STAT 226 Lecture 15

Case Study: Bumpus Nature Selection Data

Yibi Huang

In 1899, biologist Hermon Bumpus presented as evidence of natural selection a comparison of numerical characteristics of 87 moribund house sparrows that were collected after an uncommonly severe winter storm and which had either perished or survived as a result of their injuries.

Bumpus asked whether some sparrows were more likely to die because they lacked some physical characteristics that enables them to withstand the intensity of the storm¹.

```
bumpus = read.table(
    "http://www.stat.uchicago.edu/~yibi/s226/Bumpus.txt",
    h = TRUE)
```

¹Data from Exercise 16 in Chapter 20 of *The Statistical Sleuth*, 3ed, by Ramsey and Schafer

Bumpus Data Variables

- Status Survival status, factor with levels "Perished" and "Survived"
- AG: age, factor with 2 levels: "adult" and "juvenile"
- TL: total length (in mm)
- WT: weight (in grams)
- BH: length of beak and head (in mm)
- HL: length of humerus (arm bone) (in inches)
- FL: length of femur (in inches)
- TT: length of tibio-tarsus (in inches)
- SK: width of skull (in inches)
- KL: length of keel of sternum (in inches)

Logistic Regression Using TL as the Only Predictor

Status cannot be used directly as the response.

glm(Status ~ TL, family=binomial, data=bumpus)
Error in eval(family\$initialize): y values must be 0 <= y <= 1</pre>

Logistic Regression Using TL as the Only Predictor

Status cannot be used directly as the response.

```
glm(Status ~ TL, family=binomial, data=bumpus)
Error in eval(family$initialize): y values must be 0 <= y <= 1</pre>
```

Need to convert the levels of Status to 0 and 1, or to specify the "Success" category.

bumpus\$Survived = as.numeric(bumpus\$Status=="Survived")
glm(Survived ~ TL, family=binomial, data=bumpus)\$coef
(Intercept) TL
54.493 -0.337
glm((Status == "Survived") ~ TL, family=binomial, data=bumpus)\$coef
(Intercept) TL
54.493 -0.337

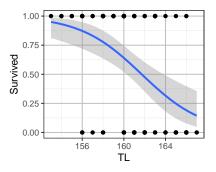
Fitted model:
$$\widehat{\pi}(x) = \frac{e^{54.493 - 0.337x}}{1 + e^{54.493 - 0.337x}}$$

```
bumpus.fit1 = qlm(Survived ~ TL, family=binomial, data=bumpus)
summary(bumpus.fit1)
Call:
glm(formula = Survived ~ TL, family = binomial, data = bumpus)
Deviance Residuals:
  Min 10 Median 30
                                Max
-2.030 -1.068 0.522 0.944 1.820
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 54.4931 14.5787 3.74 0.00019
TL.
           -0.3370 0.0906 -3.72 0.00020
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 118.008 on 86 degrees of freedom
Residual deviance: 99.788 on 85
                                degrees of freedom
ATC: 103.8
```

The function geom_smooth() in the ggplot() can overlay the fitted logistic curve on the scatter plot.

library(ggplot2)
ggplot(bumpus, aes(x=TL, y = Survived)) + geom_point() +
geom_smooth(method = "glm", method.args = list(family = "binomial"))

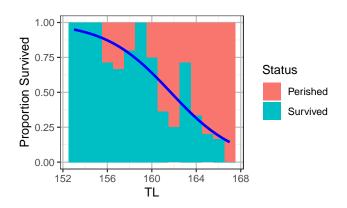
Hard to visually gauge how well the curve fits the data using such a plot.



```
ggplot(bumpus, aes(x=TL, fill = Status)) +
geom_histogram(binwidth=1) + theme(legend.position="top")
```

```
xtabs(~ TL + Status, data=bumpus)
      Status
TL
      Perished Survived
  153
               0
                          1
  154
               0
                          2
  155
               0
                          2
  156
               2
                          5
  157
               1
                          2
  158
               2
                          8
  159
               0
                          5
  160
               4
                        12
  161
               7
                          4
  162
               6
                          2
  163
               2
                          5
  164
               2
  165
               4
                          1
  166
               5
  167
               1
                          0
```

```
ggplot(bumpus, aes(x=TL, fill = Status))+
geom_histogram(position = "fill", binwidth=1) +
ylab("Proportion Survived") +
geom_function(
    fun = function(x){exp(54.493-0.337*x)/(1+exp(54.493-0.337*x))},
    lwd=1,color="blue"
)
```



```
prop.table(xtabs(~ TL + Status, data=bumpus),1)
    Status
```

