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Example: Birdkeeping and Lung Cancer Data

A 1972–1981 health survey in The Hague, Netherlands,
discovered an association between keeping pet birds and
increased risk of lung cancer. To investigate bird-keeping as a risk
factor, researchers conducted a case–control study of patients in
1985 at 4 hospitals in The Hague. They identified 49 cases of lung
cancer among patients who were registered with a general
practice, who were age 65 or younger, and who had resided in the
city since 1965. They also selected 98 controls from a population
of residents having the same general age structure 1.

birdkp = read.table(

"http://www.stat.uchicago.edu/~yibi/s226/birdkeeping.txt",

header=TRUE)

1Data from Chapter 20 of The Statistical Sleuth, 3ed, by Ramsey and Schafer
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Birdkeeping and Lung Cancer Data Variables

• LC: Whether subject has lung cancer
• FM: Sex — Male or Female
• AG: Age, in years
• SS: Socioeconomic status — Highor Low, determined by

occupation of the household’s principal wage earner
• YR: Years of smoking prior to diagnosis or examination
• CD: Average rate of smoking, in cigarettes per day
• BK: 2 levels: Bird or NoBird, indicating whether the subject

kept caged birds at home for more than 6 consecutive months
from 5 to 14 years before diagnosis (cases) or examination
(controls)
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Marginal OR between LR and BK

xtabs(~ BK + LC, data=birdkp)

LC

BK LungCancer NoCancer

Bird 33 34

NoBird 16 64

As the study is retrospective, the only prospective quantity that can
be estimated is the odds ratio

OR =
33 × 64
34 × 16

≈ 3.88

• Odds of lung cancer among bird keepers were about 3.88
times as large as the odds among non-birdkeepers.

• However, several other variables need to be controlled, like,
age, years of smoking, and so on.
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OR between LC and BK Given Years of Smoking

birdkp$yr.smk = cut(birdkp$YR, breaks= seq(0,50,10),

include.lowest=TRUE, right=FALSE)

ftable(xtabs(~ BK + LC + yr.smk, data=birdkp),

row.vars = c("yr.smk","BK"), col.vars=c("LC"))

LC LungCancer NoCancer

yr.smk BK

[0,10) Bird 1 8

NoBird 0 12

[10,20) Bird 2 2

NoBird 1 9

[20,30) Bird 8 11

NoBird 4 14

[30,40) Bird 11 10

NoBird 6 14

[40,50] Bird 11 3

NoBird 5 15

For bird keepers, odds of lung cancer remained higher comparing
to non-keepers with similar years of smoking. 5



CMH test of the conditional independence of LC and BK given
years of smoking:

options(digits=6)

mantelhaen.test(xtabs(~ BK + LC + yr.smk, data=birdkp), correct = F)

Mantel-Haenszel chi-squared test without continuity correction

data: xtabs(~BK + LC + yr.smk, data = birdkp)

Mantel-Haenszel X-squared = 14.01, df = 1, p-value = 0.000182

alternative hypothesis: true common odds ratio is not equal to 1

95 percent confidence interval:

1.92775 9.01553

sample estimates:

common odds ratio

4.1689
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OR between LC and BK Given Age

birdkp$age = cut(birdkp$AG, breaks= seq(40,70,5),

include.lowest=TRUE, right=FALSE)

ftable(xtabs(~ BK + LC + age, data=birdkp),

row.vars = c("age","BK"), col.vars=c("LC"))

LC LungCancer NoCancer

age BK

[40,45) Bird 2 1

NoBird 1 4

[45,50) Bird 6 9

NoBird 0 4

[50,55) Bird 3 4

NoBird 2 5

[55,60) Bird 6 7

NoBird 6 16

[60,65) Bird 12 11

NoBird 6 25

[65,70] Bird 3 1

NoBird 1 9 7



CMH test of the conditional independence of LC and BK given age:

mantelhaen.test(xtabs(~ BK + LC + age, data=birdkp), correct = F)

Mantel-Haenszel chi-squared test without continuity correction

data: xtabs(~BK + LC + age, data = birdkp)

Mantel-Haenszel X-squared = 14.15, df = 1, p-value = 0.000169

alternative hypothesis: true common odds ratio is not equal to 1

95 percent confidence interval:

1.96925 9.17732

sample estimates:

common odds ratio

4.25117
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Advantage of Logistic Regression for Retrospective Studies

• CMH tests only work for 2 × 2 × K tables. To control for YR or
AG, we need to turn them into grouping variables yr.smk and
age, cannot use their numerical values.

