STAT 226 Logistic Regression for Retrospective Studies

Yibi Huang

Example: Birdkeeping and Lung Cancer Data

A 1972-1981 health survey in The Hague, Netherlands, discovered an association between keeping pet birds and increased risk of lung cancer. To investigate bird-keeping as a risk factor, researchers conducted a case-control study of patients in 1985 at 4 hospitals in The Hague. They identified 49 cases of lung cancer among patients who were registered with a general practice, who were age 65 or younger, and who had resided in the city since 1965. They also selected 98 controls from a population of residents having the same general age structure ${ }^{1}$.

```
birdkp = read.table(
    "http://www.stat.uchicago.edu/~yibi/s226/birdkeeping.txt",
    header=TRUE)
```

${ }^{1}$ Data from Chapter 20 of The Statistical Sleuth, 3ed, by Ramsey and Schafer

Birdkeeping and Lung Cancer Data Variables

- LC: Whether subject has lung cancer
- FM: Sex - Male or Female
- AG: Age, in years
- SS: Socioeconomic status - Highor Low, determined by occupation of the household's principal wage earner
- YR: Years of smoking prior to diagnosis or examination
- CD: Average rate of smoking, in cigarettes per day
- BK: 2 levels: Bird or NoBird, indicating whether the subject kept caged birds at home for more than 6 consecutive months from 5 to 14 years before diagnosis (cases) or examination (controls)

Marginal OR between LR and BK

As the study is retrospective, the only prospective quantity that can be estimated is the odds ratio

$$
O R=\frac{33 \times 64}{34 \times 16} \approx 3.88
$$

- Odds of lung cancer among bird keepers were about 3.88 times as large as the odds among non-birdkeepers.
- However, several other variables need to be controlled, like, age, years of smoking, and so on.

OR between LC and BK Given Years of Smoking

For bird keepers, odds of lung cancer remained higher comparing to non-keepers with similar years of smoking.

CMH test of the conditional independence of LC and BK given years of smoking:
options(digits=6)
mantelhaen.test(xtabs(~ BK + LC + yr.smk, data=birdkp), correct = F)

Mantel-Haenszel chi-squared test without continuity correction

```
data: xtabs(~BK + LC + yr.smk, data = birdkp)
Mantel-Haenszel X-squared = 14.01, df = 1, p-value = 0.000182
```

alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
1.927759 .01553
sample estimates:
common odds ratio
4.1689

OR between LC and BK Given Age

CMH test of the conditional independence of LC and BK given age:

```
mantelhaen.test(xtabs(~ BK + LC + age, data=birdkp), correct = F)
    Mantel-Haenszel chi-squared test without continuity correction
data: xtabs(~BK + LC + age, data = birdkp)
Mantel-Haenszel X-squared = 14.15, df = 1, p-value = 0.000169
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
    1.96925 9.17732
sample estimates:
common odds ratio
    4.25117
```


Advantage of Logistic Regression for Retrospective Studies

- CMH tests only work for $2 \times 2 \times K$ tables. To control for YR or AG, we need to turn them into grouping variables yr. smk and age, cannot use their numerical values.
- CMH tests can only control for one variable at a time
- Logistic regression can control for several variables at once, YR of smoking, AG, gender, social-economic status, all at once.
- Logistic regression can take the numerical values of a numerical control variable into account.

However...

Please note the logistic regression models the prospective probabilities

$$
P\left(Y=1 \mid X_{1}, X_{2}, \ldots, X_{p}\right)=\frac{\exp \left(\alpha+\beta_{1} x_{1}+\cdots+\beta_{p} x_{p}\right)}{1+\exp \left(\alpha+\beta_{1} x_{1}+\cdots+\beta_{p} x_{p}\right)}
$$

Can we estimate the coefficients α and β_{i} 's of the prospective probabilities using retrospective data?

- The intercept α cannot be estimated from retrospective data
- The coefficient β_{i} for X_{i} can be estimated from retrospective data if neither the probability that a case $(Y=1)$ is selected nor the probability that a control $(Y=0)$ is selected depend on X_{i}
- The prospective probability $P\left(Y=1 \mid X_{1}, X_{2}, \ldots, X_{p}\right)$ cannot be estimated from retrospective data

Why Can Prospective β_{i} 's Be Estimated Retrospectively?

