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Simple Logistic Regression

Simple logistic regression has a single explanatory variable x and
models the success probability
π(x) for the binomial response
as

π(x) =
eα+βx

1 + eα+βx
.

π(
x)

0.0

0.2

0.5

0.8

1.0
β > 0β < 0

x− α β

point of
symmetry

• If β = 0, then π(x) =
eα

1 + eα
doesn’t change with x

• bigger | β |, steeper curve
• point of symmetry:

π(x) =
1
2
⇐⇒ eα+βx = 1 = e0

⇐⇒ α + βx = 0 ⇐⇒ x = −
α

β
.

2



Example: Horseshoe Crabs

• See Section 3.3.3 and 4.1.3 for data info
• 5-min horseshoe crabs video: http://y2u.be/iYvWssvg1YU
• You can load the data by running the R command below

crabs = read.table(

"https://www.stat.uchicago.edu/~yibi/s226/horseshoecrabs.txt",

header=TRUE

)

Color Spine Width Weight Satellites

1 2 3 28.3 3.050 8

2 3 3 22.5 1.550 0

3 1 1 26.0 2.300 9

4 3 3 24.8 2.100 0

5 3 3 26.0 2.600 4

... (omitted) ...

173 2 2 24.5 2.000 0
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Variables of the Horseshoe Crabs Data

Color Spine Width Weight Satellites

1 2 3 28.3 3.050 8

2 3 3 22.5 1.550 0

3 1 1 26.0 2.300 9

... (omitted) ...

173 2 2 24.5 2.000 0

One case (one row) is data for one female horseshoe crab

• Satellites: number of satellites (males) cling to a female
• Width: shell width (cm);
• Weight: weight in kg;
• Color (1 = medium light; 2 = medium; 3 = medium dark; 4 =

dark);
• Spine: spine condition (1, both good; 2, one broken; 3, both

broken);
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Example: Horseshoe Crabs

Y =

1 if female crab has satellite(s)

0 if no satellites

X = carapace width (cm) of female crab

crabs$has.sate = as.numeric(crabs$Satellites>0)

crabs.logit = glm(has.sate ~ Width, family = binomial, data=crabs)

If not specified, R uses the logit link by default.

crabs.logit$coef

(Intercept) Width

-12.3508 0.4972

The fitted model is π̂(x) =
e−12.351+0.497x

1 + e−12.351+0.497x
.
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library(ggplot2)

ggplot(crabs, aes(x=Width, y=has.sate)) + geom_point() +

labs(x="Carapace Width (cm)", y="Has Satellite(s)")

ggplot(crabs, aes(x=Width, y=jitter(has.sate))) + geom_point() +

labs(x="Carapace Width (cm)", y="Has Satellite(s)")
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There are multiple observations (crabs) at same points (left plot).

To see them, we can jitter their Y values by adding a small amount
of noise (right plot).
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Adding the Fitted Logistic Curve (1)

One can manually add the fitted logistic curve

π̂(x) =
e−12.351+0.497x

1 + e−12.351+0.497x
using geom_function().

ggplot(crabs, aes(x=Width, y=has.sate)) + geom_point() +

labs(x="Carapace Width (cm)", y="Has Satellite(s)") +

geom_function(fun = function(x){

exp(-12.351+0.497*x)/(1+exp(-12.351+0.497*x))

})
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Adding the Fitted Logistic Curve (2)

Alternatively, one can add the fitted logistic curve using
geom_smooth().

ggplot(crabs, aes(x=Width, y=has.sate)) + geom_point() +

labs(x="Carapace Width (cm)", y="Has Satellite(s)") +

geom_smooth(method='glm',method.args= list(family="binomial"), se=F)
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It’s hard to visually assess how well the curve fits the data.
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To better access the fit visually, one can group crabs of similar
width and compute sample proportions for each group.

crabs$wd.grp = cut(crabs$Width, breaks= 21:34-0.5)

wd.table = xtabs(~wd.grp+ (Satellites > 0), data=crabs)

wd.table

Satellites > 0

wd.grp FALSE TRUE

(20.5,21.5] 1 0

(21.5,22.5] 2 2

(22.5,23.5] 8 3

(23.5,24.5] 13 8

(24.5,25.5] 10 16

(25.5,26.5] 16 23

(26.5,27.5] 7 18

(27.5,28.5] 4 19

(28.5,29.5] 1 11

(29.5,30.5] 0 8

(30.5,31.5] 0 0

(31.5,32.5] 0 2

(32.5,33.5] 0 1
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ggplot(crabs, aes(x=Width, fill=Satellites>0)) +

geom_histogram(breaks=21:34-0.5)
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estimated π̂(x) based on the proportion of females of width in each
interval that has at lease one satellite.