• CMH tests can only control for one variable at a time
• Logistic regression can control for several variables at once,
YR of smoking, AG, gender, social-economic status, all at once.

• Logistic regression can take the numerical values of a
numerical control variable into account.
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However. . .

Please note the logistic regression models the prospective
probabilities

P(Y = 1 | X1, X2, . . . , Xp) =
exp(α + β1x1 + · · · + βpxp)

1 + exp(α + β1x1 + · · · + βpxp)
.

Can we estimate the coefficients α and βi’s of the prospective
probabilities using retrospective data?

• The intercept α cannot be estimated from retrospective data
• The coefficient βi for Xi can be estimated from retrospective

data if neither the probability that a case (Y = 1) is selected
nor the probability that a control (Y = 0) is selected depend on
Xi

• The prospective probability P(Y = 1 | X1, X2, . . . , Xp) cannot be
estimated from retrospective data
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Why Can Prospective βi’s Be Estimated Retrospectively?

For demonstration purpose, we use logistic regression with 2
predictors X1 and X2 as an example. Let

ρ1,x1,x2 = P(selected |Y = 1, X1 = x1, X2 = x2)

= the chance that a diseased case with X1 = x1, X2 = x2

is included in the data

ρ0,x1,x2 = P(selected |Y = 0, X1 = x1, X2 = x2)

= the chance that a control case with X1 = x1, X2 = x2

is included in the data

As the disease is usually rare, to get enough diseased cases in the
sample, usually in a retrospective study, the sampling rate among
diseased cases ρ1,x1,x2 is much higher than the sampling rate
among the control ρ0,x1,x2 .
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Why Can Prospective βi’s Be Estimated Retrospectively?

Assume the correct model if the data are obtained prospectively
is

P(Y = 1 | x1, x2) =
exp(α + β1x1 + β2x2)

1 + exp(α + β1x1 + β2x2)
.

However, what would be the model if the data are obtained
retrospectively? That is among the “selected”, what’s the
probability that Y = 1 given X1 = x1, X2 = x2

P(Y = 1 | selected, x1, x2) =?
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Why Can Prospective βi’s Be Estimated Retrospectively?

By Bayes’ Theorem,
Y = 1

P(Y = 1)

ρ1

1 − ρ1

Y = 0

P(Y = 0) ρ0

1 − ρ0

selected

not selected

selected

not selectedP(Y = 1 | selected, x1, x2)

=
P(selected|Y = 1, x1, x2)P(Y = 1 | x1, x2)

P(selected|Y = 0, x1, x2)P(Y = 0 | x1, x2) + P(selected|Y = 1, x1, x2)P(Y = 1 | x1, x2)

=
ρ1,x1 ,x2 P(Y = 1 | x1, x2)

ρ0,x1 ,x2 P(Y = 0 | x1, x2) + ρ1,x1 ,x2 P(Y = 1 | x1, x2)

=
ρ1,x1 ,x2 P(Y = 1 | x1, x2)/P(Y = 0 | x1, x2)

ρ0,x1 ,x2 + ρ1,x1 ,x2 P(Y = 1 | x1, x2)/P(Y = 0 | x1, x2)

(
divide both top and

bottom by P(Y = 0 | x1, x2)

)
=

ρ1,x1 ,x2 exp(α + β1 x1 + β2 x2)
ρ0,x1 ,x2 + ρ1,x1 ,x2 exp(α + β1 x1 + β2 x2)

where P(Y = 1 | x1, x2)/P(Y = 0 | x1, x2) = exp(α + β1 x1 + β2 x2) because we
assume the correct prospective model to be P(Y = 1 | x1, x2) = exp(α+β1 x1+β2 x2)

1+exp(α+β1 x1+β2 x2) .
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Why Can Prospective βi’s Be Estimated Retrospectively?

