STAT 226 Lecture 10-11

Section 4.1-4.2 Simple Logistic Regression

Yibi Huang

Simple Logistic Regression

Simple logistic regression has a single explanatory variable x and models the success probability $\pi(x)$ for the binomial response as

$$
\pi(x)=\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}} .
$$

- If $\beta=0$, then $\pi(x)=\frac{e^{\alpha}}{1+e^{\alpha}}$ doesn't change with x
- bigger $|\beta|$, steeper curve
- point of symmetry:

$$
\begin{aligned}
\pi(x)=\frac{1}{2} & \Longleftrightarrow e^{\alpha+\beta x}=1=e^{0} \\
& \Longleftrightarrow \alpha+\beta x=0 \Longleftrightarrow x=-\frac{\alpha}{\beta}
\end{aligned}
$$

Example: Horseshoe Crabs

- See Section 3.3.3 and 4.1.3 for data info
- 5-min horseshoe crabs video: http://y2u.be/iYvWssvg1YU
- You can load the data by running the R command below

```
crabs = read.table(
    "https://www.stat.uchicago.edu/~yibi/s226/horseshoecrabs.txt",
    header=TRUE
)
```

	Color	Spine	Width	Weight	Satellites
1	2	3	28.3	3.050	8
2	3	3	22.5	1.550	0
3	1	1	26.0	2.300	9
4	3	3	24.8	2.100	0
5	3	3	26.0	2.600	4
\ldots	(omitted)	\ldots			
173	2	2	24.5	2.000	0

Variables of the Horseshoe Crabs Data

Color Spine Width					Weight
Satellites					
1	2	3	28.3	3.050	8
2	3	3	22.5	1.550	0
3	1	1	26.0	2.300	9
\ldots	(omitted)	\ldots			
173	2	2	24.5	2.000	0

One case (one row) is data for one female horseshoe crab

- Satellites: number of satellites (males) cling to a female
- Width: shell width (cm);
- Weight: weight in kg;
- Color ($1=$ medium light; $2=$ medium; $3=$ medium dark; $4=$ dark);
- Spine: spine condition (1, both good; 2, one broken; 3, both broken);

Example: Horseshoe Crabs

$$
\begin{aligned}
& Y= \begin{cases}1 & \text { if female crab has satellite(s) } \\
0 & \text { if no satellites }\end{cases} \\
& X=\text { carapace width (cm) of female crab }
\end{aligned}
$$

crabs\$has.sate $=$ as.numeric (crabs\$Satellites >0)
crabs.logit = glm(has.sate \sim Width, family = binomial, data=crabs)

If not specified, R uses the logit link by default.
crabs.logit\$coef
$\begin{array}{rr}\text { (Intercept) } & \text { Width } \\ -12.3508 & 0.4972\end{array}$
The fitted model is $\widehat{\pi}(x)=\frac{e^{-12.351+0.497 x}}{1+e^{-12.351+0.497 x}}$.
library(ggplot2)
ggplot(crabs, aes(x=Width, y=has.sate)) + geom_point() + labs(x="Carapace Width (cm)", y="Has Satellite(s)")
ggplot(crabs, aes(x=Width, $y=j i t t e r(h a s . s a t e))) ~+~ g e o m _p o i n t() ~+~$ labs(x="Carapace Width (cm)", y="Has Satellite(s)")

Carapace Width (cm)

Carapace Width (cm)

There are multiple observations (crabs) at same points (left plot).
To see them, we can jitter their Y values by adding a small amount of noise (right plot).

Adding the Fitted Logistic Curve (1)

One can manually add the fitted logistic curve
$\widehat{\pi}(x)=\frac{e^{-12.351+0.497 x}}{1+e^{-12.351+0.497 x}}$ using geom_function().
ggplot(crabs, aes(x=Width, y=has.sate)) + geom_point() + labs(x="Carapace Width (cm)", y="Has Satellite(s)") + geom_function(fun = function (x) \{ $\exp (-12.351+0.497 * x) /(1+\exp (-12.351+0.497 * x))$ \})

Adding the Fitted Logistic Curve (2)

Alternatively, one can add the fitted logistic curve using geom_smooth(). ggplot(crabs, aes(x=Width, y=has.sate)) + geom_point() + labs(x="Carapace Width (cm)", y="Has Satellite(s)") + geom_smooth(method='glm',method.args= list(family="binomial"), se=F)

It's hard to visually assess how well the curve fits the data.