For demonstration purpose, we use logistic regression with 2 predictors X_{1} and X_{2} as an example. Let

$$
\begin{aligned}
\rho_{1, x_{1}, x_{2}}= & P\left(\text { selected } \mid Y=1, X_{1}=x_{1}, X_{2}=x_{2}\right) \\
= & \text { the chance that a diseased case with } X_{1}=x_{1}, X_{2}=x_{2} \\
& \quad \text { is included in the data } \\
\rho_{0, x_{1}, x_{2}}= & P\left(\text { selected } \mid Y=0, X_{1}=x_{1}, X_{2}=x_{2}\right) \\
= & \text { the chance that a control case with } X_{1}=x_{1}, X_{2}=x_{2} \\
& \quad \text { is included in the data }
\end{aligned}
$$

As the disease is usually rare, to get enough diseased cases in the sample, usually in a retrospective study, the sampling rate among diseased cases $\rho_{1, x_{1}, x_{2}}$ is much higher than the sampling rate among the control $\rho_{0, x_{1}, x_{2}}$.

Why Can Prospective β_{i} 's Be Estimated Retrospectively?

Assume the correct model if the data are obtained prospectively is

$$
P\left(Y=1 \mid x_{1}, x_{2}\right)=\frac{\exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right)}{1+\exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right)}
$$

However, what would be the model if the data are obtained retrospectively? That is among the "selected", what's the probability that $Y=1$ given $X_{1}=x_{1}, X_{2}=x_{2}$

$$
P\left(Y=1 \mid \text { selected, } x_{1}, x_{2}\right)=?
$$

Why Can Prospective β_{i} 's Be Estimated Retrospectively?

By Bayes' Theorem,

$$
\begin{aligned}
& P\left(Y=1 \mid \text { selected, } x_{1}, x_{2}\right) \\
= & \frac{P\left(\text { selected } \mid Y=1, x_{1}, x_{2}\right) P\left(Y=1 \mid x_{1}, x_{2}\right)}{P\left(\text { selected } \mid Y=0, x_{1}, x_{2}\right) P\left(Y=0 \mid x_{1}, x_{2}\right)+P\left(\text { selected } \mid Y=1, x_{1}, x_{2}\right) P\left(Y=1 \mid x_{1}, x_{2}\right)} \\
= & \frac{\rho_{1, x_{1}, x_{2}} P\left(Y=1 \mid x_{1}, x_{2}\right)}{\rho_{0, x_{1}, x_{2}} P\left(Y=0 \mid x_{1}, x_{2}\right)+\rho_{1, x_{1}, x_{2}} P\left(Y=1 \mid x_{1}, x_{2}\right)} \\
= & \frac{\rho_{1, x_{1}, x_{2}} P\left(Y=1 \mid x_{1}, x_{2}\right) / P\left(Y=0 \mid x_{1}, x_{2}\right)}{\rho_{0, x_{1}, x_{2}}+\rho_{1, x_{1}, x_{2}} P\left(Y=1 \mid x_{1}, x_{2}\right) / P\left(Y=0 \mid x_{1}, x_{2}\right)} \quad\binom{\text { divide both top and }}{\text { bottom by } P\left(Y=0 \mid x_{1}, x_{2}\right)} \\
= & \frac{\rho_{1, x_{1}, x_{2}} \exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right)}{\rho_{0, x_{1}, x_{2}}+\rho_{1, x_{1}, x_{2}} \exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right)}
\end{aligned}
$$

$$
\text { where } P\left(Y=1 \mid x_{1}, x_{2}\right) / P\left(Y=0 \mid x_{1}, x_{2}\right)=\exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right) \text { because we }
$$

$$
\text { assume the correct prospective model to be } P\left(Y=1 \mid x_{1}, x_{2}\right)=\frac{\exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right)}{1+\exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right)} \text {. }
$$

Why Can Prospective β_{i} 's Be Estimated Retrospectively?

If the sampling rates $\rho_{1, x_{1}, x_{2}}=\rho_{1}$ and $\rho_{0, x_{1}, x_{2}}=\rho_{0}$ do NOT depend on the predictors x_{1} and x_{2}, then

$$
\begin{aligned}
P\left(Y=1 \mid \text { selected }, x_{1}, x_{2}\right) & =\frac{\rho_{1, x_{1}, x_{2}} \exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right)}{\rho_{0, x_{1}, x_{2}}+\rho_{1, x_{1}, x_{2}} \exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right)} \\
& =\frac{\rho_{1} \exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right)}{\rho_{0}+\rho_{1} \exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right)} \\
& =\frac{\left(\rho_{1} / \rho_{0}\right) \exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right)}{1+\left(\rho_{1} / \rho_{0}\right) \exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right)} \\
& =\frac{\exp \left(\alpha^{\prime}+\beta_{1} x_{1}+\beta_{2} x_{2}\right)}{1+\exp \left(\alpha^{\prime}+\beta_{1} x_{1}+\beta_{2} x_{2}\right)} \text { where } \alpha^{\prime}=\alpha+\log \left(\rho_{1} / \rho_{0}\right) .
\end{aligned}
$$

We can thus estimate the β_{j} 's for a prospective model using retrospective since the retrospective data follow a logistic model $P\left(Y=1 \mid\right.$ selected, $\left.x_{1}, x_{2}\right)$ with identical β_{j} 's for predictors as those for the prospective model $P\left(Y=1 \mid x_{1}, x_{2}\right)=\frac{\exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right)}{1+\exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right)}$. Only the intercept is different.

