STAT 226 Lecture 14

Yibi Huang

- Models w/ Ordinal Explanatory Variables
- Models Allowing Interactions Btw Explanatory Variables

```
crabs = read.table(
    "https://www.stat.uchicago.edu/~yibi/s226/horseshoecrabs.txt",
    header=TRUE
)
crabs$has.sate = as.numeric(crabs$Satellites>0)
```

Models w/ Ordinal Explanatory Variables

Models w/ Ordinal Explanatory Variables

- Recall Color of horseshoe crabs is ordinal (light to dark). Models with dummy variables treat color as nominal.
- To treat Color numerical, could assign *scores* such as (1,2,3,4) representing

1 =medium light, 2 =medium, 3 =medium dark, 4 =dark

or the scores (1,1,2,4) representing

1 = medium light, 1 = medium, 2 = medium dark, 4 = dark

or other scores, and then include the *score* of Color as a **numerical explanatory variable** in the model.

 $logit(\pi) = \alpha + \gamma c + \beta x$, *c*: color score, *x*: width

Using the score (1,2,3,4), controlling for width, odds of having satellite(s) become e^{γ} times as large for each 1-category increase in shell darkness.

Using the score (1,2,3,4), controlling for width, odds of having satellite(s) become e^{γ} times as large for each 1-category increase in shell darkness.

Using the score (1, 1, 2, 4),

 $\mathsf{odds} = \begin{cases} \exp(\alpha + \gamma + \beta x) & \text{if med. light or medium} \\ \exp(\alpha + 2\gamma + \beta x) & \text{if med. dark} \\ \exp(\alpha + 4\gamma + \beta x) & \text{if dark} \end{cases}$

Controlling for width,

- no diff. in the odds of having satellite(s) between med.lightand medium crabs
- odds for med. dark crabs are e^γ times as high as for med.light and medium crabs
- odds for dark crabs are $e^{2\gamma}$ times as high as for med. dark

med. light $\stackrel{same}{=}$ medium $\stackrel{e^{\gamma}}{\longrightarrow}$ med. dark $\stackrel{e^{2\gamma}}{\longrightarrow}$ dark

Same model as long as scores maintain the same relative spacings between categories

- so (1,2,3,4), (0,1,2,3), or (0,2,4,6) correspond to the same model
- but (1,2,3,5) is a different model

Using the scores (1,2,3,4):

crabs.fit3 =	= glm(has.	sate ~ Colo	or + Widt	h, <mark>family=</mark> bi	nomial, (<mark>data=c</mark> rabs)
summary(cral	os.fit3)\$c	oef				
	Estimate	Std. Error	z value	Pr(> z)		
(Intercept)	-10.0708	2.8068	-3.588	0.00033326		
Color	-0.5090	0.2237	-2.276	0.02286018		
Width	0.4583	0.1040	4.406	0.00001053		

Fitted model: $logit(\pi) = -10.071 - 0.509c + 0.458x$.

Controlling for width, odds of having satellite(s) is estimated to become $e^{\widehat{\gamma}} = e^{-0.509} = 0.601$ times as large for each 1-category increase in shell darkness.

```
Using the scores (1,1,2,4):
```

- odds for medium dark crabs are estimated to be $exp(\widehat{\gamma}) \approx exp(-0.45) \approx 0.64$ times as high as for medium light and medium crabs are estimated to be
- odds for dark crabs are exp(2γ) ≈ e^{2(-0.45)} = 0.41 times as high compared to medium dark crabs

Does model treating color as nominal fit as well as model treating it as numerical with scores (1,2,3,4)?