To better access the fit visually, one can group crabs of similar width and compute sample proportions for each group.

```
crabs$wd.grp = cut(crabs$Width, breaks= 21:34-0.5)
wd.table = xtabs(~wd.grp+ (Satellites > 0), data=crabs)
wd.table
```

 Satellites > 0
 wd.grp
FALSE TRUE

$(20.5,21.5]$	1	0
$(21.5,22.5]$	2	2
$(22.5,23.5]$	8	3
$(23.5,24.5]$	13	8
$(24.5,25.5]$	10	16
$(25.5,26.5]$	16	23
$(26.5,27.5]$	7	18
$(27.5,28.5]$	4	19
$(28.5,29.5]$	1	11
$(29.5,30.5]$	0	8
$(30.5,31.5]$	0	0
$(31.5,32.5]$	0	2
$(32.5,33.5]$	0	1

ggplot(crabs, aes(x=Width, fill=Satellites>0)) + geom_histogram(breaks=21:34-0.5)

estimated $\widehat{\pi}(x)$ based on the proportion of females of width in each interval that has at lease one satellite.

```
prop.table(wd.table,1)
    Satellites > 0
wd.grp FALSE TRUE
    (20.5,21.5] 1.00000 0.00000
    (21.5,22.5] 0.50000 0.50000
    (22.5,23.5] 0.72727 0.27273
    (23.5,24.5] 0.61905 0.38095
    (24.5,25.5] 0.38462 0.61538
    (25.5,26.5] 0.41026 0.58974
    (26.5,27.5] 0.28000 0.72000
    (27.5,28.5] 0.17391 0.82609
    (28.5,29.5] 0.08333 0.91667
    (29.5,30.5] 0.00000 1.00000
    (30.5,31.5]
    (31.5,32.5] 0.00000 1.00000
    (32.5,33.5] 0.00000 1.00000
```

```
ggplot(crabs, aes(x=Width, fill=Satellites>0)) +
    geom_histogram(binwidth=1, position="fill") +
    geom_function(fun = function(x){
        exp(-12.351+0.497*x)/(1+exp(-12.351+0.497*x))
        },
        lwd=1,color="blue"
    )
```


4.1.2 Linear Approximation Interpretations

$$
\pi(x)=\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}}, \quad \Rightarrow \quad 1-\pi(x)=\frac{1}{1+e^{\alpha+\beta x}}
$$

One can show that

$$
\frac{d}{d x} \pi(x)=\frac{\beta e^{\alpha+\beta x}}{\left(1+e^{\alpha+\beta x}\right)^{2}}=\beta \pi(x)(1-\pi(x))
$$

i.e., the slope of $\pi(x)$ at x is

$$
\beta \pi(x)(1-\pi(x))
$$

- At x with $\pi(x)=\frac{1}{2}$, slope $=\beta \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{\beta}{4}$.
- At x with $\pi(x)=0.1$ or 0.9 , slope $=\beta \cdot 0.1 \cdot 0.9=0.09 \beta$.
- Steepest slope at where $\pi(x)=1 / 2$,
i.e., at point of symmetry $x=-\frac{\alpha}{\beta}$.
- If x increases by Δx, then π increases by $\approx \beta \pi(1-\pi) \Delta x$.

Fitted Model:

$$
\widehat{\pi}(x)=\frac{\exp (\widehat{\alpha}+\widehat{\beta} x)}{1+\exp (\widehat{\alpha}+\widehat{\beta} x)}=\frac{\exp (-12.351+0.497 x)}{1+\exp (-12.351+0.497 x)}
$$

- $\widehat{\beta}=0.497>0$, so $\widehat{\pi}(x)$ increases as Width (x) increases
- Point of symmetry:

$$
\widehat{\pi}(x)=\frac{1}{2} \text { when } x=-\frac{\widehat{\alpha}}{\widehat{\beta}}=-\frac{-12.351}{0.497}=24.85 \mathrm{~cm}
$$

- Steepest slope at point of symmetry $x=24.85 \mathrm{~cm}$ with slope

$$
\widehat{\beta} \pi(1-\pi)=0.497 \times \frac{1}{2} \times \frac{1}{2} \approx 0.124
$$

If Width (x) increases by 1 cm , then π increases by 0.124 (actual $\widehat{\pi}$ at $x=25.85$ is 0.623).

