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Outline

• Models w/ Ordinal Explanatory Variables
• Models Allowing Interactions Btw Explanatory Variables
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Horseshoe Crabs Data

crabs = read.table(

"https://www.stat.uchicago.edu/~yibi/s226/horseshoecrabs.txt",

header=TRUE

)

crabs$has.sate = as.numeric(crabs$Satellites>0)
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Models w/ Ordinal Explanatory
Variables



Models w/ Ordinal Explanatory Variables

• Recall Color of horseshoe crabs is ordinal (light to dark).
Models with dummy variables treat color as nominal.

• To treat Color numerical, could assign scores such as
(1,2,3,4) representing

1 = medium light, 2 = medium, 3 = medium dark, 4 = dark

or the scores (1,1,2,4) representing

1 = medium light, 1 = medium, 2 = medium dark, 4 = dark

or other scores, and then include the score of Color as a
numerical explanatory variable in the model.

logit(π) = α + γc + βx, c: color score, x: width
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Using the score (1,2,3,4), controlling for width, odds of having
satellite(s) become eγ times as large for each 1-category increase
in shell darkness.

Using the score (1,1,2,4),

odds =


exp(α + γ + βx) if med. light or medium

exp(α + 2γ + βx) if med. dark

exp(α + 4γ + βx) if dark

Controlling for width,

• no diff. in the odds of having satellite(s) between med.light-
and medium crabs

• odds for med. dark crabs are eγ times as high as for med.light
and medium crabs

• odds for dark crabs are e2γ times as high as for med. dark

med. light same
= medium

eγ
−→ med. dark

e2γ

−→ dark
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Ordinal Explanatory Variables, Different Scores

Same model as long as scores maintain the same relative
spacings between categories

• so (1,2,3,4), (0,1,2,3), or (0,2,4,6) correspond to the same
model

• but (1,2,3,5) is a different model
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Using the scores (1,2,3,4):

crabs.fit3 = glm(has.sate ~ Color + Width, family=binomial, data=crabs)

summary(crabs.fit3)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -10.0708 2.8068 -3.588 0.00033326

Color -0.5090 0.2237 -2.276 0.02286018

Width 0.4583 0.1040 4.406 0.00001053

Fitted model: logit(π) = −10.071 − 0.509c + 0.458x.

Controlling for width, odds of having satellite(s) is estimated to
become eγ̂ = e−0.509 = 0.601 times as large for each 1-category
increase in shell darkness.
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Using the scores (1,1,2,4):

crabs$Cscore2 = crabs$Color

crabs$Cscore2[crabs$Color == 2] = 1

crabs$Cscore2[crabs$Color == 3] = 2

crabs.fit4 = glm(has.sate ~ Cscore2 + Width, family=binomial, data=crabs)

summary(crabs.fit4)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -10.6906 2.7360 -3.907 0.000093298

Cscore2 -0.4499 0.1760 -2.556 0.010580133

Width 0.4625 0.1045 4.427 0.000009546

• odds for medium dark crabs are estimated to be
exp(̂γ) ≈ exp(−0.45) ≈ 0.64 times as high as for medium light
and medium crabs are estimated to be

• odds for dark crabs are exp(2γ) ≈ e2(−0.45) = 0.41 times as
high compared to medium dark crabs
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Does model treating color as nominal fit as well as model treating it
as numerical with scores (1,2,3,4)?

H0: logit(π) = α + γc + βx (simpler (ordinal) model)

Ha: logit(π) = α + β2c2 + β3c3 + β4c4 + βx (more complex model)

crabs$C = as.factor(crabs$Color)

crabs.fit1 = glm(has.sate ~ C + Width, family=binomial, data=crabs)

anova(crabs.fit3, crabs.fit1, test="Chisq")

Analysis of Deviance Table

Model 1: has.sate ~ Color + Width

Model 2: has.sate ~ C + Width

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 170 189.121

2 168 187.457 2 1.66414 0.43515

LR stat = diff. in deviances = 189.12 − 187.46 = 1.66
d f = 170 − 168 = 2, P-value = 0.4351. Simpler model is adequate.
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Does model treating color as nominal fit as well as model treating it
as numerical with scores (1,1,2,4)?

