STAT 226 Lecture 6

Section 2.4 Chi-Squared Tests of Independence

Yibi Huang

Example: Age \& Source of News

A question asked in the 2008 General Social Survey is "Where do you get most of your information about current news events?"
Possible answers included TV, Internet, and newspapers, as well as other possibilities such as radio, family, and friends. The table below summarizes the results by age group.

	Source (Y)				
Age (X)	TV	Internet	Newspapers	Other	Total
$18-29$	109	92	25	36	262
$30-49$	272	157	88	63	580
$50+$	345	59	165	63	632
Total	726	308	278	162	1474

Question: Did the way people get news change with age?

Getting Tablular Data into R

Age	TV	Internet	Newspapers	Other
$18-29$	109	92	25	36
$30-49$	272	157	88	63
$50+$	345	59	165	63

By default, R reads a matrix by column.

```
matrix(c(109,272,345,92,157,59,25,88,165,36,63,63),nrow=3)
    [,1] [,2] [,3] [,4]
[1,] 109 92 25 36
[2,] 272 157 88 63
[3,] 345 59 165 63
```

If one prefers entering the counts by row, just add byrow=TRUE.

```
matrix(c(109,92,25,36,272,157,88,63,345,59,165,63),nrow=3, byrow=TRUE)
```

 [,1] [,2] [,3] [,4]
 $\begin{array}{ccccc}{[1,]} & 109 & 92 & 25 & 36\end{array}$
$\begin{array}{ccccc}{[2,]} & 272 & 157 & 88 & 63\end{array}$
$\begin{array}{lllll}{[3,]} & 345 & 59 & 165 & 63\end{array}$

```
agenews = matrix(c(109,272,345,92,157,59,25,88,165,36,63,63),nrow=3)
dimnames(agenews) = list(
    Age=c("18-29", "30-49", "50+"),
    Source=c("TV", "Internet", "Newspapers", "Other")
)
agenews = as.table(agenews)
agenews
            Source
Age TV Internet Newspapers Other
\begin{tabular}{llrrr}
\(18-29\) & 109 & 92 & 25 & 36 \\
\(30-49\) & 272 & 157 & 88 & 63 \\
\(50+\) & 345 & 59 & 165 & 63
\end{tabular}
```


Marginal Totals

Age					
18-29 3	30-49	50+			
262	580	632			
margin.table(agenews, 2)					
Source					
	TV	Internet	Newspapers		Other
	726	308	278		162
addmargins(agenews)					
Source					
Age	TV	Internet	Newspapers	Other	Sum
18-29	9109	92	25	36	262
30-49	9272	157	88	63	580
50+	345	59	165	63	632
Sum	726	308	278	162	1474

Joint Distributions

Model/Population

	Inter-				News-
Age	TV	net	papers Other	Total	
$18-29$	π_{11}	π_{12}	π_{13}	π_{14}	π_{1+}
$30-49$	π_{21}	π_{22}	π_{23}	π_{24}	π_{2+}
$50+$	π_{31}	π_{32}	π_{33}	π_{34}	π_{3+}
Total	π_{+1}	π_{+2}	π_{+3}	π_{+4}	π_{++}

Data/Sample

	Inter-				News-
Age	TV	net	papers	Other	Total
$18-29$	n_{11}	n_{12}	n_{13}	n_{14}	n_{1+}
$30-49$	n_{21}	n_{22}	n_{23}	n_{24}	n_{2+}
$50+$	n_{31}	n_{32}	n_{33}	n_{34}	n_{3+}
Total	n_{+1}	n_{+2}	n_{+3}	n_{+4}	n_{++}

Estimated joint distribution: $\widehat{\pi}_{i j}=\frac{n_{i j}}{n_{++}}$ prop.table(agenews)

Source

Age	TV	Internet	Newspapers	Other
$18-29$	0.07395	0.06242	0.01696	0.02442
$30-49$	0.18453	0.10651	0.05970	0.04274
$50+$	0.23406	0.04003	0.11194	0.04274

Conditional Distributions

Conditional distribution $\mathrm{P}($ Source $=j \mid$ Age $=i)=\frac{\pi_{i j}}{\pi_{i+}}$ is estimated by $\frac{n_{i j}}{n_{i+}}$ prop.table(agenews,1) Source