- At $x=33.5$ (max. width), $\widehat{\pi} \approx 0.987$, estimated slope is

$$
\widehat{\beta} \pi(x)(1-\widehat{\pi}(x))=0.497 \cdot(0.987) \cdot(1-0.987) \approx 0.0064
$$

\Rightarrow Rate of change varies with x.

Predictions

The probability that an average-size female crab (w/ Width at $\bar{x}=26.3 \mathrm{~cm}$) has satellite(s) is estimated to be

$$
\widehat{\pi}(x)=\frac{e^{-12.351+0.497 \times 26.3}}{1+e^{-12.351+0.497 \times 26.3}} \approx 0.67
$$

R provides two kinds of predicted values.
The first one gives $\widehat{\alpha}+\widehat{\beta} x=-12.351+0.497 \times 26.3 \approx 0.72$. predict(crabs.logit, data.frame(Width=26.3),type="link") 1
0.7263

The second one gives $\widehat{\pi}(x)=\frac{\exp (\widehat{\alpha}+\widehat{\beta} x)}{1+\exp (\widehat{\alpha}+\widehat{\beta})}$ as computed above. predict(crabs.logit, data.frame(Width=26.3), type="response") 1
0.674

Remarks

Fitting linear probability model $\pi(x)=\alpha+\beta x$ (binomial w/ identity link) fails in the crabs example.
glm(has.sate ~ Width, family=binomial(link="identity"), data=crabs) Error: no valid set of coefficients has been found: please supply starting values

If we pretend $Y \sim$ Normal and fit a least square regression model

$$
Y=\alpha+\beta x+\varepsilon,
$$

lm(has.sate ~ Width, data=crabs)\$coef

(Intercept)	Width
-1.76553	0.09153

We get the model $\widehat{Y}=-1.7655+0.09153 x$.
At $x=33.5 \mathrm{~cm}$, the predicted value (estimated prob. of satellites) is

$$
-1.7655+0.09153 \times 33.5=1.30 \quad!?!
$$

Odds Ratio Interpretation of Logistic Models

Since $\log \left(\frac{\pi}{1-\pi}\right)=\alpha+\beta x$, odds are

$$
\text { odds }=\frac{\pi}{1-\pi}= \begin{cases}e^{\alpha+\beta x} & \text { at } x \\ e^{\alpha+\beta(x+1)}=e^{\beta} e^{\alpha+\beta x} & \text { at } x+1\end{cases}
$$

So

$$
\frac{\text { odds at }(x+1)}{\text { odds at } x}=\frac{e^{\beta} e^{\alpha+\beta x}}{e^{\alpha+\beta x}}=e^{\beta}
$$

More generally,

$$
\frac{\operatorname{odds} \text { at }(x+\Delta x)}{\text { odds at } x}=\frac{e^{\beta \Delta x} e^{\alpha+\beta x}}{e^{\alpha+\beta x}}=e^{\beta \Delta x}
$$

If $\beta=0$, then $e^{\beta}=1$ and odds do not depend on x.

Example (Horseshoe Crabs)

$$
\widehat{\beta}=0.497 \Longrightarrow e^{\widehat{\beta}}=e^{0.497} \approx 1.64
$$

Odds of having satellite(s) are estimated to increase by a factor of 1.64 for each 1 cm increase in width.

