STAT 226 Lecture 9

Sections 3.1-3.2 Generalized Linear Models (GLM)

Yibi Huang

Example — Fatality in Falling Accidents ${ }^{1}$

floor level	fatal falls	total falls	observed fatality rate
x	y_{x}	n_{x}	$\widehat{\pi}_{x}=y_{x} / n_{x}$
1	2	37	$2 / 37 \approx 0.05$
2	6	54	$6 / 54 \approx 0.11$
3	8	46	$8 / 46 \approx 0.17$
4	13	38	13/38 ≈ 0.34
5	10	32	$10 / 32 \approx 0.31$
6	10	11	$10 / 11 \approx 0.91$
7	1	2	$1 / 2 \approx 0.50$

Floor Level

If the falls were indep. of each other, and if the chance of fatality depended only on the floor level from which the victims fell, then

$$
y_{x} \sim \operatorname{Binomial}\left(n_{x}, \pi(x)\right) .
$$

The MLE of $\pi(x)$ is $\widehat{\pi}_{x}=y_{x} / n_{x}$.
${ }^{1}$ Courtesy of Prof. Stephen M. Stigler

Why Modeling?

Without modeling, we can estimate $\pi(x)$ at $x=1,2, \ldots, 7$ using the sample fatality rate y_{x} / n_{x}, but there are a few problems.

- cannot estimate $\pi(x)$ at x 's with no observation, e.g., $x=8$ or 1.5.

Why Modeling?

Without modeling, we can estimate $\pi(x)$ at $x=1,2, \ldots, 7$ using the sample fatality rate y_{x} / n_{x}, but there are a few problems.

- cannot estimate $\pi(x)$ at x 's with no observation,

$$
\text { e.g., } x=8 \text { or } 1.5
$$

- Fatality rate $\pi(x)$ should increase with floor level x. However, ...

$$
\begin{aligned}
& \widehat{\pi}(4) \approx 0.34>\widehat{\pi}(5) \approx 0.31, \\
& \widehat{\pi}(6) \approx 0.91>\widehat{\pi}(7) \approx 0.50,
\end{aligned}
$$

Why Modeling?

Without modeling, we can estimate $\pi(x)$ at $x=1,2, \ldots, 7$ using the sample fatality rate y_{x} / n_{x}, but there are a few problems.

- cannot estimate $\pi(x)$ at x 's with no observation, e.g., $x=8$ or 1.5 .
- Fatality rate $\pi(x)$ should increase with floor level x. However, ...

$$
\begin{aligned}
& \widehat{\pi}(4) \approx 0.34>\widehat{\pi}(5) \approx 0.31, \\
& \widehat{\pi}(6) \approx 0.91>\widehat{\pi}(7) \approx 0.50,
\end{aligned}
$$

- By modeling, we can incorporate prior knowledge about $\pi(x)$ to improve the accuracy of estimation.
E.g., we can model $\pi(x)$ as an increasing function of x

$$
\pi(x)=\alpha+\beta x, \quad \text { or } \quad \pi(x)=\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}} \quad \text { with } \beta>0
$$

First Model — Linear Least-Square Regression

Suppose we model $\pi(x)$ as

$$
\pi(x)=\alpha+\beta x
$$

how to estimate α and β ? Let's try least-square regression with

- response $=$ the observed fatality rates $\widehat{\pi}_{x}=y_{x} / n_{x}$, and
- predictor $=$ the floor level x

floor level levalal	total falls x	y_{x} falls	n_{x} ratality
1	2	37	$\bar{\pi}_{x}$
2	6	54	0.05
3	8	46	0.11
4	13	38	0.34
5	10	32	0.31
6	10	11	0.91
7	1	2	0.50

First Model — Linear Least Square Regression

Fitting a linear regression model, we get

$$
\widehat{\pi(x)}=-0.0957+0.1097 x
$$

which means, if the fall occurs one floor higher, the chance for it to be fatal increases by about 11%.

Any problem with this model?

Problems of the Linear Least Square Regression

1. Non-normality of the response $\widehat{\pi}_{x}$

- not a big issue since least square regression is robust to non-normality

2. Non-constant variance of the response: $\mathrm{SE}\left(\widehat{\pi}_{x}\right)=\sqrt{\frac{\hat{\pi}_{x}\left(1-\widehat{\pi}_{x}\right)}{n_{x}}}$

Regression models assume constant variability.

