta_j^B + \beta_{ij}^{AB} + \beta_{jk}^{BC}} & \text{if } i = 1, k \neq 1 \end{cases}$$

So

$$\frac{YB \text{ odds ratio when } A = i \text{ and } C = k}{YB \text{ odds ratio when } A = 1 \text{ and } C = k} = \begin{cases} \frac{e^{\beta_j^B + \beta_{ij}^{AB}}}{\beta_j^B} = e^{\beta_{ij}^{AB}} & \text{when } k = 1; \\ \frac{e^{\beta_j^B + \beta_{ij}^{AB}}}{e^{\beta_j^B + \beta_{ij}^{BC}}} = e^{\beta_{ij}^{AB}} & \text{when } k \neq 1. \end{cases}$$

which doesn't change w/ the level of C.

$$\begin{aligned} \text{logit}(\pi_{ijk}) &= \alpha + \beta_i^A + \beta_j^B + \beta_k^C + \beta_{ij}^{AB} + \beta_{jk}^{BC} + \beta_{ik}^{AC} + \beta_{ijk}^{ABC} \end{aligned}$$

$$\begin{aligned} \text{YA odds ratio given } B &= j \& C = k \text{ is} \begin{cases} e^{\beta_i^A} & \text{when } B = 1, C = 1; \\ e^{\beta_i^A + \beta_{ij}^{AB}} & \text{when } B = j, C = 1; \\ e^{\beta_i^A + \beta_{ik}^{AC}} & \text{when } B = 1, C = k; \\ e^{\beta_i^A + \beta_{ij}^{AC} + \beta_{ik}^{AC} + \beta_{ijk}^{ABC}} & \text{when } B = j, C = k. \end{cases} \end{aligned}$$

So

$$\frac{YA \text{ odds ratio when } B = j}{YA \text{ odds ratio when } B = 1} = \begin{cases} e^{\beta_{ij}^{AB}} & \text{when } C = 1; \\ e^{\beta_{ij}^{AB} + \beta_{ijk}^{ABC}} & \text{when } C = k. \end{cases}$$

The 3-way interaction $e^{\beta_{ijk}^{ABC}}$ is the ratio of the ratios of odds ratios.

Model A * B + B * C + A * C:

- YA odds ratios change with both B and C
- YB odds ratios change with both A and C
- YC odds ratios change with both A and B
- no 3-way interactions means that

 $\frac{YA \text{ odds ratio when } B = j_1}{YA \text{ odds ratio when } B = j_2}$

do not change with C

Model A * B + B * C:

- YA odds ratios change with B but not C
- YC odds ratios change with B but not A
- *YB* odds ratios change with both *A* and *C*