If width increases by 0.1 cm , then odds are estimated to increase by a factor of

$$
e^{(0.497)(0.1)}=e^{0.0497}=1.051
$$

Inference for Simple Logistic Regression

- Wald tests and Wald Cls for β
- LR tests and LR CIs for β
- Confidence interval for prediction

Wald tests and Wald Cls for β

Wald Tests for β

The Wald statistic for testing $\mathrm{H}_{0}: \beta=c$ is

$$
z=\frac{\widehat{\beta}-c}{\operatorname{SE}(\widehat{\beta})} \sim N(0,1) \quad \text { under } \mathrm{H}_{0}: \beta=c
$$

We omit the formula for $\operatorname{SE}(\widehat{\beta})$. The value can be found in R .
Example (Horseshoe Crabs)

```
summary(crabs.logit)$coef
    Estimate Std. Error z value Pr}(>|z|
(Intercept) -12.3508 2.6287 -4.698 0.000002622
Width 0.4972 0.1017 4.887 0.000001021
```

The column Std.Error gives the desired SE.
Remark: The SE of $\widehat{\beta}$ depends on the unknown true value of β. The SE in the Wald statistic is evaluated at $\beta=\widehat{\beta}$, not at the value $\beta=c$ under H_{0}.
summary(crabs.logit)\$coef

	Estimate Std. Error z value	$\operatorname{Pr}(>\|z\|)$		
(Intercept)	-12.3508	2.6287	-4.698	0.000002622
Width	0.4972	0.1017	4.887	0.000001021

R summary output gives the Wald statistics z value for testing H_{0} : $\beta=0$ and the corresponding 2 -sided P-values.

$$
\mathrm{z} \text { value }=\frac{\text { Estimate }}{\text { Std.Error }}=\frac{\widehat{\beta}}{\operatorname{SE}(\widehat{\beta})} \approx \frac{0.4972}{0.1017} \approx 4.887
$$

To test $\mathrm{H}_{0}: \beta=0.2$,

$$
\text { Wald statistic } z=\frac{\widehat{\beta}-0.2}{\operatorname{SE}(\widehat{\beta})}=\frac{0.4972-0.2}{0.1017} \approx 2.922
$$

The two-sided P-value is about 0.0035 .
2*pnorm(2.922, lower.tail=FALSE)
[1] 0.003478

Wald Cls for Regression Coefficients

Wald ($1-\alpha$) 100% Cls for β are

$$
\widehat{\beta} \pm z_{\alpha / 2} \mathrm{SE}(\widehat{\beta})
$$

summary (crabs.logit) \$coef

	Estimate Std. Error z value	$\operatorname{Pr}(>\|z\|)$		
(Intercept)	-12.3508	2.6287	-4.698	0.000002622
Width	0.4972	0.1017	4.887	0.000001021

$95 \% \mathrm{Cl}$ for β :

$$
0.497 \pm(1.96)(0.102)=0.497 \pm 0.200=(0.297,0.697)
$$

$95 \% \mathrm{Cl}$ for $e^{\beta}:\left(e^{0.297}, e^{0.697}\right)=(1.35,2.01)$
\Longrightarrow The odds that a female crab has a satellite are estimated to become 1.35 to 2.01 as large for every 1 cm increment in Width.

Wald Cl for β and e^{β} in \mathbf{R} :

R command command confint. default() gives the Wald Cls.
95% Wald Cl for β :

```
confint.default(crabs.logit, level=0.95)
    2.5 % 97.5 %
(Intercept) -17.5030 -7.1986
Width 0.2978 0.6966
```

95\% Wald Cl for e^{β} :
$\exp (c o n f i n t . d e f a u l t(c r a b s . l o g i t, ~ l e v e l=0.95))$
2.5 \% 97.5%
(Intercept) 0.00000002503 0.0007476
Width $\quad 1.346936282362 .0069749$

Likelihood Ratio tests and Cls for β

Likelihood Ratio Tests for β

To test $\mathrm{H}_{0}: \beta=0$ vs $\mathrm{H}_{a}: \beta \neq 0$

$$
\begin{aligned}
& \ell_{0}=\max . \text { likelihood when } \beta=0 \\
& \ell_{1}=\max . \text { likelihood over all possible } \beta
\end{aligned}
$$

The likelihood ratio test statistic is

$$
\begin{aligned}
L R T & =-2 \log \left(\ell_{0} / \ell_{1}\right) \\
& =-2\left[\log \left(\ell_{0}\right)-\log \left(\ell_{1}\right)\right] \\
& =-2\left(L_{0}-L_{1}\right) \sim \chi_{1}^{2} \quad \text { when sample size is large }
\end{aligned}
$$

where $L_{i}=\log \left(\ell_{i}\right)$.

