
STAT 226 Lecture 9

Sections 3.1-3.2 Generalized Linear Models (GLM)
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Example — Fatality in Falling Accidents1
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floor fatal total observed
level falls falls fatality rate

x yx nx π̂x = yx/nx

1 2 37 2/37 ≈ 0.05
2 6 54 6/54 ≈ 0.11
3 8 46 8/46 ≈ 0.17
4 13 38 13/38 ≈ 0.34
5 10 32 10/32 ≈ 0.31
6 10 11 10/11 ≈ 0.91
7 1 2 1/2 ≈ 0.50

If the falls were indep. of each other, and if the chance of fatality
depended only on the floor level from which the victims fell, then

yx ∼ Binomial(nx, π(x)).

The MLE of π(x) is π̂x = yx/nx.

1Courtesy of Prof. Stephen M. Stigler 2



Why Modeling?

Without modeling, we can estimate π(x) at x = 1, 2, . . . , 7 using the
sample fatality rate yx/nx, but there are a few problems.

• cannot estimate π(x) at x’s with no observation,
e.g., x = 8 or 1.5.

• Fatality rate π(x) should increase
with floor level x. However, . . .

π̂(4) ≈ 0.34 > π̂(5) ≈ 0.31,

π̂(6) ≈ 0.91 > π̂(7) ≈ 0.50,
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• By modeling, we can incorporate prior knowledge about π(x)
to improve the accuracy of estimation.
E.g., we can model π(x) as an increasing function of x

π(x) = α + βx, or π(x) =
eα+βx

1 + eα+βx
with β > 0.
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E.g., we can model π(x) as an increasing function of x
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eα+βx

1 + eα+βx
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First Model — Linear Least-Square Regression

Suppose we model π(x) as

π(x) = α + βx,

how to estimate α and β? Let’s try least-square regression with

• response = the observed fatality rates π̂x = yx/nx, and
• predictor = the floor level x

floor fatal total fatality
level falls falls rate

x yx nx π̂x

1 2 37 0.05
2 6 54 0.11
3 8 46 0.17
4 13 38 0.34
5 10 32 0.31
6 10 11 0.91
7 1 2 0.50
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First Model — Linear Least Square Regression

Fitting a linear regression model, we get

π̂(x) = −0.0957 + 0.1097x,

which means, if the fall occurs one floor higher, the chance for it to
be fatal increases by about 11%.

Any problem with this model?
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Problems of the Linear Least Square Regression

1. Non-normality of the response π̂x

• not a big issue since least square regression is robust to
non-normality

2. Non-constant variance of the response: SE(̂πx)=
√
π̂x(1−π̂x)

nx

Regression models assume
constant variability.

Points w/ smaller SEs should be
more influential to the fitted line
as they are more accurate.
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(Error bars are 95% score CIs for π(x)).
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Problems of the Linear Least Square Regression

3. For probabilities,
the diff. of π1 = 0.01 and π2 = 0.0001 is important, but
the diff. of π1 = 0.51 and π2 = 0.5001 is often negligible.
• Least square method regards the two differences equal,
• Likelihood methods can reflect the distinction of the two

differences.

4. π(x) = α + βx may not stay between 0 and 1
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Second Attempt — Likelihood Methods

As yx ∼ Binomial(nx, π(x)), the likelihood of π(x) is

ℓ =

7∏
x=1

(
nx

yx

)
[π(x)]yx[1 − π(x)]nx−yx = C

7∏
x=1

[π(x)]yx[1 − π(x)]nx−yx

where C =
∏7

x=1

(
nx
yx

)
is a constant involving no parameters, having

no effect on parameter inference, and hence is often ignored.

For the linear probability model

π(x) = α + βx,

the likelihood of α, β is

ℓ(α, β) = C
∏7

x=1
[α + βx]yx[1 − α − βx]nx−yx .

• No close form formula for the MLEs α̂ and β̂.
R gives their values as α̂ = −0.0577, β̂ = 0.0949.
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Compare the two fitted lines founded using regression and
binomial likelihoods.