Points w/ smaller SEs should be more influential to the fitted line as they are more accurate.

Floor Level
(Error bars are 95\% score Cls for $\pi(x)$).

Problems of the Linear Least Square Regression

3. For probabilities, the diff. of $\pi_{1}=0.01$ and $\pi_{2}=0.0001$ is important, but the diff. of $\pi_{1}=0.51$ and $\pi_{2}=0.5001$ is often negligible.

- Least square method regards the two differences equal,
- Likelihood methods can reflect the distinction of the two differences.

4. $\pi(x)=\alpha+\beta x$ may not stay between 0 and 1

Second Attempt — Likelihood Methods

As $y_{x} \sim \operatorname{Binomial}\left(n_{x}, \pi(x)\right)$, the likelihood of $\pi(x)$ is

$$
\ell=\prod_{x=1}^{7}\binom{n_{x}}{y_{x}}[\pi(x)]^{y_{x}}[1-\pi(x)]^{n_{x}-y_{x}}=C \prod_{x=1}^{7}[\pi(x)]^{y_{x}}[1-\pi(x)]^{n_{x}-y_{x}}
$$

where $C=\prod_{x=1}^{7}\binom{n_{x}}{y_{x}}$ is a constant involving no parameters, having no effect on parameter inference, and hence is often ignored.

For the linear probability model

$$
\pi(x)=\alpha+\beta x
$$

the likelihood of α, β is

$$
\ell(\alpha, \beta)=C \prod_{x=1}^{7}[\alpha+\beta x]^{y_{x}}[1-\alpha-\beta x]^{n_{x}-y_{x}} .
$$

- No close form formula for the MEs $\widehat{\alpha}$ and $\widehat{\beta}$.

R gives their values as $\widehat{\alpha}=-0.0577, \widehat{\beta}=0.0949$.

Compare the two fitted lines founded using regression and binomial likelihoods.

Linear Least Square : $\overline{\pi(x)}=-0.0957+0.1097 x$
Binomial likelihoods : $\widehat{\pi(x)}=-0.0577+0.0949 x$

Why Likelihood Methods Better Than Least-Square Estimates?

likelihood : $C \prod_{x}[\pi(x)]^{y_{x}}[1-\pi(x)]^{n_{x}-y_{x}}$
log-likelinood : $\log C+\sum_{x}\left\{y_{x} \log \pi(x)+\left(n_{x}-y_{x}\right) \log [1-\pi(x)]\right\}$
Contribution of an observation (x, n_{x}, y_{x}) to the log-likelihood is

$$
y_{x} \log \pi(x)+\left(n_{x}-y_{x}\right) \log [1-\pi(x)] .
$$

- Observations with larger n_{x} are more influential as they have greater contributions to log-likelihood

Why Likelihood Methods Better Than Least-Square Estimates?

likelihood : $C \prod_{x}[\pi(x)]^{y_{x}}[1-\pi(x)]^{n_{x}-y_{x}}$
log-likelinood : $\log C+\sum_{x}\left\{y_{x} \log \pi(x)+\left(n_{x}-y_{x}\right) \log [1-\pi(x)]\right\}$
Contribution of an observation (x, n_{x}, y_{x}) to the log-likelihood is

$$
y_{x} \log \pi(x)+\left(n_{x}-y_{x}\right) \log [1-\pi(x)] .
$$

- Observations with larger n_{x} are more influential as they have greater contributions to log-likelihood
- Each single $y_{x} \log \pi(x)+\left(n_{x}-y_{x}\right) \log [1-\pi(x)]$ reach its max. at $\pi(x)=y_{x} / n_{x}$. Likelihood methods will make the fitted $\widehat{\pi}(x)$ as close to y_{x} / n_{x} as possible.

Why Likelihood Methods Better Than Least-Square Estimates?

likelihood : $C \prod_{x}[\pi(x)]^{y_{x}}[1-\pi(x)]^{n_{x}-y_{x}}$
log-likelihood : $\log C+\sum_{x}\left\{y_{x} \log \pi(x)+\left(n_{x}-y_{x}\right) \log [1-\pi(x)]\right\}$
Contribution of an observation (x, n_{x}, y_{x}) to the log-likelihood is

$$
y_{x} \log \pi(x)+\left(n_{x}-y_{x}\right) \log [1-\pi(x)] .
$$

- Observations with larger n_{x} are more influential as they have greater contributions to log-likelihood
- Each single $y_{x} \log \pi(x)+\left(n_{x}-y_{x}\right) \log [1-\pi(x)]$ reach its max. at $\pi(x)=y_{x} / n_{x}$. Likelihood methods will make the fitted $\widehat{\pi}(x)$ as close to y_{x} / n_{x} as possible.
- log-likelihood changes a little when $\pi(x)$ changes from 0.51 to 0.501 , log-likelihood changes a lot when $\pi(x)$ changes from 0.01 to 0.001 .