prop.table(wd.table,1)

Satellites > 0

wd.grp FALSE TRUE

(20.5,21.5] 1.00000 0.00000

(21.5,22.5] 0.50000 0.50000

(22.5,23.5] 0.72727 0.27273

(23.5,24.5] 0.61905 0.38095

(24.5,25.5] 0.38462 0.61538

(25.5,26.5] 0.41026 0.58974

(26.5,27.5] 0.28000 0.72000

(27.5,28.5] 0.17391 0.82609

(28.5,29.5] 0.08333 0.91667

(29.5,30.5] 0.00000 1.00000

(30.5,31.5]

(31.5,32.5] 0.00000 1.00000

(32.5,33.5] 0.00000 1.00000
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ggplot(crabs, aes(x=Width, fill=Satellites>0)) +

geom_histogram(binwidth=1, position="fill") +

geom_function(fun = function(x){

exp(-12.351+0.497*x)/(1+exp(-12.351+0.497*x))

},

lwd=1,color="blue"

)
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4.1.2 Linear Approximation Interpretations

π(x) =
eα+βx

1 + eα+βx
, ⇒ 1 − π(x) =

1
1 + eα+βx

One can show that

d
dx
π(x) =

βeα+βx

(1 + eα+βx)2 = βπ(x)(1 − π(x)).

i.e., the slope of π(x) at x is βπ(x)(1 − π(x)) .

• At x with π(x) =
1
2

, slope = β ·
1
2
·

1
2
=
β

4
.

• At x with π(x) = 0.1 or 0.9, slope = β · 0.1 · 0.9 = 0.09β.

• Steepest slope at where π(x) = 1/2,
i.e., at point of symmetry x = −

α

β
.

• If x increases by ∆x, then π increases by ≈ βπ(1 − π)∆x.
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Fitted Model:

π̂(x) =
exp(α̂ + β̂x)

1 + exp(α̂ + β̂x)
=

exp(−12.351 + 0.497x)
1 + exp(−12.351 + 0.497x)

• β̂ = 0.497 > 0, so π̂(x) increases as Width (x) increases
• Point of symmetry:

π̂(x) =
1
2

when x = −
α̂

β̂
= −
−12.351

0.497
= 24.85 cm

• Steepest slope at point of symmetry x = 24.85 cm with slope

β̂π(1 − π) = 0.497 ×
1
2
×

1
2
≈ 0.124

If Width (x) increases by 1 cm, then π increases by 0.124
(actual π̂ at x = 25.85 is 0.623).

• At x = 33.5 (max. width), π̂ ≈ 0.987, estimated slope is

β̂̂π(x)(1 − π̂(x)) = 0.497 · (0.987) · (1 − 0.987) ≈ 0.0064.

⇒ Rate of change varies with x.
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Predictions

The probability that an average-size female crab (w/ Width at
x = 26.3 cm) has satellite(s) is estimated to be

π̂(x) =
e−12.351+0.497×26.3

1 + e−12.351+0.497×26.3 ≈ 0.67

R provides two kinds of predicted values.

The first one gives α̂ + β̂x = −12.351 + 0.497 × 26.3 ≈ 0.72.

predict(crabs.logit, data.frame(Width=26.3),type="link")

1

0.7263

The second one gives π̂(x) = exp(α̂+β̂x)
1+exp(α̂+β̂x)

as computed above.

predict(crabs.logit, data.frame(Width=26.3),type="response")

1

0.674
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Remarks

Fitting linear probability model π(x) = α + βx (binomial w/ identity
link) fails in the crabs example.

glm(has.sate ~ Width, family=binomial(link="identity"), data=crabs)

Error: no valid set of coefficients has been found: please

supply starting values

If we pretend Y ∼ Normal and fit a least square regression model

Y = α + βx + ε,

lm(has.sate ~ Width, data=crabs)$coef

(Intercept) Width

-1.76553 0.09153

We get the model Ŷ = −1.7655 + 0.09153x.
At x = 33.5 cm, the predicted value (estimated prob. of satellites) is

−1.7655 + 0.09153 × 33.5 = 1.30 !?!
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Odds Ratio Interpretation of Logistic Models

Since log
(
π

1−π

)
= α + βx, odds are

odds =
π

1 − π
=

eα+βx at x

eα+β(x+1) = eβeα+βx at x + 1

So
odds at (x + 1)

odds at x
=

eβ���eα+βx

���eα+βx
= eβ

More generally,

odds at (x + ∆x)
odds at x

=
eβ∆x���eα+βx

���eα+βx
= eβ∆x

If β = 0, then eβ = 1 and odds do not depend on x.
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Example (Horseshoe Crabs)

β̂ = 0.497 =⇒ eβ̂ = e0.497 ≈ 1.64.