Linear Least Square : π̂(x) = −0.0957 + 0.1097x

Binomial likelihoods : π̂(x) = −0.0577 + 0.0949x

1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

Floor Level

Fa
ta

lit
y 

R
at

e
Least−Square
Binomial, linear

(Error bars are 95% score CIs for π(x))

9



Why Likelihood Methods Better Than Least-Square Estimates?

likelihood : C
∏

x
[π(x)]yx[1 − π(x)]nx−yx

log-likelihood : log C +
∑

x
{yx log π(x) + (nx − yx) log[1 − π(x)]}

Contribution of an observation (x, nx, yx) to the log-likelihood is

yx log π(x) + (nx − yx) log[1 − π(x)].

• Observations with larger nx are more influential as they have
greater contributions to log-likelihood

• Each single yx log π(x) + (nx − yx) log[1 − π(x)] reach its max.
at π(x) = yx/nx. Likelihood methods will make the fitted π̂(x) as
close to yx/nx as possible.

• log-likelihood changes a little when π(x) changes from 0.51 to 0.501,

log-likelihood changes a lot when π(x) changes from 0.01 to 0.001.
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S-shaped Relationships

In practice, π(x) often increases or decreases slower as π(x) gets
closer to 0 or 1.

The S-shaped curves below are often (close to) realistic.
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The most commonly used S-shaped function for modeling π(x) is

π(x) =
exp(α + βx)

1 + exp(α + βx)
=

eα+βx

1 + eα+βx
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Logistic Regression Models

The logistic regression model models the success probability π(x)
for the binomial response as

π(x) =
eα+βx

1 + eα+βx
,

or equivalently,

log
(
π(x)

1 − π(x)

)
= α + βx.

• It ensures π(x) staying between 0 and 1 regardless of the
values of α, β, and x

• g(π) = log( π1−π ) is called the logit function
• Interpretation: log(odds) = α + βx

the odds increases by a factor of eβ whenever x increases by 1
• More details in Chapter 4 & 5
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For the fatal fall example, the likelihood of α and β is

ℓ(α, β) = C
7∏

x=1

(
eα+βx

1 + eα+βx

)yx ( 1
1 + eα+βx

)nx−yx

.

MLEs for α and β:

α̂ ≈ −3.492, β̂ ≈ 0.660

The fitted model is

π̂(x) ≈
e−3.492+0.660x

1 + e−3.492+0.660x
. 1 2 3 4 5 6 7
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Estimated fatality rate for falls from the first floor is

π̂(1) ≈
e−3.492+0.660×1

1 + e−3.492+0.660×1 ≈ 0.0556 ≈ 5.6%.

Odds of death become e0.660 ≈ 1.93 times as large if the falling
accidents occurred one floor higher
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Three Components of Generalized Linear Models

• Random component Y
— the response variable with indep. obs. Y1,Y2, . . . ,Yn from a
common prob. dist. (e.g., normal, binomial, Poisson)

• Linear Predictor — the explanatory variables of a linear
structure

α + β1x1 + β2x2 + · · · + βkxk

Some x j can be based on others xk’s, e.g., x3 = x1x2, x4 = x2
1

• Link function g(µ)
— connecting µ = E[Y] and α + β1x1 + β2x2 + · · · + βkxk by a
function

g(µ) = α + β1x1 + β2x2 + · · · + βkxk

The same maximum likelihood (ML) fitting procedure is used to
estimate the coefficients α, β1, . . . , βk for all GLMs.
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Linear Regression Models Are GLMs

Recall the ordinary linear regression models assume

Y = α + β1x1 + β2x2 + · · · + βkxk + ε

where the noise ε has a normal distribution N(0, σ2)

• The random component Y has a normal distribution
• α + β1x1 + β2x2 + · · · + βkxk is the linear predictor
• The link function is the identity link g(µ) = µ

g(µ) = µ = α + β1x1 + β2x2 + · · · + βkxk

• The ML fitting procedure for estimating α, β1, . . . , βk reduces to
the least square method when the response variable has a
normal distribution.

15



Commonly Used Link Functions

Link functions are usually continuous and strictly monotone.

