STAT 226 Lecture 3 Small Sample Binomial Inference Section 1.4.3

Yibi Huang Department of Statistics University of Chicago

- People providing an organ for donation sometimes seek the help of a special "medical consultant." These consultants assist the patient in all aspects of the surgery, with the goal of reducing the possibility of complications during the medical procedure and recovery.
- One consultant tried to attract patients by noting the average complication rate for liver donor surgeries in the US is about 10%, but her clients have only had 3 complications in the 62 liver donor surgeries she has facilitated.
- Is this strong evidence that her work meaningfully contributes to reducing complications (and therefore she should be hired!)?

- H_0 : $\pi = 0.1$ vs. H_a : $\pi < 0.1$
- estimate of π is $\hat{\pi} = 3/62 \approx 0.048$

- H_0 : $\pi = 0.1$ vs. H_a : $\pi < 0.1$
- estimate of π is $\hat{\pi} = 3/62 \approx 0.048$
- Wald, score, likelihood ratio tests are based on *large samples*: only appropriate when *numbers of successes and failures are both at least 10* (or 15), but there were only 3 successes (having complications) in this example

- H_0 : $\pi = 0.1$ vs. H_a : $\pi < 0.1$
- estimate of π is $\hat{\pi} = 3/62 \approx 0.048$
- Wald, score, likelihood ratio tests are based on *large samples*: only appropriate when *numbers of successes and failures are both at least 10* (or 15), but there were only 3 successes (having complications) in this example
- For small sample, one can use the exact distribution of the data **Binomial**, instead of its normal approximation.

- H_0 : $\pi = 0.1$ vs. H_a : $\pi < 0.1$
- estimate of π is $\hat{\pi} = 3/62 \approx 0.048$
- Wald, score, likelihood ratio tests are based on *large samples*: only appropriate when *numbers of successes and failures are both at least 10* (or 15), but there were only 3 successes (having complications) in this example
- For small sample, one can use the exact distribution of the data **Binomial**, instead of its normal approximation.
- Under H₀: number of complications ~ $Bin(n = 62, \pi = 0.1)$

For conventional large sample tests based on normal approximation, the lower one sided *P*-value is the area under the normal curve below 3

For conventional large sample tests based on normal approximation, the lower one sided *P*-value is the area under the normal curve below 3

For the exact binomial test, the lower one-sided *P*-value is the area under the probability histogram below 3.

Exact Binomial Tests

Let *Y* = number of complications among the 62 liver donors. *Y* ~ *Binomial*($n = 62, \pi = 0.1$) under H₀.

$$P(Y = k) = \binom{62}{k} (0.1)^k (0.9)^{62-k}$$

The **lower one-sided** *P***-value** for exact binomial test of $\pi = 0.1$ is

$$P(Y \le 3) = P(Y = 0) + P(Y = 1) + P(Y = 2) + P(Y = 3)$$

= $\binom{62}{0}(0.1)^0(0.9)^{62} + \binom{62}{1}(0.1)^1(0.9)^{61} + \binom{62}{2}(0.1)^2(0.9)^{60} + \binom{62}{3}(0.1)^3(0.9)^{59}$
= 0.1210

```
dbinom(0:3, size=62, p=0.1)
[1] 0.001456 0.010027 0.033981 0.075514
sum(dbinom(0:3, size=62, p=0.1))
[1] 0.121
```

Not enough evidence to support the consultant's claim.

The R function to do exact binomial test is **binom.test()**.

```
binom.test(3, 62, p=0.1, alternative="less")
    Exact binomial test
data: 3 and 62
number of successes = 3, number of trials = 62, p-value = 0.121
alternative hypothesis: true probability of success is less than 0.1
95 percent confidence interval:
0.000000 0.1203362
sample estimates:
probability of success
             0.0483871
```

The *p*-value given by R is 0.121, which agrees with our calculation.

P-values of Exact Binomial Tests

For testing H₀: $\pi = \pi_0$, suppose the observed binomial count is y_{obs} .

- *P*-value = $P(Y \le y_{obs}) = \sum_{k \le y_{obs}} {n \choose k} \pi_0^k (1 \pi_0)^{n-k}$ for a lower one-sided alternative $H_a: \pi < \pi_0$
- *P*-value = $P(X \ge y_{obs}) = \sum_{k \ge y_{obs}} {n \choose k} \pi_0^k (1 \pi_0)^{n-k}$ for a upper one-sided alternative $H_a: \pi > \pi_0$
- For a two-sided alternative H_a: π ≠ π₀, the *P*-value is the sum of all the P(Y = k) such that P(Y = k) ≤ P(Y = y_{obs})

In this example, the observed count y_{obs} is 3.

As P(Y = 9) > P(Y = 3) and P(Y = k) < P(Y = 3) for all $k \ge 10$, the two-sided *P*-value is

Note that the two-sided *P*-value for an exact binomial test may not be twice of the one-sided *P*-value since a binomial distribution may not be symmetric

k =	= 0:12							
pro	ob = dbir	nom(k, <mark>62</mark> ,	0.1)	# P(Y=k) for 1	k=0,1,2,	.,11	
<pre>data.frame(k,prob)</pre>								
	k p	orob						
1	0 0.001	L 4 56						
2	1 0.010	0027						
3	2 0.033	3981						
4	3 0.075	5514						
5	4 0.123	8760						
6	5 0.159	9512						
7	6 0.168	3374						
8	7 0.149	9666						
9	8 0.114	1328						
10	9 0.076	5219						
11	10 0.044	1884						
12	11 0.023	8576		_				\top
13	12 0.011	133	0	3	5	10	15	20

```
binom.test(3, 62, p=0.1, alternative="two.sided")
    Exact binomial test
data: 3 and 62
number of successes = 3, number of trials = 62, p-value = 0.2081
alternative hypothesis: true probability of success is not equal to 0.1
95 percent confidence interval:
0.01009195 0.13496195
sample estimates:
probability of success
             0.0483871
```

The *P*-value given by R 0.2081 agrees with our calculation.

Exact Binomial Confidence Intervals

- Just like Wald, score, or LRT confidence intervals, one can invert the <u>two-sided</u> exact binomial test to construct confidence intervals for π.
- The 100(1 α)% exact binomial confidence interval for π is the collection of those π₀ such that the two-sided *P*-value for testing H₀: π = π₀ using the exact binomial test is at least α.
- The computation of the exact binomial confidence interval is tedious to do by hand, but easier for a computer.
- For the medical consultant example, the R command binom.test() gives the 95% exact confidence interval (0.01009195, 0.13496195) for π from the R output in the previous slide However, this interval is not obtained by inverting a two-sided exact Binomial test.

```
binom.test(3, 62, p=0.01009195, conf.level=0.95, alternative="two.sided
[1] 0.02500002
binom.test(3, 62, p=0.13496195, conf.level=0.95, alternative="two.sided
[1] 0.04121624
```

Neither P-values equal to 0.05