anova(crabs.fit4, crabs.fit1, test="Chisq")

Analysis of Deviance Table

Model 1: has.sate ~ Cscore2 + Width

Model 2: has.sate ~ C + Width

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 170 187.658

2 168 187.457 2 0.200872 0.90444

LR stat = diff. in deviances = 187.66 − 187.46 = 0.2
d f = 170 − 168 = 2, P-value = 0.9044
Simpler model is adequate.
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Models Allowing Interactions



Models Allowing Color*Width Interactions

‘ logit(π) = α + β2c2 + β3c3 + β4c4 + βx + γ2c2x + γ3c3x + γ4c4x

=


α + βx if medium light
α + β2 + (β + γ2)x if medium
α + β3 + (β + γ3)x if medium dark
α + β4 + (β + γ4)x if dark

Different colors have different coefficient for “Width.”
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odds = exp(α + β2c2 + β3c3 + β4c4 + βx + γ2c2x + γ3c3x + γ4c4x)

=


exp(α + βx) if medium light

exp(α + β2 + (β + γ2)x) if medium

exp(α + β3 + (β + γ3)x) if medium dark

exp(α + β4 + (β + γ4)x) if dark

For every 1 cm increase in width, the odds of having satellite(s)
become

• exp(β) times as large for medium light crabs
• exp(β + γ2) times as large for medium crabs
• exp(β + γ3) times as large for medium dark crabs
• exp(β + γ4) times as large for dark crabs

⇒ Width effect changes with Color
— No homogeneous association
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odds = exp(α + β2c2 + β3c3 + β4c4 + βx + γ2c2x + γ3c3x + γ4c4x)

=


exp(α + βx) if medium light

exp(α + β2 + (β + γ2)x) if medium

exp(α + β3 + (β + γ3)x) if medium dark

exp(α + β4 + (β + γ4)x) if dark

Controlling for Width = x,

odds for medium crabs
odds for med. light crabs

=
eα+β2+(β+γ2)x

eα+βx
= exp(β2 + γ2x)

Similarly,

• odds for med. dark crabs are exp(β3 + γ3x) times as large
• odds for dark crabs are exp(β4 + γ4x) times as large

compared to med. light crabs.

⇒ Color effect changes with Width (x) — No homo. association
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crabs.fit5 = glm(has.sate ~ C + Width + C*Width,

family=binomial, data=crabs)

summary(crabs.fit5)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.75261 11.4641 -0.1529 0.8785

C2 -8.28735 12.0036 -0.6904 0.4899

C3 -19.76545 13.3425 -1.4814 0.1385

C4 -4.10122 13.2753 -0.3089 0.7574

Width 0.10600 0.4266 0.2485 0.8037

C2:Width 0.31287 0.4479 0.6985 0.4849

C3:Width 0.75237 0.5043 1.4918 0.1358

C4:Width 0.09443 0.5004 0.1887 0.8503
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Test of Interaction = Test of Homogeneous Association

Testing H0: no interaction (γ2 = γ3 = γ4 = 0)

anova(crabs.fit1,crabs.fit5,test="Chisq")

Analysis of Deviance Table

Model 1: has.sate ~ C + Width

Model 2: has.sate ~ C + Width + C * Width

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 168 187.457

2 165 183.081 3 4.37641 0.22358

LR stat = diff. in deviances = 187.46 − 183.08 = 4.3764
d f = 168 − 165 = 3, P-value = 0.2236

Simpler model is adequate (no interaction).
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Models w/ Two Categorical
Predictors & Their Interactions



Example: Smoking & Longivity Revisit

A survey during 1972-74 recruited 1314 women in the United
Kingdom and asked if they smoked. Twenty years later, a follow-up
survey determined whether each woman was deceased or still
alive. The table below shows the result by the the women’s age in
the first survey (1972-74).