Age	TV	Internet	Newspapers	Other
$18-29$	0.41603	0.35115	0.09542	0.13740
$30-49$	0.46897	0.27069	0.15172	0.10862
$50+$	0.54589	0.09335	0.26108	0.09968

Conditional distribution $\mathrm{P}($ Age $=i \mid$ Source $=j)=\frac{\pi_{i j}}{\pi_{+j}}$ is estimated by $\frac{n_{i j}}{n_{+j}}$ prop.table(agenews,2)
Source

Age	TV	Internet	Newspapers	Other
$18-29$	0.15014	0.29870	0.08993	0.22222
$30-49$	0.37466	0.50974	0.31655	0.38889
$50+$	0.47521	0.19156	0.59353	0.38889

Estimation of Marginal Distributions

Marginal distribution of Age $\mathrm{P}(\mathrm{Age}=i)=\pi_{i+}$ is estimated by

$$
\widehat{\pi}_{i+}=\frac{n_{i+}}{n_{++}} .
$$

prop.table(margin.table(agenews,1))
Age
18-29 30-49 50+
0.17770 .39350 .4288

Marginal distribution of Source $\mathrm{P}($ Source $=j)=\pi_{+j}$ is estimated by

$$
\widehat{\pi}_{+j}=\frac{n_{+j}}{n_{++}} .
$$

prop.table(margin.table(agenews,2))
Source

$$
\begin{array}{rrrr}
\text { TV } & \text { Internet } & \text { Newspapers } & \text { Other } \\
0.4925 & 0.2090 & 0.1886 & 0.1099
\end{array}
$$

Independence of Variables (Review)

Recall two variables $X \& Y$ are said to be independent if the conditional distribution of Y given X doesn't change with X.

$$
\mathrm{P}(Y=j \mid X=i)=\mathrm{P}(Y=j) \quad \text { for all } i, j .
$$

As the conditional distribution $\mathrm{P}(Y=j \mid X=i)$ is defined to be

$$
\mathrm{P}(Y=j \mid X=i)=\frac{\mathrm{P}(X=i, Y=j)}{\mathrm{P}(X=i)}
$$

$\mathrm{P}(Y=j \mid X=i)=\mathrm{P}(Y=j)$ implies

$$
\mathrm{P}(X=i, Y=j)=\mathrm{P}(X=i) \mathrm{P}(Y=j) .
$$

which also implies

$$
\mathrm{P}(X=i \mid Y=j)=\frac{\mathrm{P}(X=i, Y=j)}{\mathrm{P}(Y=j)}=\frac{\mathrm{P}(X=i) \mathrm{P}(Y=j)}{\mathrm{P}(Y=j)}=\mathrm{P}(X=i)
$$

Summary - Independence

Two variables $X \& Y$ are independent if any of the following is true

- the conditional distribution of Y given X doesn't change with X.

$$
\mathrm{P}(Y=j \mid X=i)=\mathrm{P}(Y=j) \quad \text { for all } i, j .
$$

- the conditional distribution of X given Y doesn't change with Y.

$$
\mathrm{P}(X=i \mid Y=j)=\mathrm{P}(X=i) \quad \text { for all } i, j .
$$

- The joint distribution is the product of the marginal distributions.

$$
\mathrm{P}(X=i, Y=j)=\mathrm{P}(X=i) \mathrm{P}(Y=j) \quad \text { for all } i, j .
$$

If any of the above is true, the remaining two are also true.

Expected Counts

If X and Y are independent, we know

$$
\mathrm{P}(Y=j \mid X=i)=\mathrm{P}(Y=j)
$$

We hence expect the estimates of the two sides to be about equal:

$$
\frac{n_{i j}}{n_{i+}} \approx \frac{n_{+j}}{n_{++}} \Rightarrow n_{i j} \approx \frac{n_{i+} n_{+j}}{n_{++}}
$$

That is, the expected cell counts under the independence assumption are

$$
\widehat{\mu}_{i j}=\text { expected cell count }=\frac{\text { row total } \times \text { column total }}{\text { overall total }}
$$

We use the notion $\widehat{\mu}_{i j}$ to represent the expected count.