H₀: logit(π) = $\alpha + \gamma c + \beta x$ (simpler (ordinal) model) H_a : logit(π) = α + $\beta_2 c_2$ + $\beta_3 c_3$ + $\beta_4 c_4$ + βx (more complex model) crabs\$C = as.factor(crabs\$Color) crabs.fit1 = glm(has.sate ~ C + Width, family=binomial, data=crabs) anova(crabs.fit3, crabs.fit1, test="Chisq") Analysis of Deviance Table Model 1: has.sate ~ Color + Width Model 2: has.sate ~ C + Width Resid. Df Resid. Dev Df Deviance Pr(>Chi) 1 170 189,121 2 168 187.457 2 1.66414 0.43515

LR stat = diff. in deviances = 189.12 - 187.46 = 1.66df = 170 - 168 = 2, *P*-value = 0.4351. Simpler model is adequate. Does model treating color as nominal fit as well as model treating it as numerical with scores (1,1,2,4)?

```
anova(crabs.fit4, crabs.fit1, test="Chisq")
Analysis of Deviance Table
Model 1: has.sate ~ Cscore2 + Width
Model 2: has.sate ~ C + Width
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 170 187.658
2 168 187.457 2 0.200872 0.90444
```

LR stat = diff. in deviances = 187.66 - 187.46 = 0.2df = 170 - 168 = 2, *P*-value = 0.9044Simpler model is adequate.

Models Allowing Interactions

Models Allowing Color*Width Interactions

$$\log \operatorname{it}(\pi) = \alpha + \beta_2 c_2 + \beta_3 c_3 + \beta_4 c_4 + \beta x + \gamma_2 c_2 x + \gamma_3 c_3 x + \gamma_4 c_4 x$$

$$= \begin{cases} \alpha + \beta x & \text{if medium light} \\ \alpha + \beta_2 + (\beta + \gamma_2) x & \text{if medium} \\ \alpha + \beta_3 + (\beta + \gamma_3) x & \text{if medium dark} \\ \alpha + \beta_4 + (\beta + \gamma_4) x & \text{if dark} \end{cases}$$

Different colors have different coefficient for "Width."

$$\mathsf{podds} = \exp(\alpha + \beta_2 c_2 + \beta_3 c_3 + \beta_4 c_4 + \beta x + \gamma_2 c_2 x + \gamma_3 c_3 x + \gamma_4 c_4 x)$$

$$= \begin{cases} \exp(\alpha + \beta x) & \text{if medium light} \\ \exp(\alpha + \beta_2 + (\beta + \gamma_2)x) & \text{if medium} \\ \exp(\alpha + \beta_3 + (\beta + \gamma_3)x) & \text{if medium dark} \\ \exp(\alpha + \beta_4 + (\beta + \gamma_4)x) & \text{if dark} \end{cases}$$

For every 1 cm increase in width, the odds of having satellite(s) become

- $exp(\beta)$ times as large for medium light crabs
- $\exp(\beta + \gamma_2)$ times as large for medium crabs
- $\exp(\beta + \gamma_3)$ times as large for medium dark crabs
- $\exp(\beta + \gamma_4)$ times as large for dark crabs
- \Rightarrow Width effect changes with Color
- No homogeneous association

$$\mathsf{odds} = \exp(\alpha + \beta_2 c_2 + \beta_3 c_3 + \beta_4 c_4 + \beta x + \gamma_2 c_2 x + \gamma_3 c_3 x + \gamma_4 c_4 x)$$
$$= \begin{cases} \exp(\alpha + \beta x) & \text{if medium light} \\ \exp(\alpha + \beta_2 + (\beta + \gamma_2) x) & \text{if medium} \\ \exp(\alpha + \beta_3 + (\beta + \gamma_3) x) & \text{if medium dark} \\ \exp(\alpha + \beta_4 + (\beta + \gamma_4) x) & \text{if dark} \end{cases}$$

Controlling for Width = x,

 $\frac{\text{odds for medium crabs}}{\text{odds for med. light crabs}} = \frac{e^{\alpha + \beta_2 + (\beta + \gamma_2)x}}{e^{\alpha + \beta x}} = \exp(\beta_2 + \gamma_2 x)$

Similarly,

- odds for med. dark crabs are $\exp(\beta_3 + \gamma_3 x)$ times as large
- odds for dark crabs are $\exp(\beta_4 + \gamma_4 x)$ times as large

compared to med. light crabs.