Age 18-34 35-54 55-64 65+
Dead Alive Dead Alive Dead Alive Dead Alive

Smoker 5 174 41 198 51 64 42 7
Nonsmoker 6 213 19 180 40 81 165 28
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Model: logit(π) = α + βx + β35A35 + β55A55 + β65A65

π = P(Death)

x =

1 if smoker
0 if nonsmoker

A35 =

1 if Age = 35-54
0 otherwise

A55 =

1 if Age = 55-64
0 otherwise

A65 =

1 if Age = 65+
0 otherwise

Age Smoker logit(π)
18-34 N α

Y α + β

35-54 N α + + β35

Y α + β + β35

55-64 N α + + β55

Y α + β + β55

65+ N α + + β65

Y α + β + β65
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Homogeneous Association

The model

logit(π) = α + βx + β35A35 + β55A55 + β65A65

has no interaction term, which means the same conditional odds
ratio

odds for smokers
odds for nonsmokers

=
eα+β+β35A35+β55A55+β65A65

eα+β35A35+β55A55+β65A65
= eβ

for all 4 age groups. That is homogeneous association — same
conditional odds ratio at each level of other variable.

Likewise, the conditional odds ratio for “Age” is also constant
regardless of smoking status.

odds for 35-54 age group
odds for 18-34 age group

=
eα+βx+β35

eα+βx
= eβ35
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Age 18-34 35-54 55-64 65+
Dead Alive Dead Alive Dead Alive Dead Alive

Smoker 5 174 41 198 51 64 42 7
Nonsmoker 6 213 19 180 40 81 165 28

Dead = c(5, 6, 41, 19, 51, 40, 42, 165)

Alive = c(174, 213, 198, 180, 64, 81, 7, 28)

Smoker = rep(c("Y","N"), 4)

Age = c("18-34","18-34","35-54","35-54","55-64","55-64","65+", "65+")

UKSmoke = data.frame(Smoker, Age, Dead, Alive)

UKSmoke

Smoker Age Dead Alive

1 Y 18-34 5 174

2 N 18-34 6 213

3 Y 35-54 41 198

4 N 35-54 19 180

5 Y 55-64 51 64

6 N 55-64 40 81

7 Y 65+ 42 7

8 N 65+ 165 28
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fit1 = glm(cbind(Dead, Alive) ~ Smoker + Age,

family = binomial, data=UKSmoke)

summary(fit1)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.787 0.3212 -11.790 4.378e-32

SmokerY 0.450 0.1757 2.561 1.044e-02

Age35-54 1.683 0.3364 5.001 5.702e-07

Age55-64 3.096 0.3343 9.260 2.050e-20

Age65+ 5.484 0.3635 15.088 1.945e-51

Controlling for Age, odds of death for smokers are estimated to be
eβ̂ = e0.45 ≈ 1.5684 times the odds for nonsmokers.

95% Wald CI for eβ:

eβ̂±1.96×SE ≈ e0.45±1.96×0.176 ≈ (e0.106, e0.794) ≈ (1.111, 2.213)

Significant adverse effect of smoking after accounting for Age.
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95% Likelihood Ratio CIs for β & eβ:

confint(fit1, test="Chisq")

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) -4.4752 -3.2053

SmokerY 0.1087 0.7984

Age35-54 1.0625 2.3940

Age55-64 2.4821 3.8046

Age65+ 4.8126 6.2466

exp(confint(fit1, test="Chisq"))

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) 0.01139 0.04055

SmokerY 1.11487 2.22206

Age35-54 2.89368 10.95714

Age55-64 11.96609 44.90573

Age65+ 123.04669 516.25855

At 95% confidence, the odds of death for smokers are 1.115 to
2.222 times the odds for nonsmokers in the same age group. 21



Estimation of Common Odds Ratio

• MH estimate of the common odds ratio (See Slides L08.pdf).

• In the logistic regression model:

logit(π) = α + βx + β35A35 + β55A55 + β65A65,

eβ is the common odds ratio, and eβ̂ is the maximum likelihood
estimate (MLE) for the common odds ratio. One can construct
the Wald or LR confidence interval for eβ (See the previous
two pages).