Example (Horseshoe Crabs)

- under $\mathrm{H}_{a}: \beta \neq 0, \pi(x)=\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}}, L_{1}=-97.226$
- under $\mathrm{H}_{0}: \beta=0, \pi(x)=\frac{e^{\alpha}}{1+e^{\alpha}}, L_{0}=-112.879$

```
logLik(crabs.logit)
'log Lik.' -97.2263 (df=2)
logLik(glm(has.sate ~ 1, family = binomial, data=crabs))
'log Lik.' -112.879 (df=1)
LRT = -2(L0 - L L ) = -2(-112.879-(-97.226))
    =31.306, df = 1,
    P-value =2.2 }\times1\mp@subsup{0}{}{-8
```

pchisq(31.306, df=1, lower.tail=FALSE)
[1] 0.0000000220397

Likelihood Ratio Tests for β Using drop1()

The drop1() command in R can perform LR tests for coefficients.

```
drop1(crabs.logit, test="Chisq")
Single term deletions
Model:
has.sate ~ Width
    Df Deviance AIC LRT Pr(>Chi)
<none> 194.4 198.4
Width 1 225.8 227.8 31.31 0.000000022
```

- Observe drop1 () reports LRT $=31.3, P$-value $=2.2 \times 10^{-8}$, agreeing with our calculation
- drop1() doesn't report the max. log-likelihood of the models, but the "Deviances" instead. What is "deviances"?

Deviance

The summary () output of a GLM model also reports the "deviance" (shown as Residual deviance), not the max. log-likelihood.
> summary(crabs.logit)
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) -12.3508 $2.6287-4.6980 .00000262$ ***
Width 0.4972 0.1017 4.8870 .00000102 ***

Null deviance: 225.76 on 172 degrees of freedom Residual deviance: 194.45 on 171 degrees of freedom AIC: 198.45

We will introduce "deviance" in Section 3.4.3 \& 5.2. For now, just keep in mind that

$$
\text { Deviance }=-2(\text { max. log-likelihood })+\text { constant }
$$

where the constant just depends on data but not the model.

Likelihood Ratio Statistic = Diff. in Deviance

As Deviance $=-2($ max. log-likelihood $)+$ constant ,
Diff. in Deviance $=$ Deviance $_{0}-$ Deviance $_{1}$

$$
\begin{aligned}
& =-2\left(L_{0}-\text { constant }\right)-\left[-2\left(L_{1}-\text { constant }\right)\right] \\
& =-2\left(L_{0}-L_{1}\right)=\text { LR statistic }
\end{aligned}
$$

```
drop1(crabs.logit, test="Chisq")
```

Model:
has.sate ~ Width

	Df Deviance	AIC	LRT	$\operatorname{Pr}(>$ Chi)	
<none>	194.45	198.45			
Width	1	225.76	227.76	31.306	0.00000002204

Deviance $_{0}=225.76$, Deviance $_{1}=194.45$
LRT $=$ Deviance $_{0}-$ Deviance $_{1}=225.76-194.45=31.31$.

Likelihood Ratio Tests v.s. Wald Tests

For very large n, Wald and LR tests are approx. equivalent, but for small to moderate n, the LR test is more reliable and powerful.

Safer to use LR CI than Wald CI

$(1-\alpha) 100 \%$ Likelihood Ratio (LR) CI for β is set of β^{*} for which P-value $>\alpha$ in LR test of $\mathrm{H}_{0}: \beta=\beta^{*}$, computed by confint () in R. 95\% Likelihood Ratio (LR) CI for β :

```
confint(crabs.logit, level=0.95)
Waiting for profiling to be done...
    2.5 % 97.5 %
(Intercept) -17.810009 -7.457247
Width
    0.308381 0.709017
```

95\% Likelihood Ratio (LR) CI for e^{β} :

```
exp(confint(crabs.logit, level=0.95))
Waiting for profiling to be done...
    2.5 % 97.5 %
(Intercept) 0.0000000184167 0.000577243
Width 1.3612190148900 2.031992299
```

For crabs example, 95\% LR CI for e^{β} is $(1.36,2.03)$.
The odds that a female crab has a satellite are estimated to become 1.36 to 2.03 as large for every 1 cm increment in Width.