 \Rightarrow Color effect changes with Width (x) — No homo. association

```
crabs.fit5 = glm(has.sate ~ C + Width + C*Width,
                family=binomial, data=crabs)
summary(crabs.fit5)$coef
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.75261
                     11.4641 -0.1529
                                      0.8785
C2
          -8.28735 12.0036 -0.6904 0.4899
C3
          -19.76545 13.3425 -1.4814
                                      0.1385
C4
           -4.10122
                     13.2753 -0.3089
                                      0.7574
Width
            0.10600 0.4266 0.2485
                                      0.8037
C2:Width
           0.31287 0.4479 0.6985
                                      0.4849
C3:Width
           0.75237 0.5043 1.4918
                                      0.1358
C4:Width
                      0.5004 0.1887
                                      0.8503
            0.09443
```

Testing H₀: no interaction ($\gamma_2 = \gamma_3 = \gamma_4 = 0$)

```
anova(crabs.fit1,crabs.fit5,test="Chisq")
Analysis of Deviance Table
Model 1: has.sate ~ C + Width
Model 2: has.sate ~ C + Width + C * Width
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 168 187.457
2 165 183.081 3 4.37641 0.22358
```

LR stat = diff. in deviances = 187.46 - 183.08 = 4.3764df = 168 - 165 = 3, *P*-value = 0.2236

Simpler model is adequate (no interaction).

Models w/ Two Categorical Predictors & Their Interactions

A survey during 1972-74 recruited 1314 women in the United Kingdom and asked if they smoked. Twenty years later, a follow-up survey determined whether each woman was deceased or still alive. The table below shows the result by the the women's age in the first survey (1972-74).

Age	18-	34	35-	-54	55-	64	65	+
	Dead	Alive	Dead	Alive	Dead	Alive	Dead	Alive
Smoker	5	174	41	198	51	64	42	7
Nonsmoker	6	213	19	180	40	81	165	28

Model: logit(π) = $\alpha + \beta x + \beta_{35}A_{35} + \beta_{55}A_{55} + \beta_{65}A_{65}$

 $\pi = P(Death)$ $x = \begin{cases} 1 & \text{if smoker} \\ 0 & \text{if nonsmoker} \end{cases}$ $A_{35} = \begin{cases} 1 & \text{if Age} = 35-54 \\ 0 & \text{otherwise} \end{cases}$ $A_{55} = \begin{cases} 1 & \text{if Age} = 55\text{-}64 \\ 0 & \text{otherwise} \end{cases}$ $A_{65} = \begin{cases} 1 & \text{if Age} = 65 + \\ 0 & \text{otherwise} \end{cases}$

Age	Smoker	$logit(\pi)$
18-34	Ν	α
	Υ	$\alpha + \beta$
35-54	Ν	α + + β_{35}
	Y	$\alpha + \beta + \beta_{35}$
55-64	Ν	α + + β_{55}
	Y	$\alpha + \beta + \beta_{55}$
65+	Ν	α + + β_{65}
	Υ	$\alpha+\beta+\beta_{65}$

The model

$$logit(\pi) = \alpha + \beta x + \beta_{35}A_{35} + \beta_{55}A_{55} + \beta_{65}A_{65}$$

has **no interaction term**, which means the same conditional odds ratio

 $\frac{\text{odds for smokers}}{\text{odds for nonsmokers}} = \frac{e^{\alpha + \beta + \beta_{35}A_{35} + \beta_{55}A_{55} + \beta_{65}A_{65}}}{e^{\alpha + \beta_{35}A_{35} + \beta_{55}A_{55} + \beta_{65}A_{65}}} = e^{\beta}$

for all 4 age groups. That is *homogeneous association* — same conditional odds ratio at each level of other variable.

Likewise, the conditional odds ratio for "Age" is also constant regardless of smoking status.