Expected Counts

The expected counts for the Age and News data are

Age	Source (Y)				Total
(X)	TV	Internet	Newspapers	Other	
18-29	$\frac{262 \times 726}{1474}=129.04$	$\frac{262 \times 308}{1474}=54.75$	$\frac{262 \times 278}{1474}=49.41$	$\frac{262 \times 162}{1474}=28.8$	262
30-49	$\frac{580 \times 726}{1474}=285.67$	$\frac{580 \times 308}{1474}=121.19$	$\frac{580 \times 278}{1474}=109.39$	$\frac{580 \times 162}{1474}=63.74$	580
50+	$\frac{632 \times 726}{1474}=311.28$	$\frac{632 \times 308}{1474}=132.06$	$\frac{632 \times 278}{1474}=119.2$	$\frac{632 \times 162}{1474}=69.46$	632
Total	726	308	278	162	1474

Note the expected cell counts need NOT be whole numbers.
Do NOT round the expected counts to integers.

Pearson's Chi-Squared Test Statistic of Independence

$\mathrm{H}_{0}: X$ and Y are independent vs $\mathrm{H}_{a}: X$ and Y are dependent
Pearson's chi-squared statistic is

$$
X^{2}=\sum_{i j} \frac{\left(n_{i j}-\widehat{\mu}_{i j}\right)^{2}}{\widehat{\mu}_{i j}}=\sum_{\text {all cells }} \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}
$$

Under H_{0}, X^{2} has a large-sample chi-squared distribution, with

$$
d f=(r-1)(c-1), \quad \text { where }\left\{\begin{array}{l}
r=\text { number of rows } \\
c=\text { number of columns }
\end{array}\right.
$$

$$
\text { chi-square-curve with df }=(r-1)(c-1)
$$

observed value of the X^{2}-statistic

Pearson's X^{2}-Statistic - Age News Example

The observed counts and the expected counts (in parentheses)

Age					
Source (Y)					
$($	TV	Internet	Newspapers	Other	Total
$18-29$	109	92	25	36	262
	(129.04)	(54.75)	(49.41)	(28.8)	
$30-49$	272	157	88	63	580
	(285.67)	(121.19)	(109.39)	(63.74)	
$50+$	345	59	165	63	632
	(311.28)	(132.06)	(119.2)	(69.46)	
Total	726	308	278	162	1474

The observed value of Pearson's X^{2} statistic is

$$
\begin{aligned}
X^{2} & =\frac{(109-129.04)^{2}}{129.04}+\frac{(92-54.75)^{2}}{54.75}+\cdots+\frac{(63-69.46)^{2}}{69.46} \\
& =120.0253
\end{aligned}
$$

P-value of Pearson's X^{2}-Test — Age News Example

The table is 3×4, so

$$
d f=(r-1)(c-1)=(3-1)(4-1)=6
$$

P-value $=\mathrm{P}\left(X^{2}>120.0253\right)=1.62 \times 10^{-23}$
pchisq(120.0253, df=6, lower.tail=FALSE)
[1] $1.61 \mathrm{e}-23$

There is strong evidence against H_{0} :
people in different age groups clearly had different preference in ways of getting news.

Pearson's X^{2}-Test of Independence in \mathbf{R}

```
chisq.test(agenews)
    Pearson's Chi-squared test
data: agenews
X-squared = 120.025, df = 6, p-value < 2.22e-16
```


Likelihood-Ratio Test (LRT) of Independence

Test statistic

$$
\begin{aligned}
G^{2} & =-2 \log \left(\frac{\text { maximized likelihood when } \mathrm{H}_{0} \text { true }}{\text { maximized likelihood generally }}\right) \\
& =2 \sum_{i j} n_{i j} \log \left(\frac{n_{i j}}{\widehat{\mu}_{i j}}\right) \\
& =2 \sum_{\text {all cells }} \text { observed } \times \log \left(\frac{\text { observed }}{\text { expected }}\right)
\end{aligned}
$$

Large sample dist. of G^{2} under H_{0} is also approx. chi-squared $d f=(r-1)(c-1)$.