TL Perished Survived

153	0.0000	1.0000
154	0.0000	1.0000
155	0.0000	1.0000
156	0.2857	0.7143
157	0.3333	0.6667
158	0.2000	0.8000
159	0.0000	1.0000
160	0.2500	0.7500
161	0.6364	0.3636
162	0.7500	0.2500
163	0.2857	0.7143
164	0.6667	0.3333
165	0.8000	0.2000
166	0.8333	0.1667
167	1.0000	0.0000

Fitted Logistic Regression Model

$$\widehat{\pi}(x) = \frac{\exp(\widehat{\alpha} + \widehat{\beta}x)}{1 + \exp(\widehat{\alpha} + \widehat{\beta}x)} = \frac{\exp(54.493 - 0.337x)}{1 + \exp(54.493 - 0.337x)}$$

• $\widehat{\beta} = -0.337 < 0$, so $\widehat{\pi}$ decreases as Total Length (x = TL) increases \Rightarrow Longer birds are less likely to survive

Fitted Logistic Regression Model

$$\widehat{\pi}(x) = \frac{\exp(\widehat{\alpha} + \widehat{\beta}x)}{1 + \exp(\widehat{\alpha} + \widehat{\beta}x)} = \frac{\exp(54.493 - 0.337x)}{1 + \exp(54.493 - 0.337x)}$$

- $\widehat{\beta} = -0.337 < 0$, so $\widehat{\pi}$ decreases as Total Length (x = TL) increases \Rightarrow Longer birds are less likely to survive
- Odds of survival were e^{-0.337} ≈ 0.714 times as large for birds 1 mm longer in total length (TL)

Fitted Logistic Regression Model

$$\widehat{\pi}(x) = \frac{\exp(\widehat{\alpha} + \widehat{\beta}x)}{1 + \exp(\widehat{\alpha} + \widehat{\beta}x)} = \frac{\exp(54.493 - 0.337x)}{1 + \exp(54.493 - 0.337x)}$$

- $\widehat{\beta} = -0.337 < 0$, so $\widehat{\pi}$ decreases as Total Length (x = TL) increases \Rightarrow Longer birds are less likely to survive
- Odds of survival were $e^{-0.337} \approx 0.714$ times as large for birds 1 mm longer in total length (TL)
- Point of symmetry:

$$\widehat{\pi}(x) = \frac{1}{2}$$
 when $x = -\frac{\widehat{\alpha}}{\widehat{\beta}} = -\frac{54.493}{-0.337} = 161.7$ mm

```
95% Likelihood Ratio CI for \beta:
```

```
confint(bumpus.fit1, "TL", level=0.95)
Waiting for profiling to be done...
2.5 % 97.5 %
-0.531 -0.172
```

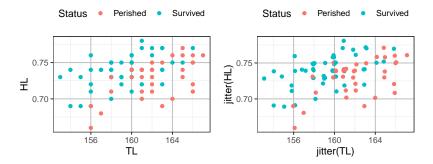
```
95% Likelihood Ratio CI for e^{\beta}:
```

```
exp(confint(bumpus.fit1, "TL", level=0.95))
Waiting for profiling to be done...
2.5 % 97.5 %
0.588 0.842
```

Interpretation: With 95% confidence, odds of survival become $e^{-0.531} \approx 0.588$ to $e^{-0.172} \approx 0.843$ times as large when the bird was 1 mm longer in total length (TL)

Taking Humerus Length (HL) Into Account

ggplot(bumpus, aes(x=TL, y = HL, color=Status)) +
geom_point()+theme(legend.position="top")
ggplot(bumpus, aes(x=jitter(TL), y = jitter(HL), color=Status)) +
geom_point()+theme(legend.position="top")



Consider sparrows with the same TL (total length) were those with longer Humerus (arm bone) more likely to survive?

