STAT 226 Lecture 9

Sections 3.1-3.2 Generalized Linear Models (GLM)

Yibi Huang

Example — Fatality in Falling Accidents¹

If the falls were indep. of each other, and if the chance of fatality depended only on the floor level from which the victims fell, then

 $y_x \sim \text{Binomial}(n_x, \pi(x)).$

The MLE of $\pi(x)$ is $\widehat{\pi}_x = y_x/n_x$.

¹Courtesy of Prof. Stephen M. Stigler

Why Modeling?

Without modeling, we can estimate $\pi(x)$ at x = 1, 2, ..., 7 using the sample fatality rate y_x/n_x , but there are a few problems.

• cannot estimate $\pi(x)$ at *x*'s with no observation,

e.g., *x* = 8 or 1.5.

Why Modeling?

Without modeling, we can estimate $\pi(x)$ at x = 1, 2, ..., 7 using the sample fatality rate y_x/n_x , but there are a few problems.

- cannot estimate π(x) at x's with no observation,
 e.g., x = 8 or 1.5.
- Fatality rate π(x) should increase with floor level x. However, ...

 $\begin{aligned} \widehat{\pi}(4) &\approx 0.34 > \widehat{\pi}(5) \approx 0.31, \\ \widehat{\pi}(6) &\approx 0.91 > \widehat{\pi}(7) \approx 0.50, \end{aligned}$

Why Modeling?

Without modeling, we can estimate $\pi(x)$ at x = 1, 2, ..., 7 using the sample fatality rate y_x/n_x , but there are a few problems.

- cannot estimate π(x) at x's with no observation,
 e.g., x = 8 or 1.5.
- Fatality rate π(x) should increase with floor level x. However, ...

 $\widehat{\pi}(4) \approx 0.34 > \widehat{\pi}(5) \approx 0.31,$ $\widehat{\pi}(6) \approx 0.91 > \widehat{\pi}(7) \approx 0.50,$

By modeling, we can incorporate prior knowledge about π(x) to improve the accuracy of estimation.
 E.g., we can model π(x) as an increasing function of x

$$\pi(x) = \alpha + \beta x$$
, or $\pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$ with $\beta > 0$.

Suppose we model $\pi(x)$ as

$$\pi(x) = \alpha + \beta x,$$

how to estimate α and β ? Let's try least-square regression with

- response = the observed fatality rates $\hat{\pi}_x = y_x/n_x$, and
- predictor = the floor level x

floor	fatal	total	fatality
x	y_x	n_x	$\widehat{\pi}_x$
1	2	37	0.05
2	6	54	0.11
3	8	46	0.17
4	13	38	0.34
5	10	32	0.31
6	10	11	0.91
7	1	2	0.50

First Model — Linear Least Square Regression

Fitting a linear regression model, we get

$$\widehat{\pi(x)} = -0.0957 + 0.1097x,$$

which means, if the fall occurs one floor higher, the chance for it to be fatal increases by about 11%.

Any problem with this model?

Problems of the Linear Least Square Regression

- 1. **Non-normality** of the response $\widehat{\pi}_x$
 - not a big issue since least square regression is robust to non-normality

2. Non-constant variance of the response: $SE(\widehat{\pi}_x) = \sqrt{\frac{\widehat{\pi}_x(1-\widehat{\pi}_x)}{n_x}}$

Regression models assume constant variability.

Points w/ smaller SEs should be more influential to the fitted line as they are more accurate.

(Error bars are 95% score CIs for $\pi(x)$).

Problems of the Linear Least Square Regression

3. For probabilities,

the diff. of $\pi_1 = 0.01$ and $\pi_2 = 0.0001$ is important, but the diff. of $\pi_1 = 0.51$ and $\pi_2 = 0.5001$ is often negligible.

- · Least square method regards the two differences equal,
- Likelihood methods can reflect the distinction of the two differences.

4. $\pi(x) = \alpha + \beta x$ may not stay between 0 and 1

Second Attempt — Likelihood Methods

As $y_x \sim \text{Binomial}(n_x, \pi(x))$, the likelihood of $\pi(x)$ is

$$\ell = \prod_{x=1}^{7} \binom{n_x}{y_x} [\pi(x)]^{y_x} [1 - \pi(x)]^{n_x - y_x} = C \prod_{x=1}^{7} [\pi(x)]^{y_x} [1 - \pi(x)]^{n_x - y_x}$$

where $C = \prod_{x=1}^{7} {n_x \choose y_x}$ is a constant involving no parameters, having no effect on parameter inference, and hence is often ignored.