S-shaped Relationships

In practice, $\pi(x)$ often increases or decreases slower as $\pi(x)$ gets closer to 0 or 1 .

The S-shaped curves below are often (close to) realistic.

The most commonly used S-shaped function for modeling $\pi(x)$ is

$$
\pi(x)=\frac{\exp (\alpha+\beta x)}{1+\exp (\alpha+\beta x)}=\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}}
$$

Logistic Regression Models

The logistic regression model models the success probability $\pi(x)$ for the binomial response as

$$
\pi(x)=\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}}
$$

or equivalently,

$$
\log \left(\frac{\pi(x)}{1-\pi(x)}\right)=\alpha+\beta x .
$$

- It ensures $\pi(x)$ staying between 0 and 1 regardless of the values of α, β, and x
- $g(\pi)=\log \left(\frac{\pi}{1-\pi}\right)$ is called the logit function
- Interpretation: \log (odds) $=\alpha+\beta x$
the odds increases by a factor of e^{β} whenever x increases by 1
- More details in Chapter 4 \& 5

For the fatal fall example, the likelihood of α and β is

$$
\ell(\alpha, \beta)=C \prod_{x=1}^{7}\left(\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}}\right)^{y_{x}}\left(\frac{1}{1+e^{\alpha+\beta x}}\right)^{n_{x}-y_{x}}
$$

MLEs for α and β :

$$
\widehat{\alpha} \approx-3.492, \quad \widehat{\beta} \approx 0.660
$$

The fitted model is

$$
\widehat{\pi}(x) \approx \frac{e^{-3.492+0.660 x}}{1+e^{-3.492+0.660 x}}
$$

Estimated fatality rate for falls from the first floor is

$$
\widehat{\pi}(1) \approx \frac{e^{-3.492+0.660 \times 1}}{1+e^{-3.492+0.660 \times 1}} \approx 0.0556 \approx 5.6 \%
$$

Odds of death become $e^{0.660} \approx 1.93$ times as large if the falling accidents occurred one floor higher

Three Components of Generalized Linear Models

- Random component Y
- the response variable with indep. obs. $Y_{1}, Y_{2}, \ldots, Y_{n}$ from a common prob. dist. (e.g., normal, binomial, Poisson)
- Linear Predictor - the explanatory variables of a linear structure

$$
\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}
$$

Some x_{j} can be based on others x_{k} 's, e.g., $x_{3}=x_{1} x_{2}, x_{4}=x_{1}^{2}$

- Link function $g(\mu)$
- connecting $\mu=\mathrm{E}[Y]$ and $\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}$ by a function

$$
g(\mu)=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}
$$

The same maximum likelihood (ML) fitting procedure is used to estimate the coefficients $\alpha, \beta_{1}, \ldots, \beta_{k}$ for all GLMs.

Linear Regression Models Are GLMs

Recall the ordinary linear regression models assume

$$
Y=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}+\varepsilon
$$

where the noise ε has a normal distribution $N\left(0, \sigma^{2}\right)$

- The random component Y has a normal distribution
- $\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}$ is the linear predictor
- The link function is the identity link $g(\mu)=\mu$

$$
g(\mu)=\mu=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}
$$

- The ML fitting procedure for estimating $\alpha, \beta_{1}, \ldots, \beta_{k}$ reduces to the least square method when the response variable has a normal distribution.

Commonly Used Link Functions

Link functions are usually continuous and strictly monotone.