Age
Source (Y)

$($	TV	Internet	Newspapers	Other	Total
$18-29$	109	92	25	36	262
	(129.04)	(54.75)	(49.41)	(28.8)	
$30-49$	272	157	88	63	580
	(285.67)	(121.19)	(109.39)	(63.74)	
$50+$	345	59	165	63	632
	(311.28)	(132.06)	(119.2)	(69.46)	
Total	726	308	278	162	1474

The likelihood ratio G^{2} statistic is

$$
\begin{aligned}
G^{2} & =2\left[109 \log \left(\frac{109}{129.04}\right)+92 \log \left(\frac{92}{54.75}\right)+\cdots+63 \log \left(\frac{63}{69.46}\right)\right] \\
& \approx 126.44708951
\end{aligned}
$$

$\mathrm{df}=(3-1)(4-1)=6, P$-value is approx. 7.192×10^{-25}.
pchisq(126.4471, df=6, lower.tail=FALSE)
[1] $7.1915915 \mathrm{e}-25$

Degrees of Freedom for Likelihood Ratio Test (LRT) in General

df for LRT $=$ \# parameters under $\mathrm{H}_{1}-$ \# parameters under H_{0}
Example (LR test of independence)
$\mathrm{H}_{0}: \pi_{i j}=\pi_{i+} \pi_{+j}$ (Independence)

$$
\sum_{i j} \pi_{i j}=1, \quad \sum_{i} \pi_{i+}=1, \quad \sum_{j} \pi_{+j}=1
$$

- Under H_{1} : there are $r c-1$ free parameters $\left\{\pi_{i j}\right\}$
- If we know $r c-1$ of the $\pi_{i j}$, the last one is known since they must add up to 1.
- Under H_{0}, the joint probabilities $\left\{\pi_{i j}\right\}$ are completely determined by the marginal probabilities $\left\{\pi_{i_{+}}\right\}$and $\left\{\pi_{+j}\right\}$ since $\pi_{i j}=\pi_{i+} \pi_{+j}$. there are $(r-1)+(c-1)$ free parameters: $(r-1)$ free π_{i+} and $(c-1)$ free π_{+j}.

Thus $d f=(r c-1)-[(r-1)+(c-1)]=(r-1)(c-1)$.
agenews.chisq = chisq.test(agenews)
names (agenews.chisq)
[1] "statistic" "parameter" "p.value" "method" "data.name" "observ
[7] "expected" "residuals" "stdres"
agenews.chisq\$statistic
X-squared
120.025
agenews.chisq\$parameter
df
6
agenews.chisq\$p.value
[1] $1.60979 \mathrm{e}-23$
agenews.chisq\$observed

Source				
Age	TV	Internet	Newspapers	Other
$18-29$	109	92	25	36
$30-49$	272	157	88	63
$50+$	345	59	165	63
agenews.chisq\$expected				
Source				

Age TV Internet Newspapers Other
18-29 129.045 $54.7463 \quad 49.4138 \quad 28.7951$
30-49 $285.672121 .1940 \quad 109.389463 .7449$
$50+311.284132 .0597 \quad 119.196769 .4600$
with(agenews.chisq, sum((observed - expected)^2/expected))
[1] 120.025

Likelihood Ratio Test Statistic G^{2} :
G2 = with(agenews.chisq, 2*sum(observed*log(observed/expected)))
G2
[1] 126.439

Remarks About X^{2} and G^{2}

- If observed count = expected count in all cells, then

$$
X^{2}=0, \quad G^{2}=0 .
$$

- The larger the value of X^{2} or G^{2}, the stronger the evidence against H_{0}
- The sampling distribution of X^{2} converges to χ^{2} faster than that of G^{2}, but X^{2} and G^{2} are usually similar if the expected counts are (almost) all ≥ 5
- These tests treat X and Y as nominal:
- the order of categories are ignored
- reordering rows or columns leaves $X^{2} \& G^{2}$ unchanged.
- More powerful tests for ordinal variables in Ch 6.

Definition of Standardized (or Adjusted) Residuals

$$
\begin{aligned}
& r_{i j}=\frac{n_{i j}-\widehat{\mu}_{i j}}{\sqrt{\widehat{\mu}_{i j}\left(1-\widehat{\pi}_{i+}\right)\left(1-\widehat{\pi}_{+j}\right)}} \\
& n_{11}=109, \quad \widehat{\mu}_{11}=\frac{262 \times 726}{1474} \approx 129.04 \\
& r_{11}=\frac{109-129.04}{\sqrt{129.04\left(1-\frac{262}{1474}\right)\left(1-\frac{726}{1474}\right)}} \approx-2.732
\end{aligned}
$$