(Wald) Confidence Intervals For $\pi(x)$

Prediction/Fitted Values

The estimated probability of having a satellite for a female crab with 30 cm wide carapace is

$$
\widehat{\pi}(x)=\frac{e^{-12.35+0.4972 \times 30}}{1+e^{-12.35-0.4972 \times 30}} \approx 0.9286
$$

predict(crabs.logit, data.frame(Width=30),type="response") 1
0.928648

Caution: Without type="response", predict() would give predicted values for $\widehat{\alpha}+\widehat{\beta} x \approx-12.35+0.4972 \times 30=2.566$ rather than for $\widehat{\pi}(x)=\frac{\exp (\widehat{\alpha}+\widehat{\beta} x)}{1+\exp (\widehat{\alpha}+\widehat{\beta} x)}$ as computed above.
predict(crabs.logit, data.frame(Width=30))
1
2.5661

(Wald) Confidence Intervals For $\pi(x)$

To compute the Wald CI for $\pi(x)=\frac{\exp (\alpha+\beta x)}{1+\exp (\alpha+\beta x)}$, we first compute the Cl for $\alpha+\beta x$, which is

$$
\widehat{\alpha}+\widehat{\beta} x \pm z_{\alpha / 2} \mathrm{SE}(\widehat{\alpha}+\widehat{\beta} x)
$$

where $\mathrm{SE}(\widehat{\alpha}+\widehat{\beta} x)$ can be obtained by adding se.fit=TRUE within predict() with type="link"

```
predict(crabs.logit, data.frame(Width=30), type="link", se.fit=TRUE)
```

\$fit

1
2.5661
\$se.fit
[1] 0.463043
\$residual.scale
[1] 1

(Wald) Confidence Intervals For $\pi(x)$ (Cont'd)

The $95 \% \mathrm{CI}$ for $\alpha+\beta x$ when $x=30$ is then

$$
2.566 \pm 1.96 \times 0.463 \approx(1.659,3.474)
$$

The $95 \% \mathrm{Cl}$ for $\pi(x)=\frac{\exp (\alpha+\beta x)}{1+\exp (\alpha+\beta x)}$ when $x=30$ is then

$$
\left(\frac{e^{1.659}}{1+e^{1.659}}, \frac{e^{3.474}}{1+e^{3.474}}\right)=(0.84,0.97)
$$

- Note that the estimated $\widehat{\pi(x)} \approx 0.9286$ is not the mid-point of the $95 \% \mathrm{Cl}(0.84,0.97)$
- This is a Wald type CI.

Plot of (Wald) Confidence Intervals For $\pi(x)$

The gray error band given by geom_smooth() is exactly the 95\% Cl for $\pi(x)$ as computed above.

```
ggplot(crabs, aes(x=Width, y = has.sate)) + geom_point() +
    geom_smooth(method = "glm", method.args = list(family = "binomial"))
```


Caution

We can NOT use the SE from type="response" since $\widehat{\pi}(x)=\frac{\exp (\widehat{\alpha}+\widehat{\beta} x)}{1+\exp (\widehat{\alpha}+\widehat{\beta} x)}$ is not approx. normal and hence we cannot calculate the $95 \% \mathrm{Cl}$ of $\pi(x)$ as

$$
\widehat{\pi}(x) \pm 1.96(\text { SE from type="response") }
$$

```
predict(crabs.logit, data.frame(Width=30),type="response", se.fit=TRUE)
```

\$fit
1
0.928648
\$se.fit
1
0.0306818
\$residual.scale
[1] 1

On the contrary, $\widehat{\alpha}+\widehat{\beta} x$ is approx. normal and hence we can calculate the $95 \% \mathrm{Cl}$ for $\alpha+\beta x$ as

$$
\widehat{\alpha}+\widehat{\beta} x \pm \text { (SE from type="link"). }
$$