Model with Both HL and TL as Predictors

<pre>bumpus.fit2 = glm(Survived ~ TL + HL, family=binomial, data=bumpus)</pre>									
<pre>summary(bumpus.fit2)\$coef</pre>									
	Estimate	Std. Error	z valu	$\Pr(z)$					
(Intercept)	54.0427	16.3906	3.29	7 0.000976648					
TL	-0.6167	0.1393	-4.42	7 0.000009563					
HL	61.7429	16.6296	3.71	3 0.000204957					

Fitted Model:

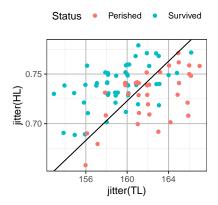
$$\widehat{\pi}(x) = \frac{\exp(54.043 - 0.6167\text{TL} + 61.743\text{HL})}{1 + \exp(54.043 - 0.6167\text{TL} + 61.743\text{HL})}$$

- odds of survival become e^{61.743×0.01} ≈ 1.85 times as large if the humerus is 0.01 inches longer for birds with the same total length
- odds of survival become $e^{-0.6167} \approx 0.54$ times as large if the bird is 1 mm longer in total length for birds with the same humerus length

The values of TL and HL that satisfies

54.043 - 0.617TL + 61.743HL = 0

are those with $\widehat{\pi} = 0.5$.

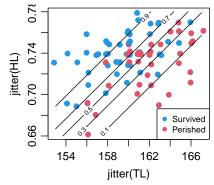


Points to the right/left of the line have less/greater than 50% estimated probability of survival.

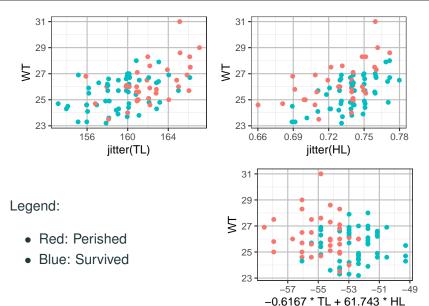
Level Curves of Estimated Probabilities

As
$$\widehat{\pi} = \frac{\exp(54.043 - 0.6167\text{TL} + 61.743\text{HL})}{1 + \exp(54.043 - 0.6167\text{TL} + 61.743\text{HL})}$$
, observe
 $\widehat{\pi} = c \iff \exp(54.043 - 0.6167\text{TL} + 61.743\text{HL}) = \frac{c}{1 - c}$
 $\iff 54.043 - 0.6167\text{TL} + 61.743\text{HL} = \log\left(\frac{c}{1 - c}\right)$

The (TL, HL) values with $\hat{\pi} = c$ are those on the straight line above



Weight (WT) Effect After Accounting for TL and HL?

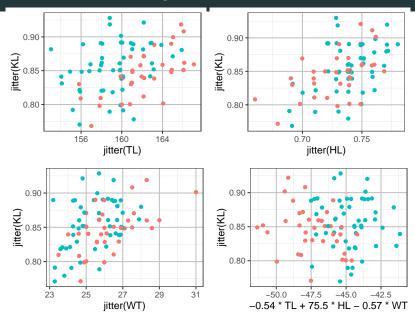


16

Weight (WT) Effect After Accounting for TL and HL?

```
bumpus.fit3 = glm(Survived ~ TL + HL + WT, family=binomial,
                data=bumpus)
bumpus.fit3$coef
(Intercept)
                   TL
                              HL
                                          WT
   46.8813
              -0.5435 75.4610
                                    -0.5689
drop1(bumpus.fit3, test="Chisq")
Single term deletions
Model:
Survived ~ TL + HL + WT
      Df Deviance AIC LRT
                              Pr(>Chi)
            75.1 83.1
<none>
TL.
            97.3 103.3 22.18 0.00000248
       1
HI.
       1
         99.5 105.5 24.45 0.00000076
       1
            80.0 86.0 4.93
                                 0.026
WT
```

KL Effect After Accounting for TL, HL, and WT



```
bumpus.fit4 = glm(Survived ~ TL + HL + WT + KL, family=binomial, data=b
drop1(bumpus.fit4, test="Chisq")
Single term deletions
Model:
Survived ~ TL + HL + WT + KL
      Df Deviance AIC LRT Pr(>Chi)
            68.6 78.6
<none>
         94.7 102.7 26.09 0.00000033
TI.
     1
         86.7 94.7 18.08 0.00002121
HI.
       1
       1
         76.7 84.7 8.10
                                0.0044
WT
KL.
       1 75.1 83.1 6.48
                                0.0109
```

<pre>bumpus.fit4\$coef</pre>									
(Intercept)	TL	HL	WT	KL					
49.9861	-0.6573	72.3327	-0.7896	27.3775					

- The coefficients of TL and WT are negative and of HL and KL are positive,
- While survivors tended to have lower weight (WT) and total length (TL) for a given weight and total length, the survivors tended to have larger keels (KL) and larger humeruses (HL) than the non-survivors.