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Example: Bumpus Nature Selection Data

In 1899, biologist Hermon Bumpus presented as evidence of
natural selection a comparison of numerical characteristics of 87
moribund house sparrows that were collected after an
uncommonly severe winter storm and which had either perished or
survived as a result of their injuries.

Bumpus asked whether some sparrows were more likely to die
because they lacked some physical characteristics that enables
them to withstand the intensity of the storm1.

bumpus = read.table(

"http://www.stat.uchicago.edu/~yibi/s226/Bumpus.txt",

h = TRUE)

1Data from Exercise 16 in Chapter 20 of The Statistical Sleuth, 3ed, by Ramsey
and Schafer
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Bumpus Data Variables

• Status Survival status, factor with levels “Perished” and
“Survived”

• AG: age, factor with 2 levels: “adult” and “juvenile”
• TL: total length (in mm)
• WT: weight (in grams)
• BH: length of beak and head (in mm)
• HL: length of humerus (arm bone) (in inches)
• FL: length of femur (in inches)
• TT: length of tibio–tarsus (in inches)
• SK: width of skull (in inches)
• KL: length of keel of sternum (in inches)
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Logistic Regression Using TL as the Only Predictor

Status cannot be used directly as the response.

glm(Status ~ TL, family=binomial, data=bumpus)

Error in eval(family$initialize): y values must be 0 <= y <= 1

Need to convert the levels of Status to 0 and 1, or to specify the
“Success” category.

bumpus$Survived = as.numeric(bumpus$Status=="Survived")

glm(Survived ~ TL, family=binomial, data=bumpus)$coef

(Intercept) TL

54.493 -0.337

glm((Status == "Survived") ~ TL, family=binomial, data=bumpus)$coef

(Intercept) TL

54.493 -0.337

Fitted model: π̂(x) =
e54.493−0.337x

1 + e54.493−0.337x
.
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bumpus.fit1 = glm(Survived ~ TL, family=binomial, data=bumpus)

summary(bumpus.fit1)

Call:

glm(formula = Survived ~ TL, family = binomial, data = bumpus)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.030 -1.068 0.522 0.944 1.820

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 54.4931 14.5787 3.74 0.00019

TL -0.3370 0.0906 -3.72 0.00020

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 118.008 on 86 degrees of freedom

Residual deviance: 99.788 on 85 degrees of freedom

AIC: 103.8

Number of Fisher Scoring iterations: 4
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The function geom_smooth() in the ggplot() can overlay the
fitted logistic curve on the scatter plot.

library(ggplot2)

ggplot(bumpus, aes(x=TL, y = Survived)) + geom_point() +

geom_smooth(method = "glm", method.args = list(family = "binomial"))
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ggplot(bumpus, aes(x=TL, fill = Status)) +

geom_histogram(binwidth=1) + theme(legend.position="top")

xtabs(~ TL + Status, data=bumpus)

Status

TL Perished Survived

153 0 1

154 0 2

155 0 2

156 2 5

157 1 2

158 2 8

159 0 5

160 4 12

161 7 4

162 6 2

163 2 5

164 2 1

165 4 1

166 5 1

167 1 0
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ggplot(bumpus, aes(x=TL, fill = Status))+

geom_histogram(position = "fill", binwidth=1) +

ylab("Proportion Survived") +

geom_function(

fun = function(x){exp(54.493-0.337*x)/(1+exp(54.493-0.337*x))},

lwd=1,color="blue"

)
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prop.table(xtabs(~ TL + Status, data=bumpus),1)

Status

TL Perished Survived

153 0.0000 1.0000

154 0.0000 1.0000

155 0.0000 1.0000

156 0.2857 0.7143

157 0.3333 0.6667

158 0.2000 0.8000

159 0.0000 1.0000

160 0.2500 0.7500

161 0.6364 0.3636

162 0.7500 0.2500

163 0.2857 0.7143

164 0.6667 0.3333

165 0.8000 0.2000

166 0.8333 0.1667

167 1.0000 0.0000
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Fitted Logistic Regression Model

π̂(x) =
exp(α̂ + β̂x)

1 + exp(α̂ + β̂x)
=

exp(54.493 − 0.337x)
1 + exp(54.493 − 0.337x)

• β̂ = −0.337 < 0, so π̂ decreases as Total Length (x = TL)
increases⇒ Longer birds are less likely to survive

• Odds of survival were e−0.337 ≈ 0.714 times as large for birds 1
mm longer in total length (TL)

• Point of symmetry:

π̂(x) =
1
2

when x = −
α̂

β̂
= −

54.493
−0.337

= 161.7 mm
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Safer to Use the Likelihood Ratio CIs

95% Likelihood Ratio CI for β:

confint(bumpus.fit1, "TL", level=0.95)

Waiting for profiling to be done...