For the linear probability model

$$\pi(x) = \alpha + \beta x,$$

the likelihood of α, β is

$$\ell(\alpha,\beta) = C \prod_{x=1}^{7} [\alpha + \beta x]^{y_x} [1 - \alpha - \beta x]^{n_x - y_x}$$

• No close form formula for the MLEs $\widehat{\alpha}$ and $\widehat{\beta}$. R gives their values as $\widehat{\alpha} = -0.0577, \widehat{\beta} = 0.0949$. Compare the two fitted lines founded using regression and binomial likelihoods.

Linear Least Square : $\widehat{\pi(x)} = -0.0957 + 0.1097x$ Binomial likelihoods : $\widehat{\pi(x)} = -0.0577 + 0.0949x$

Why Likelihood Methods Better Than Least-Square Estimates?

likelihood : $C \prod_{x} [\pi(x)]^{y_x} [1 - \pi(x)]^{n_x - y_x}$ log-likelihood : $\log C + \sum_{x} \{y_x \log \pi(x) + (n_x - y_x) \log[1 - \pi(x)]\}$ Contribution of an observation (x, n_x, y_x) to the log-likelihood is

 $y_x \log \pi(x) + (n_x - y_x) \log[1 - \pi(x)].$

• Observations with larger *n_x* are more influential as they have greater contributions to log-likelihood

likelihood : $C \prod_{x} [\pi(x)]^{y_x} [1 - \pi(x)]^{n_x - y_x}$ log-likelihood : $\log C + \sum_{x} \{y_x \log \pi(x) + (n_x - y_x) \log[1 - \pi(x)]\}$

Contribution of an observation (x, n_x, y_x) to the log-likelihood is

 $y_x \log \pi(x) + (n_x - y_x) \log[1 - \pi(x)].$

- Observations with larger *n_x* are more influential as they have greater contributions to log-likelihood
- Each single $y_x \log \pi(x) + (n_x y_x) \log[1 \pi(x)]$ reach its max. at $\pi(x) = y_x/n_x$. Likelihood methods will make the fitted $\widehat{\pi}(x)$ as close to y_x/n_x as possible.

likelihood : $C \prod_{x} [\pi(x)]^{y_x} [1 - \pi(x)]^{n_x - y_x}$ log-likelihood : $\log C + \sum_{x} \{y_x \log \pi(x) + (n_x - y_x) \log[1 - \pi(x)]\}$

Contribution of an observation (x, n_x, y_x) to the log-likelihood is

 $y_x \log \pi(x) + (n_x - y_x) \log[1 - \pi(x)].$

- Observations with larger *n_x* are more influential as they have greater contributions to log-likelihood
- Each single $y_x \log \pi(x) + (n_x y_x) \log[1 \pi(x)]$ reach its max. at $\pi(x) = y_x/n_x$. Likelihood methods will make the fitted $\widehat{\pi}(x)$ as close to y_x/n_x as possible.
- log-likelihood changes a little when π(x) changes from 0.51 to 0.501, log-likelihood changes a lot when π(x) changes from 0.01 to 0.001.

S-shaped Relationships

In practice, $\pi(x)$ often increases or decreases slower as $\pi(x)$ gets closer to 0 or 1.

The S-shaped curves below are often (close to) realistic.

The most commonly used S-shaped function for modeling $\pi(x)$ is

$$\pi(x) = \frac{\exp(\alpha + \beta x)}{1 + \exp(\alpha + \beta x)} = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

The logistic regression model models the success probability $\pi(x)$ for the binomial response as

$$\pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}},$$

or equivalently,

$$\log\left(\frac{\pi(x)}{1-\pi(x)}\right) = \alpha + \beta x.$$

- It ensures π(x) staying between 0 and 1 regardless of the values of α, β, and x
- $g(\pi) = \log(\frac{\pi}{1-\pi})$ is called the *logit* function
- Interpretation: $\log(\text{odds}) = \alpha + \beta x$ the odds increases by a factor of e^{β} whenever *x* increases by 1
- More details in Chapter 4 & 5

For the fatal fall example, the likelihood of α and β is

$$\ell(\alpha,\beta) = C \prod_{x=1}^{7} \left(\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}} \right)^{y_x} \left(\frac{1}{1+e^{\alpha+\beta x}} \right)^{n_x-y_x}$$

