# STAT 226 Lecture 3 <br> Small Sample Binomial Inference Section 1.4.3 

Yibi Huang<br>Department of Statistics<br>University of Chicago

## Example: Medical Consultants for Organ Donors

- People providing an organ for donation sometimes seek the help of a special "medical consultant." These consultants assist the patient in all aspects of the surgery, with the goal of reducing the possibility of complications during the medical procedure and recovery.
- One consultant tried to attract patients by noting the average complication rate for liver donor surgeries in the US is about $10 \%$, but her clients have only had 3 complications in the 62 liver donor surgeries she has facilitated.
- Is this strong evidence that her work meaningfully contributes to reducing complications (and therefore she should be hired!)?


## Example: Medical Consultants for Organ Donors (Cont'd)

- $\mathrm{H}_{0}: \pi=0.1$ vs. $\mathrm{H}_{a}: \pi<0.1$
- estimate of $\pi$ is $\hat{\pi}=3 / 62 \approx 0.048$


## Example: Medical Consultants for Organ Donors (Cont'd)

- $\mathrm{H}_{0}: \pi=0.1$ vs. $\mathrm{H}_{a}: \pi<0.1$
- estimate of $\pi$ is $\hat{\pi}=3 / 62 \approx 0.048$
- Wald, score, likelihood ratio tests are based on large samples: only appropriate when numbers of successes and failures are both at least 10 (or 15), but there were only 3 successes (having complications) in this example


## Example: Medical Consultants for Organ Donors (Cont'd)

- $\mathrm{H}_{0}: \pi=0.1$ vs. $\mathrm{H}_{a}: \pi<0.1$
- estimate of $\pi$ is $\hat{\pi}=3 / 62 \approx 0.048$
- Wald, score, likelihood ratio tests are based on large samples: only appropriate when numbers of successes and failures are both at least 10 (or 15), but there were only 3 successes (having complications) in this example
- For small sample, one can use the exact distribution of the data - Binomial, instead of its normal approximation.


## Example: Medical Consultants for Organ Donors (Cont'd)

- $\mathrm{H}_{0}: \pi=0.1$ vs. $\mathrm{H}_{a}: \pi<0.1$
- estimate of $\pi$ is $\hat{\pi}=3 / 62 \approx 0.048$
- Wald, score, likelihood ratio tests are based on large samples: only appropriate when numbers of successes and failures are both at least 10 (or 15), but there were only 3 successes (having complications) in this example
- For small sample, one can use the exact distribution of the data - Binomial, instead of its normal approximation.
- Under $\mathrm{H}_{0}$ : number of complications $\sim \operatorname{Bin}(n=62, \pi=0.1)$



## Exact Binomial Tests

For conventional large sample tests based on normal approximation, the lower one sided $P$-value is the area under the normal curve below 3


## Exact Binomial Tests

For conventional large sample tests based on normal approximation, the lower one sided $P$-value is the area under the normal curve below 3


For the exact binomial test, the lower one-sided $P$-value is the area under the probability histogram below 3.


## Exact Binomial Tests

Let $Y=$ number of complications among the 62 liver donors.
$Y \sim \operatorname{Binomial}(n=62, \pi=0.1)$ under $\mathrm{H}_{0}$.

$$
P(Y=k)=\binom{62}{k}(0.1)^{k}(0.9)^{62-k}
$$

The lower one-sided $P$-value for exact binomial test of $\pi=0.1$ is

$$
\begin{aligned}
P(Y \leq 3) & =P(Y=0)+P(Y=1)+P(Y=2)+P(Y=3) \\
& =\binom{62}{0}(0.1)^{0}(0.9)^{62}+\binom{62}{1}(0.1)^{1}(0.9)^{61}+\binom{62}{2}(0.1)^{2}(0.9)^{60}+\binom{62}{3}(0.1)^{3}(0.9)^{59} \\
& =0.1210
\end{aligned}
$$

dbinom(0:3, size=62, p=0.1)
[1] 0.0014560 .0100270 .0339810 .075514
sum(dbinom(0:3, size=62, p=0.1))
[1] 0.121
Not enough evidence to support the consultant's claim.

## Exact Binomial Tests in $\mathbf{R}$

The $R$ function to do exact binomial test is binom.test().

```
binom.test(3, 62, p=0.1, alternative="less")
Exact binomial test
data: 3 and 62
number of successes = 3, number of trials = 62, p-value = 0.121
alternative hypothesis: true probability of success is less than 0.1
95 percent confidence interval:
    0.0000000 0.1203362
sample estimates:
probability of success
    0.0483871
```

The $p$-value given by R is 0.121 , which agrees with our calculation.

## P-values of Exact Binomial Tests

For testing $\mathrm{H}_{0}: \pi=\pi_{0}$, suppose the observed binomial count is $y_{o b s}$.
 one-sided alternative $\mathrm{H}_{a}: \pi<\pi_{0}$
 one-sided alternative $\mathrm{H}_{a}: \pi>\pi_{0}$

- For a two-sided alternative $\mathrm{H}_{a}: \pi \neq \pi_{0}$, the $P$-value is the sum of all the $P(Y=k)$ such that $P(Y=k) \leq P\left(Y=y_{o b s}\right)$



## Example: Medical Consultants for Organ Donors (Contd)

In this example, the observed count $y_{o b s}$ is 3 .
As $P(Y=9)>P(Y=3)$ and $P(Y=k)<P(Y=3)$ for all $k \geq 10$, the two-sided $P$-value is

$$
P(Y \leq 3)+P(Y \geq 10) \approx 0.1210+0.0872=0.2082
$$



Note that the two-sided $P$-value for an exact binomial test may not be twice of the one-sided $P$-value since a binomial distribution may not be symmetric

$$
\mathrm{k}=0: 12
$$

prob $=$ dbinom(k, 62, 0.1) $\# P(Y=k)$ for $k=0,1,2, \ldots, 11$
data.frame(k, prob)
k prob
210.010027
320.033981
430.075514
540.123760
650.159512
760.168374
870.149666
980.114328
$10 \quad 90.076219$
11100.044884
12110.023576
13120.011133


## Two-Sided Exact Binomial Tests in $\mathbf{R}$

```
binom.test(3, 62, p=0.1, alternative="two.sided")
Exact binomial test
data: 3 and 62
number of successes = 3, number of trials = 62, p-value = 0.2081
alternative hypothesis: true probability of success is not equal to 0.1
95 percent confidence interval:
    0.01009195 0.13496195
sample estimates:
probability of success
    0.0483871
```

The $P$-value given by R 0.2081 agrees with our calculation.

## Exact Binomial Confidence Intervals

- Just like Wald, score, or LRT confidence intervals, one can invert the two-sided exact binomial test to construct confidence intervals for $\pi$.
- The $100(1-\alpha) \%$ exact binomial confidence interval for $\pi$ is the collection of those $\pi_{0}$ such that the two-sided $P$-value for testing $\mathrm{H}_{0}: \pi=\pi_{0}$ using the exact binomial test is at least $\alpha$.
- The computation of the exact binomial confidence interval is tedious to do by hand, but easier for a computer.
- For the medical consultant example, the R command binom.test () gives the 95\% exact confidence interval ( $0.01009195,0.13496195$ ) for $\pi$ from the $R$ output in the previous slide However, this interval is not obtained by inverting a two-sided exact Binomial test.
binom.test(3, 62, p=0.01009195, conf.level=0.95, alternative="two.sided [1] 0.02500002
binom.test(3, 62, p=0.13496195, conf.level=0.95, alternative="two.sided [1] 0.04121624

Neither $P$-values equal to 0.05