2.5 % 97.5 %

-0.531 -0.172

95% Likelihood Ratio CI for eβ:

exp(confint(bumpus.fit1, "TL", level=0.95))

Waiting for profiling to be done...

2.5 % 97.5 %

0.588 0.842

Interpretation: With 95% confidence, odds of survival become
e−0.531 ≈ 0.588 to e−0.172 ≈ 0.843 times as large when the bird was
1 mm longer in total length (TL)
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Taking Humerus Length (HL) Into Account

ggplot(bumpus, aes(x=TL, y = HL, color=Status)) +

geom_point()+theme(legend.position="top")

ggplot(bumpus, aes(x=jitter(TL), y = jitter(HL), color=Status)) +

geom_point()+theme(legend.position="top")
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Consider sparrows with the same TL (total length) were those with
longer Humerus (arm bone) more likely to survive? 12



Model with Both HL and TL as Predictors

bumpus.fit2 = glm(Survived ~ TL + HL, family=binomial, data=bumpus)

summary(bumpus.fit2)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) 54.0427 16.3906 3.297 0.000976648

TL -0.6167 0.1393 -4.427 0.000009563

HL 61.7429 16.6296 3.713 0.000204957

Fitted Model:

π̂(x) =
exp(54.043 − 0.6167TL + 61.743HL)

1 + exp(54.043 − 0.6167TL + 61.743HL)

• odds of survival become e61.743×0.01 ≈ 1.85 times as large if the
humerus is 0.01 inches longer for birds with the same total length

• odds of survival become e−0.6167 ≈ 0.54 times as large if the bird is 1
mm longer in total length for birds with the same humerus length
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The values of TL and HL that satisfies

54.043 − 0.617TL + 61.743HL = 0

are those with π̂ = 0.5.
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Points to the right/left of the line have less/greater than 50%
estimated probability of survival. 14



Level Curves of Estimated Probabilities

As π̂ = exp(54.043−0.6167TL+61.743HL)
1+exp(54.043−0.6167TL+61.743HL) , observe

π̂ = c ⇐⇒ exp(54.043 − 0.6167TL + 61.743HL) =
c

1 − c

⇐⇒ 54.043 − 0.6167TL + 61.743HL = log
( c
1 − c

)
The (TL, HL) values with π̂ = c are those on the straight line above
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Weight (WT) Effect After Accounting for TL and HL?
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Legend:

• Red: Perished
• Blue: Survived
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Weight (WT) Effect After Accounting for TL and HL?

bumpus.fit3 = glm(Survived ~ TL + HL + WT, family=binomial,

data=bumpus)

bumpus.fit3$coef

(Intercept) TL HL WT

46.8813 -0.5435 75.4610 -0.5689

drop1(bumpus.fit3, test="Chisq")

Single term deletions

Model:

Survived ~ TL + HL + WT

Df Deviance AIC LRT Pr(>Chi)

<none> 75.1 83.1

TL 1 97.3 103.3 22.18 0.00000248

HL 1 99.5 105.5 24.45 0.00000076

WT 1 80.0 86.0 4.93 0.026
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KL Effect After Accounting for TL, HL, and WT
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KL Effect After Accounting for TL, HL, and WT

bumpus.fit4 = glm(Survived ~ TL + HL + WT + KL, family=binomial, data=bumpus)

drop1(bumpus.fit4, test="Chisq")

Single term deletions

Model:

Survived ~ TL + HL + WT + KL

Df Deviance AIC LRT Pr(>Chi)

<none> 68.6 78.6

TL 1 94.7 102.7 26.09 0.00000033

HL 1 86.7 94.7 18.08 0.00002121

WT 1 76.7 84.7 8.10 0.0044

KL 1 75.1 83.1 6.48 0.0109
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bumpus.fit4$coef

(Intercept) TL HL WT KL

49.9861 -0.6573 72.3327 -0.7896 27.3775

• The coefficients of TL and WT are negative and of HL and KL
are positive,

• While survivors tended to have lower weight (WT) and total
length (TL) for a given weight and total length, the survivors
tended to have larger keels (KL) and larger humeruses (HL)
than the non-survivors.
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