If the sampling rates ρ1,x1,x2 = ρ1 and ρ0,x1,x2 = ρ0 do NOT depend on the
predictors x1 and x2, then

P(Y = 1 | selected, x1, x2) =
ρ1,x1,x2 exp(α + β1x1 + β2x2)

ρ0,x1,x2 + ρ1,x1,x2 exp(α + β1x1 + β2x2)

=
ρ1 exp(α + β1x1 + β2x2)
ρ0 + ρ1 exp(α + β1x1 + β2x2)

=
(ρ1/ρ0) exp(α + β1x1 + β2x2)

1 + (ρ1/ρ0) exp(α + β1x1 + β2x2)

=
exp(α′ + β1x1 + β2x2)

1 + exp(α′ + β1x1 + β2x2)
where α′=α+log(ρ1/ρ0).

We can thus estimate the β j’s for a prospective model using retrospective
since the retrospective data follow a logistic model
P(Y = 1 | selected, x1, x2) with identical β j’s for predictors as those for the
prospective model P(Y = 1 | x1, x2) = exp(α+β1 x1+β2 x2)

1+exp(α+β1 x1+β2 x2) . Only the intercept
is different.
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Caution: Cannot Estimate Some βi’s Retrospectively if . . .

If the sampling rates ρ1,x1,x2 = ρ1,x2 and ρ0,x1,x2 = ρ0,x2 depend x2 but not
x1, then

P(Y = 1 | selected, x1, x2) =
ρ1,x1,x2 exp(α + β1x1 + β2x2)

ρ0,x1,x2 + ρ1,x1,x2 exp(α + β1x1 + β2x2)

=
ρ1,x2 exp(α + β1x1 + β2x2)

ρ0,x2 + ρ1,x2 exp(α + β1x1 + β2x2)

=
(ρ1,x2/ρ0,x2 ) exp(α + β1x1 + β2x2)

1 + (ρ1,x2/ρ0,x2 ) exp(α + β1x1 + β2x2)

=
exp(β1x1 + c(x2))

1 + exp(β1x1 + c(x2))
where c(x2) = α + log(ρ1,x2/ρ0,x2 ) + β2x2.

• The coefficient β1 for X1 in the retrospective model is identical to the
β1 in the prospective model

• The intercept, the coefficient β2 (and how X2 affects Y) in the
retrospective model are different.
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Logistic Model for Bird-Keeping & Lung Cancer Data

A logistic model for LC and BK controlling for both AG and YR:

fit1 = glm((LC == "LungCancer") ~ BK + AG + YR,

family=binomial, data=birdkp)

summary(fit1)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.3429642 1.5800186 0.217063 0.82815895

BKNoBird -1.3765591 0.4007298 -3.435130 0.00059227

AG -0.0460982 0.0342995 -1.343989 0.17895188

YR 0.0748529 0.0229553 3.260806 0.00111096

In this study, the controls were selected to have same general age
distribution as the cancer cases. So the sampling rates ρ1 and ρ2

depend on AG.

• Can interpret βi’s for BK and YR prospectively.
• CANNOT interpret the intercept and the β for AG prospectively.
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fit1$coef

(Intercept) BKNoBird AG YR

0.3429642 -1.3765591 -0.0460982 0.0748529

• The odds of lung cancer for bird keepers were
e1.376559 ≈ 3.961248 times the odds for non-keepers of the
same age and same years of smoking.

• The odds of lung cancer become e0.074853 ≈ 1.077726 times as
large for every extra year of smoking, controlling for age and
bird-keeping status
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fit1$coef

(Intercept) BKNoBird AG YR

0.3429642 -1.3765591 -0.0460982 0.0748529

CANNOT interpret the coefficient −0.046098 for AG as “the odds of
LC become e−0.046098 ≈ 0.954948 times as large for every extra
year in age, controlling for BK and YR”

• unreasonable negative coefficient −0.046098 for AG. The odds
of disease would increase with age for most chronic diseases.
We get this a negative (but insignificant) β because the 98
controls were selected to match the age distribution of the 49
cancer cases. Hence, we cannot infer the age effect on the
odds of lung cancer from this study.
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fit1$coef

(Intercept) BKNoBird AG YR

0.3429642 -1.3765591 -0.0460982 0.0748529

CANNOT estimate π = prob. of lung cancer retrospectively. E.g.,
cannot estimate π for 50-year-old bird keepers with 10 years of
smoking as

π̂ =
exp(0.342964 − 0.046098 × 50 + 0.074853 × 10)

1 + exp(0.342964 − 0.046098 × 50 + 0.074853 × 10)
= 0.229097

predict(fit1, data.frame(BK="Bird", AG=50, YR=10), type="response")

1

0.229097
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