Caution: Cannot Estimate Some β_{i} 's Retrospectively if ...

If the sampling rates $\rho_{1, x_{1}, x_{2}}=\rho_{1, x_{2}}$ and $\rho_{0, x_{1}, x_{2}}=\rho_{0, x_{2}}$ depend x_{2} but not x_{1}, then

$$
\begin{aligned}
P\left(Y=1 \mid \text { selected }, x_{1}, x_{2}\right) & =\frac{\rho_{1, x_{1}, x_{2}} \exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right)}{\rho_{0, x_{1}, x_{2}}+\rho_{1, x_{1}, x_{2}} \exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right)} \\
& =\frac{\rho_{1, x_{2}} \exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right)}{\rho_{0, x_{2}}+\rho_{1, x_{2}} \exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right)} \\
& =\frac{\left(\rho_{1, x_{2}} / \rho_{0, x_{2}}\right) \exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right)}{1+\left(\rho_{1, x_{2}} / \rho_{0, x_{2}}\right) \exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}\right)} \\
& =\frac{\exp \left(\beta_{1} x_{1}+c\left(x_{2}\right)\right)}{1+\exp \left(\beta_{1} x_{1}+c\left(x_{2}\right)\right)}
\end{aligned}
$$

where $c\left(x_{2}\right)=\alpha+\log \left(\rho_{1, x_{2}} / \rho_{0, x_{2}}\right)+\beta_{2} x_{2}$.

- The coefficient β_{1} for X_{1} in the retrospective model is identical to the β_{1} in the prospective model
- The intercept, the coefficient β_{2} (and how X_{2} affects Y) in the retrospective model are different.

Logistic Model for Bird-Keeping \& Lung Cancer Data

A logistic model for LC and BK controlling for both AG and YR:

```
fit1 = glm((LC == "LungCancer") ~ BK + AG + YR,
    family=binomial, data=birdkp)
summary(fit1)$coef
    Estimate Std. Error z value Pr}(>|z|
(Intercept) 0.3429642 1.5800186 0.217063 0.82815895
BKNoBird -1.3765591 0.4007298 -3.435130 0.00059227
AG -0.0460982 0.0342995 -1.343989 0.17895188
YR 0.0748529 0.0229553 3.260806 0.00111096
```

In this study, the controls were selected to have same general age distribution as the cancer cases. So the sampling rates ρ_{1} and ρ_{2} depend on AG.

- Can interpret β_{i} 's for BK and YR prospectively.
- CANNOT interpret the intercept and the β for AG prospectively.

```
fit1$coef
(Intercept) 
```

- The odds of lung cancer for bird keepers were $e^{1.376559} \approx 3.961248$ times the odds for non-keepers of the same age and same years of smoking.
- The odds of lung cancer become $e^{0.074853} \approx 1.077726$ times as large for every extra year of smoking, controlling for age and bird-keeping status
fit1\$coef

(Intercept)	BKNoBird	AG	YR
0.3429642	-1.3765591	-0.0460982	0.0748529

CANNOT interpret the coefficient -0.046098 for AG as "the odds of LC become $e^{-0.046098} \approx 0.954948$ times as large for every extra year in age, controlling for BK and YR"

- unreasonable negative coefficient -0.046098 for AG. The odds of disease would increase with age for most chronic diseases. We get this a negative (but insignificant) β because the 98 controls were selected to match the age distribution of the 49 cancer cases. Hence, we cannot infer the age effect on the odds of lung cancer from this study.

fit1\$coef			
(Intercept)	BKNoBird	AG	YR
0.3429642	-1.3765591	-0.0460982	0.0748529

CANNOT estimate $\pi=$ prob. of lung cancer retrospectively. E.g., cannot estimate π for 50-year-old bird keepers with 10 years of smoking as
$\widehat{\pi}=\frac{\exp (0.342964-0.046098 \times 50+0.074853 \times 10)}{1+\exp (0.342964-0.046098 \times 50+0.074853 \times 10)}=0.229097$
predict(fit1, data.frame(BK="Bird", AG=50, YR=10), type="response") 1
0.229097