The residuals computed by chisq.test () are the unadjusted (raw) Pearson residuals:

$$
\frac{n_{i j}-\widehat{\mu}_{i j}}{\sqrt{\widehat{\mu}_{i j}}}
$$

not the standardized residuals we defined before.

```
agenews.chisq$residuals
    Source
\begin{tabular}{lrrrr} 
Age & TV & Internet & Newspapers & Other \\
\(18-29\) & -1.7645379 & 5.0349193 & -3.4730560 & 1.3426649 \\
\(30-49\) & -0.8088856 & 3.2524815 & -2.0450846 & -0.0933001 \\
\(50+\) & 1.9110116 & -6.3575932 & 4.1953110 & -0.7751101 \\
with (agenews.chisq, (observed & - expected)/sqrt (expected)) \\
Source
\end{tabular}
\begin{tabular}{lrrrr} 
Age & TV & Internet & Newspapers & Other \\
\(18-29\) & -1.7645379 & 5.0349193 & -3.4730560 & 1.3426649 \\
\(30-49\) & -0.8088856 & 3.2524815 & -2.0450846 & -0.0933001 \\
\(50+\) & 1.9110116 & -6.3575932 & 4.1953110 & -0.7751101
\end{tabular}
```


Standardized Residuals in \mathbf{R}

The stdres given by chisq. test () are the standardized residuals we defined above

$$
r_{i j}=\frac{n_{i j}-\widehat{\mu}_{i j}}{\sqrt{\widehat{\mu}_{i j}\left(1-\widehat{\pi}_{i+}\right)\left(1-\widehat{\pi}_{+j}\right)}}
$$

agenews.chisq\$stdres
Source

Age	TV	Internet	Newspapers	Other
$18-29$	-2.731658	6.242944	-4.251991	1.569448
$30-49$	-1.458025	4.695634	-2.915241	-0.126983
$50+$	3.549392	-9.457686	6.162260	-1.087021

Under H_{0} : independence, $r_{i j}$ is approx. $N(0,1)$.
agenews.chisq\$stdres
Source

Age	TV	Internet	Newspapers	Other
$18-29$	-2.731658	6.242944	-4.251991	1.569448
$30-49$	-1.458025	4.695634	-2.915241	-0.126983
$50+$	3.549392	-9.457686	6.162260	-1.087021

- $r_{12}=6.243, r_{22}=4.696$ both above $3, r_{32}=-9.458<-3$
- Younger (18-29 \& 30-49) people were more likely to get news from the Internet than older (50+) people
- $r_{13}=-4.252<-3$ and $r_{33}=6.162>6$
- Older (50+) people were more likely to get news from Newspaper than younger people (18-29)

Meaning of Independence

Which of the following means the primary way they get news is associated with their age? Circle all that apply.
a. There was a higher percentage of people getting news primarily from the Internet among younger people than among older people.
b. Most people in the 18-29 age group got news primarily from TV and the Internet.
c. Among those who got news primarily from the Newspaper, a majority of them were 50 or older.
d. Those who got news primarily from the internet were generally younger than those who got news primarily by reading a newspaper.
e. The percentage of $18-29$ year-olds that got news primarily from the Internet was higher than the percentage that got news primarily from the internet in all age groups
a. $P($ Source $=$ Internet \mid Age $=$ young $) \neq P($ Source $=$ Internet \mid Age =old), which implies dependence.
b. If the same thing is observed in other age groups, the two variables could be independent
c. If 50+ year-olds were a majority for all sources of news, the two variables could be independent
d. $P($ Age \mid Source $=$ Internet $) \neq P($ Age \mid Source $=$ Newspaper $)$, which implies dependence.
e. $P($ Source $=$ Internet \mid Age $=18-29) \neq P($ Source $=$ Internet $)$, which implies dependence.

Pearson's X^{2}-Test on 2×2 Tables

Pearson's X^{2}-Test on 2×2 tables is equivalent to the two-sample test for testing $\mathrm{H}_{0}: \pi_{1}=\pi_{2}$ with the z-statistic

	$Y=1$	$Y=2$	sum
$X=1$	n_{11}	n_{12}	n_{1+}
$X=2$	n_{21}	n_{22}	n_{2+}
sum	n_{+1}	n_{+2}	$n=n_{++}$

$$
z=\frac{\widehat{\pi}_{1}-\widehat{\pi}_{2}}{\sqrt{\widehat{\pi}(1-\widehat{\pi})\left(\frac{1}{n_{1+}}+\frac{1}{n_{2+}}\right)}}, \quad \text { where } \widehat{\pi}=\frac{n_{11}+n_{21}}{n_{1+}+n_{2+}}=\frac{n_{+1}}{n}
$$

Under H_{0}, z is approx. $N(0,1)$.