Odds of having satellite(s) are estimated to increase by a factor of
1.64 for each 1 cm increase in width.

If width increases by 0.1 cm, then odds are estimated to increase
by a factor of

e(0.497)(0.1) = e0.0497 = 1.051.
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Inference for Simple Logistic Regression

• Wald tests and Wald CIs for β
• LR tests and LR CIs for β
• Confidence interval for prediction
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Wald tests and Wald CIs for β



Wald Tests for β

The Wald statistic for testing H0: β = c is

z =
β̂ − c

SE(̂β)
∼ N(0, 1) under H0: β = c

We omit the formula for SE(̂β). The value can be found in R.

Example (Horseshoe Crabs)

summary(crabs.logit)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -12.3508 2.6287 -4.698 0.000002622

Width 0.4972 0.1017 4.887 0.000001021

The column Std.Error gives the desired SE.

Remark: The SE of β̂ depends on the unknown true value of β. The SE in

the Wald statistic is evaluated at β = β̂, not at the value β = c under H0.
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summary(crabs.logit)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -12.3508 2.6287 -4.698 0.000002622

Width 0.4972 0.1017 4.887 0.000001021

R summary output gives the Wald statistics z value for testing H0:
β = 0 and the corresponding 2-sided P-values.

z value =
Estimate

Std.Error
=
β̂

SE(̂β)
≈

0.4972
0.1017

≈ 4.887.

To test H0: β = 0.2,

Wald statistic z =
β̂ − 0.2

SE(̂β)
=

0.4972 − 0.2
0.1017

≈ 2.922

The two-sided P-value is about 0.0035.

2*pnorm(2.922, lower.tail=FALSE)

[1] 0.003478
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Wald CIs for Regression Coefficients

Wald (1 − α)100% CIs for β are

β̂ ± zα/2SE(̂β).

summary(crabs.logit)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -12.3508 2.6287 -4.698 0.000002622

Width 0.4972 0.1017 4.887 0.000001021

95% CI for β:

0.497 ± (1.96)(0.102) = 0.497 ± 0.200 = (0.297, 0.697)

95% CI for eβ: (e0.297, e0.697) = (1.35, 2.01)

=⇒ The odds that a female crab has a satellite are estimated to
become 1.35 to 2.01 as large for every 1 cm increment in Width.
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Wald CI for β and eβ in R:

R command command confint.default() gives the Wald CIs.

95% Wald CI for β:

confint.default(crabs.logit, level=0.95)

2.5 % 97.5 %

(Intercept) -17.5030 -7.1986

Width 0.2978 0.6966

95% Wald CI for eβ:

exp(confint.default(crabs.logit, level=0.95))

2.5 % 97.5 %

(Intercept) 0.00000002503 0.0007476

Width 1.34693628236 2.0069749
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Likelihood Ratio tests and CIs for β



Likelihood Ratio Tests for β

To test H0: β = 0 vs Ha: β , 0

ℓ0 = max. likelihood when β = 0,

ℓ1 = max. likelihood over all possible β

The likelihood ratio test statistic is

LRT = −2 log (ℓ0/ℓ1)

= −2
[
log(ℓ0) − log(ℓ1)

]
= −2(L0 − L1) ∼ χ2

1 when sample size is large

where Li = log(ℓi).
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Example (Horseshoe Crabs)

• under Ha: β , 0, π(x) = eα+βx
1+eα+βx , L1 = −97.226

• under H0: β = 0, π(x) = eα
1+eα , L0 = −112.879

logLik(crabs.logit)

'log Lik.' -97.2263 (df=2)

logLik(glm(has.sate ~ 1, family = binomial, data=crabs))

'log Lik.' -112.879 (df=1)

LRT = −2(L0 − L1) = −2(−112.879 − (−97.226))

= 31.306, df = 1,

P-value = 2.2 × 10−8

pchisq(31.306, df=1, lower.tail=FALSE)

[1] 0.0000000220397
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Likelihood Ratio Tests for β Using drop1()

The drop1() command in R can perform LR tests for coefficients.

drop1(crabs.logit, test="Chisq")

Single term deletions

Model:

has.sate ~ Width

Df Deviance AIC LRT Pr(>Chi)

<none> 194.4 198.4

Width 1 225.8 227.8 31.31 0.000000022

• Observe drop1() reports LRT = 31.3, P-value = 2.2 × 10−8,
agreeing with our calculation

• drop1() doesn’t report the max. log-likelihood of the models,
but the “Deviances” instead. What is “deviances”?

26



Deviance

The summary() output of a GLM model also reports the “deviance”
(shown as Residual deviance), not the max. log-likelihood.