• MH estimate is preferred over MLE of the common odds ratio.
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Tests of Conditional Independence

In the model

logit(π) = α + βx + β35A35 + β55A55 + β65A65,

β = 0 means conditional odds ratio eβ = e0 = 1, i.e., survival and
smoking are conditionally independent given age.

Tests of conditional independence:

• CMH test
• In fact, CMH test is the score test of β = 0 in the logistic model

• Wald test of β = 0 in the logistic model
• LR test of β = 0 in the logistic model
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Wald test of conditional independence gives P-value ≈ 0.0104

summary(fit1)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.787 0.3212 -11.790 4.378e-32

SmokerY 0.450 0.1757 2.561 1.044e-02

Age35-54 1.683 0.3364 5.001 5.702e-07

Age55-64 3.096 0.3343 9.260 2.050e-20

Age65+ 5.484 0.3635 15.088 1.945e-51

LR test of conditional independence gives P-value ≈ 0.0096:

drop1(fit1, "Smoker", test="Chisq")

Single term deletions

Model:

cbind(Dead, Alive) ~ Smoker + Age

Df Deviance AIC LRT Pr(>Chi)

<none> 1.93 48.1

Smoker 1 8.64 52.8 6.71 0.0096

CMH test gives the P-value 0.0103 (See Week 4 Problem
Session).
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Comparison of the Three Tests of Conditional Independence

• The 3 tests usually agree when the sample sizes in each
partial table are big enough

• Wald and LR tests require the sample size in each partial
table to be large enough

• CMH test can work when the counts in the partial tables are
small as long as the overall count is large enough

• In Ha, Wald and LR tests assume homogeneous association,
but CMH test does not assume equality of odds ratios

• To sum up, for testing conditional independence in 2 × 2 × K
tables, CMH test is preferred over Wald or LR tests.
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Test of Homogeneous Association

The conditional odds ratios of smoking status and survival for the 4
age groups are as follows.

Age 18-34 35-54 55-64 65+
Dead Alive Dead Alive Dead Alive Dead Alive

Smoker 5 174 41 198 51 64 42 7
Nonsmoker 6 213 19 180 40 81 165 28
Odds Ratio 5×213

174×6 ≈ 1.02 41×180
198×19 ≈ 1.962 51×81

64×40 ≈ 1.614 42×28
7×165 ≈ 1.018

How to test if the 4 partial tables above have homogeneous
association (identical conditional odds ratio)?
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Test of Homogeneous Association

If we include the interaction term,

Model 2: logit(π) = α + βx + β35A35 + β55A55 + β65A65

+ γ35xA35 + γ55xA65 + γ65xA65,

the conditional odds ratio

odds for Smokers
odds for Nonsmokers

=
eα+β+β35A35+β55A55+β65A65+γ35 xA35+γ55 xA65+γ65 xA65

eα+β35A35+β55A55+β65A65

= eβ+γ35 xA35+γ55 xA65+γ65 xA65

changes with Age, if any of γ35, γ55, γ65 , 0.

H0: γ35 = γ55 = γ65 = 0 means homogeneous association.
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Test of Homogeneous Association

fit2 = glm(cbind(Dead, Alive) ~ Smoker + Age + Smoker*Age,

family = binomial, data=UKSmoke)

anova(fit1, fit2, test="Chisq")

Analysis of Deviance Table

Model 1: cbind(Dead, Alive) ~ Smoker + Age

Model 2: cbind(Dead, Alive) ~ Smoker + Age + Smoker * Age

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 3 1.9264

2 0 0.0000 3 1.9264 0.58782

From the large P-value, we see no significant difference in the
conditional odds ratios. The effect of smoking on the odds of death
didn’t change significantly with age.
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Homogeneous Association v.s. Conditional Independence

To know whether Smoking and Survival were homogeneously
associated given Age, i.e., whether the effect of Smoking on the
odds of death changes with Age,

• test the significance of the interaction Smoker*Age.

To test whether Smoking and Survival were conditionally
independent given Age, conduct a LRT test comparing the models

• ~ Smoker + Age

• ~ Age
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