 $\frac{\text{odds for 35-54 age group}}{\text{odds for 18-34 age group}} = \frac{e^{\alpha + \beta x + \beta_{35}}}{e^{\alpha + \beta x}} = e^{\beta_{35}}$

Age	18-	34	35-	-54	55-	64	65	+
	Dead	Alive	Dead	Alive	Dead	Alive	Dead	Alive
Smoker	5	174	41	198	51	64	42	7
Nonsmoker	6	213	19	180	40	81	165	28

Dead = c(5, 6, 41, 19, 51, 40, 42, 165)

Alive = c(174, 213, 198, 180, 64, 81, 7, 28)

Smoker = rep(c("Y","N"), 4)

Age = c("18-34","18-34","35-54","35-54","55-64","55-64","65+", "65+") UKSmoke = data.frame(Smoker, Age, Dead, Alive)

UKSmoke

	Smoker	Age	Dead	Alive
1	Y	18-34	5	174
2	N	18-34	6	213
3	Y	35-54	41	198
4	N	35-54	19	180
5	Y	55-64	51	64
6	N	55-64	40	81
7	Y	65+	42	7
8	N	65+	165	28

fit1 = glm(e	cbind(Dead, Al	live) ~	Smoker +	⊦ Age,					
	<pre>family = bin</pre>	nomial,	data=UKS	Smoke)					
<pre>summary(fit1)\$coef</pre>									
	Estimate Std	. Error	z value	Pr(> z)					
(Intercept)	-3.787	0.3212	-11.790	4.378e-32					
SmokerY	0.450	0.1757	2.561	1.044e-02					
Age35- <mark>54</mark>	1.683	0.3364	5.001	5.702e-07					
Age55- <mark>64</mark>	3.096	0.3343	9.260	2.050e-20					
Age65+	5.484	0.3635	15.088	1.945e-51					

Controlling for Age, odds of death for smokers are estimated to be $e^{\widehat{\beta}} = e^{0.45} \approx 1.5684$ times the odds for nonsmokers.

95% Wald CI for e^{β} :

$$e^{\widehat{\beta} \pm 1.96 \times \text{SE}} \approx e^{0.45 \pm 1.96 \times 0.176} \approx (e^{0.106}, e^{0.794}) \approx (1.111, 2.213)$$

Significant adverse effect of smoking after accounting for Age.

95% Likelihood Ratio CIs for $\beta \& e^{\beta}$:

<pre>confint(fit)</pre>	l, test="Chisq")
Waiting for	profiling to be done
	2.5 % 97.5 %
(Intercept)	-4.4752 -3.2053
SmokerY	0.1087 0.7984
Age35- <mark>54</mark>	1.0625 2.3940
Age55- <mark>64</mark>	2.4821 3.8046
Age65+	4.8126 6.2466
exp(confint)	(fit1, test="Chisq"))
Waiting for	profiling to be done
	2.5 % 97.5 %
(Intercept)	0.01139 0.04055
SmokerY	1.11487 2.22206
Age35-54	2.89368 10.95714
Age55- <mark>64</mark>	11.96609 44.90573
Age65+	123.04669 516.25855

At 95% confidence, the odds of death for smokers are 1.115 to 2.222 times the odds for nonsmokers in the same age group.

- MH estimate of the common odds ratio (See Slides L08.pdf).
- In the logistic regression model:

$$logit(\pi) = \alpha + \beta x + \beta_{35}A_{35} + \beta_{55}A_{55} + \beta_{65}A_{65},$$

 e^{β} is the common odds ratio, and $e^{\widehat{\beta}}$ is the maximum likelihood estimate (MLE) for the common odds ratio. One can construct the Wald or LR confidence interval for e^{β} (See the previous two pages).

• MH estimate is preferred over MLE of the common odds ratio.

In the model

$$logit(\pi) = \alpha + \beta x + \beta_{35}A_{35} + \beta_{55}A_{55} + \beta_{65}A_{65},$$

 $\beta = 0$ means conditional odds ratio $e^{\beta} = e^{0} = 1$, i.e., survival and smoking are **conditionally independent** given age.