- Identity link: $g(\mu)=\mu$
- used when $Y \sim$ Normal, linear regression
- Log link: $g(\mu)=\log (\mu)$

$$
\log (\mu)=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}
$$

- used when Y ~ Poisson. See Section 3.3 and Ch 7
- Logit link $g(\mu)=\log \left(\frac{\mu}{1-\mu}\right)$
- used for binary response models. See Chapter 4 and 5
- Other commonly used link functions for binary response models: probit, log-log, complementary log-log
- not covered in STAT 226

How to Fit GLM in R

Loading data:

```
ff = read.table(
    "https://www.stat.uchicago.edu/~yibi/s226/falls.txt",
    \(h=T\) )
ff
```

 floor fatal live
 | 1 | 1 | 2 | 35 |
| ---: | ---: | ---: | ---: |
| 2 | 2 | 6 | 48 |
| 3 | 3 | 8 | 38 |
| 4 | 4 | 13 | 25 |
| 5 | 5 | 10 | 22 |
| 6 | 6 | 10 | 1 |
| 7 | 7 | 1 | 1 |

GLM in \mathbf{R}

```
ff.lin = glm(cbind(fatal,live) ~ floor,
    family=binomial(link="identity"),data=ff)
ff.lin$coef
(Intercept) floor
    -0.05771 0.09491
ff.logit = glm(cbind(fatal,live) ~ floor,
    family=binomial(link="logit"), data=ff)
ff.logit$coef
\begin{tabular}{rr} 
(Intercept) & floor \\
-3.492 & 0.660
\end{tabular}
```

Fitted binomial model w/ identity link: $\widehat{\pi}(x)=-0.05771+0.09491 x$.
Fitted logistic regression model: $\widehat{\pi}(x)=\frac{e^{-3.492+0.660 x}}{1+e^{-3.492+0.660 x}}$.

Another way to fit a glm model

```
ff$total = ff$fatal+ff$live
ff$percent = ff$fatal/ff$total
ff.logit2 = glm(percent ~ floor, family=binomial(link="logit"),
    weight = total, data=ff)
ff.logit2$coef # same fitted coefficients!
\begin{tabular}{rr} 
(Intercept) & floor \\
-3.492 & 0.660
\end{tabular}
ff.logit$coef
(Intercept) floor
    -3.492 0.660
```


Ungrouped Data and Grouped Data

Sometimes the data are ungrouped ...
Ungrouped Data:
file: fallsUG.txt
Grouped Data: file: falls.txt

no.	floor	outcome
1	2	live
2	5	live
3	5	live
4	2	live
5	1	live
6	4	live
7	5	fatal
8	1	live
9	4	live
10	3	live
11	4	live

Fitting GLM for Ungrouped Data

```
ffug = read.table(
    "https://www.stat.uchicago.edu/~yibi/s226/fallsUG.txt",
    header=TRUE)
ffug.logit = glm((outcome == "fatal") ~ floor,
    family=binomial(link="logit"), data=ffug)
ffug.logit$coef
# same fitted coefficients!
(Intercept)
    floor
    -3.492 0.660
ff.logit$coef
(Intercept) floor
    -3.492 0.660
```


Fitted Values $\widehat{\pi}(x)$

Estimated $\widehat{\pi}(x)$ for the Binomial model with identity link

ff.lin\$fit						
1	2	3	4	5	6	7
0.03719	0.13210	0.22701	0.32191	0.41682	0.51172	0.60663

Estimated $\widehat{\pi}(x)$ for the Binomial model with logit link (logistic regression)
ff.logit\$fit

1	2	3	4	5	6	7
0.05562	0.10230	0.18065	0.29903	0.45218	0.61495	0.75550

library (binom)
ci = binom.confint(ff\$fatal,ff\$total,conf.level=0.95,method="wilson")
ff\$lower = ci\$lower; ff\$upper = ci\$upper
ff\$lsfit = fflm1\$fit; ff\$linfit = ff.lin\$fit;
ff\$logitfit = ff.logit\$fit; ff 95% score Cl
floor fatal live total percent lower upper lsfit linfit logitfit

1	1	2	35	37	0.054	0.015	0.18	0.014	0.037	0.056
2	2	6	48	54	0.111	0.052	0.22	0.124	0.132	0.102
3	3	8	38	46	0.174	0.091	0.31	0.234	0.227	0.181
4	4	13	25	38	0.342	0.212	0.50	0.343	0.322	0.299
5	5	10	22	32	0.312	0.180	0.49	0.453	0.417	0.452
6	6	10	1	11	0.909	0.623	0.98	0.563	0.512	0.615
7	7	1	1	2	0.500	0.095	0.91	0.672	0.607	0.756