- Pearson's $X^{2}=\sum_{\text {all cells }} \frac{(\text { obs }-\exp)^{2}}{\exp }$ is just $(z \text {-statistic })^{2}$
- The two tests give identical P-values.

Example: Aspirin \& Heart Attack (p. 30)

	MI				
Group	Yes	No	Total		
Placebo	189	10845	11034		$\Rightarrow \widehat{\pi}_{1}=189 / 11034 \approx 0.0171$
Aspirin	104	10933	11037	$\Rightarrow \widehat{\pi}_{2}=104 / 11037 \approx 0.0094$	

For testing $\mathrm{H}_{0}: \pi_{1}=\pi_{2}, \quad \widehat{\pi}=\frac{189+104}{11034+11037} \approx 0.0132$

$$
z=\frac{0.0171-0.0094}{\sqrt{0.0132(1-0.0132)\left(\frac{1}{11034}+\frac{1}{11037}\right)}} \approx \frac{0.0077}{0.00154} \approx 5.0014
$$

2 -sided P-value $=0.00000057$, strong evidence against H_{0}. chisq.test (matrix $(c(189,104,10845,10933)$, nrow=2), correct $=F)$

```
Pearson's Chi-squared test
```

data: matrix(c(189, 104, 10845, 10933), nrow = 2)
X-squared $=25.0139, \mathrm{df}=1, \mathrm{p}$-value $=0.00000056919$
$X^{2}=25.0139 \approx(5.0014)^{2}=(z \text {-stat })^{2}$

Tests of Independence Can be Applied to Both Prospective \& Retrospective Data

In a retrospective study, we can estimate

$$
P(\text { exposed } \mid \text { disease }) \text { and } \quad P \text { (exposed } \mid \text { no disease })
$$

but not

$$
P(\text { disease | exposed }) \quad \text { and } \quad P(\text { disease | unexposed })
$$

which are only estimable in a prospective study.
Nonetheless, the former two are equal if and only if the latter two are equal by the property of independence.

We can thus test the equality of the latter two though neither of them can be estimated.

When is it Safe To Use a Chi-Square Test of Independence?

Both Pearson's X^{2} and Likelihood Ratio G^{2} require a large sample to be applicable.

We can safely use the chi-square test when:

- The observations are independent
- All individual expected counts are 5 or more (≥ 5)

Small-sample tests of independence are available in Section 2.6
(Fisher's exact test).

Infant Malformation and Alcohol Use (Table 2.6 on p.44)

A prospective study in 1987 about maternal drinking (mean number of drinks per day) and whether the baby had congenital sex organ malformations.

Alcohol	Observed Malformation		Expected Malformation	
	Absent	Present	Absent	Present
0	17,066	48	$17,065.14$	48.86
<1	14,464	38	$14,460.60$	41.40
$1-2$	788	5	790.74	2.26
$3-5$	126	1	126.64	0.36
≥ 6	37	1	37.89	0.11

The result of Pearson's X^{2}-test $\left(X^{2}=12.1, P\right.$-value $\left.=0.02\right)$ is NOT consistent with LR test ($G^{2}=6.2, P$-value $=0.19$).

For this table, neither X^{2} nor G^{2} has a χ^{2} distribution for many cells have very small expected counts.

What's Wrong? (Problem 2.18 on p.60)

Each subject in a sample of 100 men and 100 women is asked to indicate which of the following factors (one or more) are responsible for increases in teenage crime:

- A. the increasing gap in income between the rich and poor;
- B. the increase in the percentage of single-parent families;
- C. insufficient time spent by parents with their children.

A cross classification of the responses by gender is

Gender	A	B	C
Men	60	81	75
Women	75	87	86

Can we do the chi-squared test of independence to this 2×3 table?