• Identity link: g(µ) = µ
• used when Y ∼ Normal, linear regression

• Log link: g(µ) = log(µ)

log(µ) = α + β1x1 + β2x2 + · · · + βkxk

• used when Y ∼ Poisson. See Section 3.3 and Ch 7

• Logit link g(µ) = log
(
µ

1 − µ

)
• used for binary response models. See Chapter 4 and 5

• Other commonly used link functions for binary response
models: probit, log-log, complementary log-log
• not covered in STAT 226
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How to Fit GLM in R

Loading data:

ff = read.table(

"https://www.stat.uchicago.edu/~yibi/s226/falls.txt",

h=T)

ff

floor fatal live

1 1 2 35

2 2 6 48

3 3 8 38

4 4 13 25

5 5 10 22

6 6 10 1

7 7 1 1
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GLM in R

ff.lin = glm(cbind(fatal,live) ~ floor,

family=binomial(link="identity"),data=ff)

ff.lin$coef

(Intercept) floor

-0.05771 0.09491

ff.logit = glm(cbind(fatal,live) ~ floor,

family=binomial(link="logit"), data=ff)

ff.logit$coef

(Intercept) floor

-3.492 0.660

Fitted binomial model w/ identity link: π̂(x) = −0.05771 + 0.09491x.

Fitted logistic regression model: π̂(x) =
e−3.492+0.660x

1 + e−3.492+0.660x
.
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Another way to fit a glm model

ff$total = ff$fatal+ff$live

ff$percent = ff$fatal/ff$total

ff.logit2 = glm(percent ~ floor, family=binomial(link="logit"),

weight = total, data=ff)

ff.logit2$coef # same fitted coefficients!

(Intercept) floor

-3.492 0.660

ff.logit$coef

(Intercept) floor

-3.492 0.660
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Ungrouped Data and Grouped Data

Sometimes the data are ungrouped . . .

Ungrouped Data:
file: fallsUG.txt

no. floor outcome

1 2 live

2 5 live

3 5 live

4 2 live

5 1 live

6 4 live

7 5 fatal

8 1 live

9 4 live

10 3 live

11 4 live

12 4 fatal

...

219 1 live

220 4 live

Grouped Data:
file: falls.txt

floor fatal live

1 2 35

2 6 48

3 8 38

4 13 25

5 10 22

6 10 1

7 1 1
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Fitting GLM for Ungrouped Data

ffug = read.table(

"https://www.stat.uchicago.edu/~yibi/s226/fallsUG.txt",

header=TRUE)

ffug.logit = glm((outcome == "fatal") ~ floor,

family=binomial(link="logit"), data=ffug)

ffug.logit$coef # same fitted coefficients!

(Intercept) floor

-3.492 0.660

ff.logit$coef

(Intercept) floor

-3.492 0.660
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Fitted Values π̂(x)

Estimated π̂(x) for the Binomial model with identity link

ff.lin$fit

1 2 3 4 5 6 7

0.03719 0.13210 0.22701 0.32191 0.41682 0.51172 0.60663

Estimated π̂(x) for the Binomial model with logit link (logistic
regression)

ff.logit$fit

1 2 3 4 5 6 7

0.05562 0.10230 0.18065 0.29903 0.45218 0.61495 0.75550
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library(binom)

ci = binom.confint(ff$fatal,ff$total,conf.level=0.95,method="wilson")

ff$lower = ci$lower; ff$upper = ci$upper

ff$lsfit = fflm1$fit; ff$linfit = ff.lin$fit;

ff$logitfit = ff.logit$fit; ff

floor fatal live total percent lower upper lsfit linfit logitfit

1 1 2 35 37 0.054 0.015 0.18 0.014 0.037 0.056

2 2 6 48 54 0.111 0.052 0.22 0.124 0.132 0.102

3 3 8 38 46 0.174 0.091 0.31 0.234 0.227 0.181

4 4 13 25 38 0.342 0.212 0.50 0.343 0.322 0.299

5 5 10 22 32 0.312 0.180 0.49 0.453 0.417 0.452

6 6 10 1 11 0.909 0.623 0.98 0.563 0.512 0.615

7 7 1 1 2 0.500 0.095 0.91 0.672 0.607 0.756
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