MLEs for α and β :

$$\widehat{\alpha} \approx -3.492, \quad \widehat{\beta} \approx 0.660$$

The fitted model is

$$\widehat{\pi}(x) \approx \frac{e^{-3.492 + 0.660x}}{1 + e^{-3.492 + 0.660x}}.$$

Estimated fatality rate for falls from the first floor is

$$\widehat{\pi}(1) \approx \frac{e^{-3.492+0.660\times 1}}{1+e^{-3.492+0.660\times 1}} \approx 0.0556 \approx 5.6\%$$

Odds of death become $e^{0.660} \approx 1.93$ times as large if the falling accidents occurred one floor higher

Three Components of Generalized Linear Models

• Random component Y

— the response variable with indep. obs. Y_1, Y_2, \ldots, Y_n from a common prob. dist. (e.g., normal, binomial, Poisson)

Linear Predictor — the explanatory variables of a linear structure

$$\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

Some x_j can be based on others x_k 's, e.g., $x_3 = x_1x_2$, $x_4 = x_1^2$

• Link function $g(\mu)$

— connecting $\mu = E[Y]$ and $\alpha + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k$ by a function

$$g(\mu) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

The same maximum likelihood (ML) fitting procedure is used to estimate the coefficients α , β_1 , ..., β_k for all GLMs.

Recall the ordinary linear regression models assume

$$Y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$$

where the noise ε has a normal distribution $N(0, \sigma^2)$

- The random component *Y* has a normal distribution
- $\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$ is the linear predictor
- The link function is the identity link $g(\mu) = \mu$

$$g(\mu) = \mu = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

 The ML fitting procedure for estimating α, β₁,..., β_k reduces to the least square method when the response variable has a normal distribution. Link functions are usually continuous and strictly monotone.

- Identity link: $g(\mu) = \mu$
 - used when *Y* ~ Normal, linear regression
- Log link: $g(\mu) = \log(\mu)$

$$\log(\mu) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

- used when Y ~ Poisson. See Section 3.3 and Ch 7
- Logit link $g(\mu) = \log\left(\frac{\mu}{1-\mu}\right)$
 - used for binary response models. See Chapter 4 and 5
- Other commonly used link functions for binary response models: probit, log-log, complementary log-log
 - not covered in STAT 226

How to Fit GLM in R

Loading data:

```
ff = read.table(
    "https://www.stat.uchicago.edu/~yibi/s226/falls.txt",
    h=T)
ff
```

	floor	fatal	live
1	1	2	35
2	2	6	48
3	3	8	38
4	4	13	25
5	5	10	22
6	6	10	1
7	7	1	1

GLM in R

Fitted binomial model w/ identity link: $\hat{\pi}(x) = -0.05771 + 0.09491x$.

Fitted logistic regression model:
$$\widehat{\pi}(x) = \frac{e^{-3.492+0.660x}}{1+e^{-3.492+0.660x}}$$

Another way to fit a glm model

Sometimes the data are ungrouped

Ungrouped Data: file: fallsUG.txt

Grouped Data: file: falls.txt

110.	I1001.	outcome	C 1	C	
1	2	livo	floor	fatal	live
T	2	TIVE	1	2	35
2	5	live	-	-	
3	5	live	2	6	48
		11100	3	8	38
4	2	live	1	12	25
5	1	live	4	13	23
c	4	1	5	10	22
0	4	TIVe	6	10	1
7	5	fatal	0	10	-
8	1	live	7	1	1
0	1	TIVE			
9	4	live			
10	3	live			

10 3 live 11 4 live

ffug.logit\$coef		#	same	fitted	coefficients!
(Intercept)	floor				
-3.492	0.660				
ff.logit\$coef					
(Intercept)	floor				
-3.492	0.660				

Estimated $\widehat{\pi}(x)$ for the Binomial model with identity link

ff.lin\$fit 1 2 3 4 5 6 7 0.03719 0.13210 0.22701 0.32191 0.41682 0.51172 0.60663

Estimated $\hat{\pi}(x)$ for the Binomial model with logit link (logistic regression)

ff.logit\$fit 1 2 3 4 5 6 7 0.05562 0.10230 0.18065 0.29903 0.45218 0.61495 0.75550 library(binom) ci = binom.confint(ff\$fatal,ff\$total,conf.level=0.95,method="wilson") ff\$lower = ci\$lower; ff\$upper = ci\$upper ff\$lsfit = fflm1\$fit; ff\$linfit = ff.lin\$fit; ff\$logitfit = ff.logit\$fit; ff 95% score CI

floor fatal live total percent lower upper lsfit linfit logitfit