The Correct Analysis

	A	
Gender	Yes	No
Men	60	40
Women	75	25

	B	
Gender	Yes	No
Men	81	19
Women	87	13

	C	
Gender	Yes	No
Men	75	25
Women	86	14

Example: Jane Austen

People have used relative frequencies of words used as indices of literary style, and statistical techniques applied to word counts have been used in controversies about disputed authorship. An interesting account is given by Morton (1978). When Jane Austen died, she left the novel Sanditon unfinished, but she left a summary of the remainder. A highly literate admirer finished the novel, attempting to emulate Austen' style, and the hybrid was published. Morton counted the occurrences of various words in several works: Chapters 1 and 3 of Sense and Sensibility, Chapters 1, 2, and 3 of Emma, Chapters 1 and 6 of Sanditon (all three above were written by Austen); and Chapters 12 and 24 of Sanditon (written by her imitator). The counts Morton obtained for 6 words are given in the table on the next page

Example: Jane Austen

Word	Sense and Sensibility	Emma	Sanditon I (by Austen)	Sanditon II (by Imitators)
a	147	186	101	83
an	25	26	11	29
this	32	39	15	15
that	94	105	37	22
with	59	74	28	43
without	18	10	10	4

```
x = matrix(c(147,25,32,94,59,18,186,26,39,105,74,10,
    101,11,15,37,28,10,83,29,15,22,43,4), nrow=6)
dimnames(x) = list(
    word=c("a","an", "this","that","with", "without"),
    work=c("Sense and Sensitivity","Emma","Sandition I","Sandition II"))
X
\begin{tabular}{crrrrr}
\multicolumn{8}{l}{ Work } & & & \\
word & Sense and Sensitivity & Emma & Sandition & Sandition & II \\
a & 147 & 186 & 101 & 83 \\
an & 25 & 26 & 11 & 29 \\
this & 32 & 39 & 15 & 15 \\
that & 94 & 105 & 37 & 22 \\
with & 59 & 74 & 28 & 43 \\
without & 18 & 10 & 10 & 4
\end{tabular}
```

Pearson's X^{2} test using the chisq. test () command:
$x . \operatorname{chisq}=\operatorname{chisq} . \operatorname{test}(x)$
x.chisq

Pearson's Chi-squared test
data: x
X-squared $=45.5775, \mathrm{df}=15, \mathrm{p}$-value $=0.00006205$

- What are the null and alternative hypotheses of the test above?
- What do we conclude from the test above?

The hypotheses stated in terms of literary style are as follows.

- H_{0} : The relative frequencies of the six words (a, an, this, that, with, without) do not differ between the four books
- H_{a} : Some the four books differs from each other in the relative frequencies of usage of the six words (a, an, this, that, with, without).

Example: Jane Austen (Residuals)

round(x.chisq\$stdres, 2)
work
word
wense and Sensitivity
a
an
anma

The two largest residuals (4.23 and -3.75) both appear in the work by the imitator, Sandition II. We see the imitator used "an" a lot more often and "that" a lot less often than Austen did in her three works. Most of the residuals for the 3 works by Jane Austen are <2 and all of them are <2.5, which indicates little inconsistency in word usage in Austen's work.

Pearson's X^{2}-test on the first 3 columns (Austen's work) of the table only.
x[,1:3]
work
word Sense and Sensitivity Emma Sandition I

a	147	186	101
an	25	26	11

this 323935
$\begin{array}{llll}\text { that } & 94 & 105 & 37\end{array}$
with $59 \quad 74$
without $18 \quad 10 \quad 10$
chisq.test(x[, 1:3])

```
Pearson's Chi-squared test
```

data: $x[, 1: 3]$
X-squared $=12.2714, \mathrm{df}=10, \mathrm{p}$-value $=0.2673$

What does the test above tell us?

Pearson's X^{2}-test of word counts of Austen's 3 novels combined v.s. imitator's

Word	Austen	Imitator
a	434	83
an	62	29
this	86	15
that	236	22
with	161	43
without	38	4

$\mathrm{x} 3=\operatorname{cbind}($ rowSums $(\mathrm{x}[, 1: 3]), \mathrm{x}[, 4]$) chisq.test(x3)

```
Pearson's Chi-squared test
```

data: x3
X-squared $=32.8096, \mathrm{df}=5, \mathrm{p}$-value $=0.0000041057$

What does the test above tell us?