> summary(crabs.logit)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -12.3508 2.6287 -4.698 0.00000262 ***

Width 0.4972 0.1017 4.887 0.00000102 ***

---

Null deviance: 225.76 on 172 degrees of freedom

Residual deviance: 194.45 on 171 degrees of freedom

AIC: 198.45

We will introduce “deviance” in Section 3.4.3 & 5.2. For now, just
keep in mind that

Deviance = −2(max. log-likelihood) + constant

where the constant just depends on data but not the model.
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Likelihood Ratio Statistic = Diff. in Deviance

As Deviance = −2(max. log-likelihood) + constant,

Diff. in Deviance = Deviance0 − Deviance1

= −2(L0 − constant) − [−2(L1 − constant)]

= −2(L0 − L1) = LR statistic

drop1(crabs.logit, test="Chisq")

Model:

has.sate ~ Width

Df Deviance AIC LRT Pr(>Chi)

<none> 194.45 198.45

Width 1 225.76 227.76 31.306 0.00000002204

Deviance0 = 225.76, Deviance1 = 194.45
LRT = Deviance0− Deviance1 = 225.76 − 194.45 = 31.31.
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Likelihood Ratio Tests v.s. Wald Tests

For very large n, Wald and LR tests are approx. equivalent, but for
small to moderate n, the LR test is more reliable and powerful.
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Safer to use LR CI than Wald CI

(1 − α)100% Likelihood Ratio (LR) CI for β is set of β∗ for which
P-value > α in LR test of H0: β = β∗, computed by confint() in R.

95% Likelihood Ratio (LR) CI for β:

confint(crabs.logit, level=0.95)

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) -17.810009 -7.457247

Width 0.308381 0.709017

30



95% Likelihood Ratio (LR) CI for eβ:

exp(confint(crabs.logit, level=0.95))

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) 0.0000000184167 0.000577243

Width 1.3612190148900 2.031992299

For crabs example, 95% LR CI for eβ is (1.36, 2.03).

The odds that a female crab has a satellite are estimated to
become 1.36 to 2.03 as large for every 1 cm increment in Width.
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(Wald) Confidence Intervals For
π(x)



Prediction/Fitted Values

The estimated probability of having a satellite for a female crab
with 30 cm wide carapace is

π̂(x) =
e−12.35+0.4972×30

1 + e−12.35−0.4972×30 ≈ 0.9286

predict(crabs.logit, data.frame(Width=30),type="response")

1

0.928648

Caution: Without type="response", predict() would give
predicted values for α̂ + β̂x ≈ −12.35 + 0.4972 × 30 = 2.566 rather
than for π̂(x) = exp(α̂+β̂x)

1+exp(α̂+β̂x)
as computed above.

predict(crabs.logit, data.frame(Width=30))

1

2.5661
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(Wald) Confidence Intervals For π(x)

To compute the Wald CI for π(x) = exp(α+βx)
1+exp(α+βx) , we first compute the

CI for α + βx, which is

α̂ + β̂x ± zα/2SE(α̂ + β̂x)

where SE(α̂ + β̂x) can be obtained by adding se.fit=TRUE within
predict() with type="link"

predict(crabs.logit, data.frame(Width=30), type="link", se.fit=TRUE)

$fit

1

2.5661

$se.fit

[1] 0.463043

$residual.scale

[1] 1
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(Wald) Confidence Intervals For π(x) (Cont’d)

The 95% CI for α + βx when x = 30 is then

2.566 ± 1.96 × 0.463 ≈ (1.659, 3.474)

The 95% CI for π(x) = exp(α+βx)
1+exp(α+βx) when x = 30 is then(

e1.659

1 + e1.659 ,
e3.474

1 + e3.474

)
= (0.84, 0.97)

• Note that the estimated π̂(x) ≈ 0.9286 is not the mid-point of
the 95% CI (0.84,0.97)

• This is a Wald type CI.
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Plot of (Wald) Confidence Intervals For π(x)

The gray error band given by geom_smooth() is exactly the 95%
CI for π(x) as computed above.

ggplot(crabs, aes(x=Width, y = has.sate)) + geom_point() +

geom_smooth(method = "glm", method.args = list(family = "binomial"))
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Caution

We can NOT use the SE from type="response" since
π̂(x) = exp(α̂+β̂x)

1+exp(α̂+β̂x)
is not approx. normal and hence we cannot

calculate the 95% CI of π(x) as

π̂(x) ± 1.96(SE from type=“response")

predict(crabs.logit, data.frame(Width=30),type="response", se.fit=TRUE)

$fit

1

0.928648

$se.fit

1

0.0306818

$residual.scale

[1] 1

On the contrary, α̂+ β̂x is approx. normal
and hence we can calculate the 95% CI
for α + βx as

α̂ + β̂x ± (SE from type=“link").
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