Tests of conditional independence:

- CMH test
 - In fact, CMH test is the score test of $\beta = 0$ in the logistic model
- Wald test of $\beta = 0$ in the logistic model
- LR test of $\beta = 0$ in the logistic model

Wald test of conditional independence gives P-value ≈ 0.0104

<pre>summary(fit1)\$coef</pre>									
	Estimate	Std. Error	z value	Pr(z)					
(Intercept)	-3.787	0.3212	-11.790	4.378e-32					
SmokerY	0.450	0.1757	2.561	1.044e-02					
Age35- <mark>54</mark>	1.683	0.3364	5.001	5.702e-07					
Age55- <mark>64</mark>	3.096	0.3343	9.260	2.050e-20					
Age65+	5.484	0.3635	15.088	1.945e-51					

LR test of conditional independence gives *P*-value ≈ 0.0096 :

```
drop1(fit1, "Smoker", test="Chisq")
Single term deletions
Model:
cbind(Dead, Alive) ~ Smoker + Age
        Df Deviance AIC LRT Pr(>Chi)
<none>        1.93 48.1
Smoker 1        8.64 52.8 6.71       0.0096
CMH test gives the P-value 0.0103 (See Week 4 Problem
Session).
```

- The 3 tests usually agree when the sample sizes in each partial table are big enough
- Wald and LR tests require the sample size in each partial table to be large enough
- CMH test can work when the counts in the partial tables are small as long as the overall count is large enough
- In H_a, Wald and LR tests assume homogeneous association, but CMH test does not assume equality of odds ratios
- To sum up, for testing conditional independence in 2 × 2 × K tables, CMH test is preferred over Wald or LR tests.

The conditional odds ratios of smoking status and survival for the 4 age groups are as follows.

Age	18-34		35-54		55-64		65+	
	Dead	Alive	Dead	Alive	Dead	Alive	Dead	Alive
Smoker	5	174	41	198	51	64	42	7
Nonsmoker	6	213	19	180	40	81	165	28
Odds Ratio	$\frac{5 \times 213}{174 \times 6}$	≈ 1.02	$\frac{41\times180}{198\times19}$	≈ 1.962	$\frac{51 \times 81}{64 \times 40}$	≈ 1.614	$\frac{42 \times 28}{7 \times 165}$ \approx	= 1.018

How to test if the 4 partial tables above have homogeneous association (identical conditional odds ratio)?

If we include the interaction term,

Model 2: logit(
$$\pi$$
) = α + βx + $\beta_{35}A_{35}$ + $\beta_{55}A_{55}$ + $\beta_{65}A_{65}$
+ $\gamma_{35}xA_{35}$ + $\gamma_{55}xA_{65}$ + $\gamma_{65}xA_{65}$,

the conditional odds ratio

 $\frac{\text{odds for Smokers}}{\text{odds for Nonsmokers}} = \frac{e^{\alpha + \beta + \beta_{35}A_{35} + \beta_{55}A_{55} + \beta_{65}A_{65} + \gamma_{35}xA_{35} + \gamma_{55}xA_{65} + \gamma_{65}xA_{65}}}{e^{\alpha + \beta_{35}A_{35} + \beta_{55}A_{55} + \beta_{65}A_{65}}}$ $= e^{\beta + \gamma_{35}xA_{35} + \gamma_{55}xA_{65} + \gamma_{65}xA_{65}}$

changes with Age, if any of γ_{35} , γ_{55} , $\gamma_{65} \neq 0$.

 H_0 : $\gamma_{35} = \gamma_{55} = \gamma_{65} = 0$ means homogeneous association.

From the large *P*-value, we see no significant difference in the conditional odds ratios. The effect of smoking on the odds of death didn't change significantly with age.

To know whether Smoking and Survival were **homogeneously associated** given Age, i.e., whether the effect of Smoking on the odds of death changes with Age,

• test the significance of the interaction Smoker*Age.

To test whether Smoking and Survival were **conditionally independent** given Age, conduct a LRT test comparing the models

- ~ Smoker + Age
- ~ Age